
High-quality networked terrain rendering from compressed bitstreams

Fabio Bettio

CRS4

Enrico Gobbetti

CRS4∗
Fabio Marton

CRS4

Giovanni Pintore

CRS4

Figure 1: Real-time exploration of remote terrain models. Our method is capable of producing high quality seamless renderings of terrain data at high frame rates from highly

compressed bitstreams, improving the scalability of servers and the behavior of clients in network environments with narrow bandwidth and low computational power. In this

example, we show three frames of an interactive session with an internet geo-viewing tool based on our library exploring a detailed height colored terrain model at high frame rates

over an ADSL 4Mbps network. See also figure 7 (color plate).

Abstract

We describe a compressed multiresolution representation and a
client-server architecture for supporting interactive high quality re-
mote visualization of very large textured planar and spherical ter-
rains. Our approach incrementally updates a chunked level-of-detail
BDAM hierarchy by using precomputed wavelet coefficient matri-
ces decoded from a compressed bitstream originating from a thin
server. The structure combines the aggressive compression rates of
wavelet-based image representations with the ability to ensure over-
all geometric continuity for variable resolution views of planar and
spherical terrains with no need for run-time stitching. The efficiency
of the approach is demonstrated on a large scale interactive remote
visualization of global and local terrains on ADSL networks. A
library implementing an early version of this work has been incor-
porated into a widely distributed geo-viewing system with tens of
thousands of clients.

CR Categories: I.3.3 [Computer Graphics]: Picture and Im-
age Generation—; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—.

Keywords: Out-Of-Core Algorithms, Network Streaming, Data
Compression, Level of Detail

1 Introduction

Real-time 3D exploration of remote digital elevation models built
from high resolution imagery and elevation data has long been one
of the most important components in a number of practical applica-
tions, and extensive research has been carried out in terms of meth-
ods and techniques for processing, distributing, and rendering very
large datasets. The increased availability of broadband networks

∗CRS4 Visual Computing Group, POLARIS Edificio 1,

09010 Pula, Italy www: http://www.crs4.it/vic/ e-

mail: {fabio|gobbetti|marton|gianni}@crs4.it

and high performance graphics PCs has made this technology, once
limited to professional applications, increasingly popular, as testi-
fied by the success of Internet geo-viewing tools like Google Earth,
NASA WorldWind, and Microsoft Virtual Earth.

The efficient implementation of such tools requires a combina-
tion of technologies for adaptively rendering high quality terrain
views at high frame rates and techniques for efficiently streaming
data from the systems serving the terrain database to a large number
of rendering clients.

At the present time, the vast majority of large scale networked
terrain visualization systems are based on variations of tiled quads
data structures, which partition the terrain into independent square
patches tessellated at different resolutions. Since it is not possible
to generate seamless variable resolution tilings by combining axis-
aligned squares, these methods require run-time work to stitch block
boundaries, leading to CPU work and inefficient GPU utilization. It
is worth noting that when using independent square tiles, e.g, com-
ing from a quadtree partitioning, stitching cannot be fully incorpo-
rated into a preprocess, since view-dependent rendering leads to the
need of dealing with variable neighborhoods.

In recent years, very efficient seamless techniques for high qual-
ity variable resolution rendering from aggressively compressed
datasets have been introduced into the visual simulation domain
(e.g., [Losasso and Hoppe 2004; Gobbetti et al. 2006]), but the pro-
posed approaches are tuned to high end graphics boards with local
access to the data.

Contribution. In this paper, we describe a compressed multires-
olution representation and a client-server architecture for supporting
interactive high quality remote visualization of very large textured
planar and spherical terrains. Our approach incrementally updates
a chunked level-of-detail BDAM hierarchy by using precomputed
wavelet coefficient matrices decoded from a compressed bitstream
originating from a thin server. The encoding, in contrast to C-
BDAM [Gobbetti et al. 2006] follows a reversible integer-to-integer
wavelet scheme, which can be constructed using a parallel single
pass compression process tuned for near-lossless or mean-square
error metrics and can be decoded by clients with low computational
power. The methods strives to combine the generality and adaptiv-
ity of chunked bintree multiresolution structures with the compres-
sion rates of wavelet image compressors and the streaming abilities
of tiled quadtree approaches. Similarly to BDAM, coarse grain re-
finement operations are associated to regions in a bintree hierarchy.

Each region, called diamond, is formed by two triangular patches
that share their longest edge and tessellate the model using the same
regular triangulation connectivity. The compressed data structure
requires storage of a single square matrix of wavelet coefficients per
diamond. At run-time, a compact in-core multiresolution structure
is traversed, and incrementally refined or coarsened on a diamond-
by-diamond basis until screen space error criteria are met. The per
diamond wavelet coefficient matrices required for refining are in-
crementally retrieved from the server in the form of a compressed
bitstream. At each frame, updates are communicated to the GPU
with a batched communication model.

Advantages. The structure provides a number of benefits: effi-
cient client-server communication using a compressed bitstream;
server scalability; efficient one-pass compression and real-time
integer-based decompression; overall geometric continuity for pla-
nar and spherical domains; support for variable resolution input
data; management of multiple vertex attributes. As highlighted in
section 2, while other techniques share some of these properties,
they typically do not match the capabilities of our method in all
of the areas. We are therefore capable of producing high quality
seamless renderings of terrain data at high frame rates from highly
compressed sources, improving the scalability of servers and the be-
havior of clients in network environments with narrow bandwidth
and low computational power.

Limitations. The proposed method has also some limita-
tions. As for state-of-the-art rendering systems from compressed
datasets [Losasso and Hoppe 2004; Gobbetti et al. 2006], the com-
pression method is lossy and assumes that the terrain has bounded
spectral density, which is the case for typical remote sensing
datasets. In contrast to [Gobbetti et al. 2006] aggressively com-
pressed datasets are unable to guarantee absolute error tolerances.
We consider this acceptable for a streaming application. Unlike
tiled quadtree approaches, the method provides faster seamless high
quality renderings and higher compression rates at the expense of a
pre-processing of the entire database.

Our approach adopts the philosophy of the BDAM breed of tech-
niques. The new approach for efficiently encoding and streaming
terrain datasets is described in section 3. Section 4 illustrates the
client-server architecture. The efficiency of the method has been
successfully evaluated on a number of test cases, discussed in sec-
tion 5.

2 Related work

Adaptive rendering of huge terrain datasets in a networking envi-
ronment has a long history, and a comprehensive overview of this
subject is beyond the scope of this paper. In the following, we will
briefly discuss the approaches that are most closely related with our
work. Readers may refer to well established surveys [Lindstrom
and Pascucci 2002; Pajarola 2002] for further details.

Efficient adaptive rendering. The vast majority of adaptive ter-
rain rendering approaches have historically dealt with large triangle
meshes computed on the regularly distributed height samples of the
original data, using either irregular (e.g., [De Floriani et al. 1997;
Hoppe 1998]) or semi-regular adaptive triangulations (e.g., [Lind-
strom et al. 1996; Duchaineau et al. 1997; Pajarola 1998; Lindstrom
and Pascucci 2001]). The main objective of this kind of algorithms
was to compute the minimum number of triangles to render each
frame, so that the graphic board would be able to sustain the ren-
dering. More recently, the impressive improvement of the graph-
ics hardware shifted the bottleneck from the GPU to the CPU. For
this reason many techniques were proposed to reduce per-triangle
workload by composing pre-assembled optimized surface patches
at run-time. Tiled blocks techniques (e.g., [Hitchner and Mcgreevy
1993; Wahl et al. 2004]), originally designed for external data man-
agement purposes, and now ubiquitous for networked applications,

partition the terrain into square patches tessellated at different res-
olutions. The main challenge is to seamlessly stitch block bound-
aries, using run-time generated geometry. The first methods capa-
ble of producing adaptive conforming surfaces by composing pre-
computed patches with a low CPU cost were explicitly designed for
terrain rendering. RUSTIC [Pomeranz 2000] and CABTT [Leven-
berg 2002] are extensions of the ROAM [Duchaineau et al. 1997]
algorithm, in which subtrees of the ROAM bintree are cached and
reused during rendering. A similar technique is also presented in
[DeCoro and Pajarola 2002] for generic meshes. BDAM [Cignoni
et al. 2003a; Cignoni et al. 2003b] constructs a forest of hierar-
chies of right triangles, where each node is a general triangulation
of a small surface region, and explicitates the rules required to ob-
tain globally conforming triangulations by composing precomputed
patches. A similar approach, but described in terms of a 4-8 hier-
archy, is described in [Hwa et al. 2005], which store textures and
geometry using the same technique.

Streaming and compression. Various authors have recently
concentrated on combining data compression methods with mul-
tiresolution schemes to reduce data transfer bandwidths and mem-
ory footprints. Tiled block techniques typically use standard 2D
compressors to independently compress each tile, limiting the
achievable compression rates. Many compression algorithms have
been proposed in the image processing field that are able to pro-
vide high compression ratios, image streaming, and access to image
portions. JPEG2K is a standard with outstanding capabilities. Im-
age based techniques, however, do not meet all the requirements for
a terrain rendering applications. In particular, the rapid assembly
of variable resolution approximations is not supported, as fast ex-
traction of blocks requires, at best, server side work, and produces
axis-aligned tiles. Kim and Ra proposed a networked visualization
algorithm combined with wavelet-based compression that can work
with a thin server [Kim and Ra 2004]. In their approach, a restricted
quadtree mesh model is updated in real time by using wavelet coef-
ficients decoded from a compressed bitstream. However, per-vertex
adaptation limits GPU efficiency and the proposed blockwise pro-
cessing method requires access to multiple blocks at reconstruc-
tion time. Geometry clipmaps [Losasso and Hoppe 2004] organize
the terrain height data into a pyramidal multiresolution scheme and
the residual between levels is compressed using an advanced im-
age coder that supports fast access to image regions [Malvar 2000].
Storing in a compressed form just the heights and reconstructing
at runtime both normal and color data (using a simple height color
mapping) provides a very compact representation. However, the
pyramidal scheme limits adaptivity, and the technique works best
for wide field of views and nearly planar geometry. Moreover, CPU
or GPU processing is required to blend clipmap levels. An exten-
sion to spherical datasets has been recently proposed [Clasen and
Hege 2006], but it requires heavy per-vertex trigonometric GPU
computations. A networking version of the planar-only version has
been proposed [Deb and Narayanan 2006], but it is tuned for a small
number of clients per server, as the server module has to explicitly
track the dynamic state of each client. In [Hwa et al. 2005], the
authors point out that, when using a 4-8 hierarchy, the rectangu-
lar tiles associated to each diamond could be also compressed using
standard 2D image compression methods. Our work proposes an ef-
ficient method for incorporating compression of height and texture
information into the BDAM framework. A similar approach has
been taken in the CBDAM framework [Gobbetti et al. 2006], which
recasts diamond processing in the framework of wavelet update lift-
ing [Jr. et al. 2003], with the purpose of transforming data into
a domain with a sparser representation amenable to efficient com-
pression. In this framework, diamond coarsening is associated to
wavelet analysis, while diamond refinement corresponds to wavelet
synthesis. This approach supports maximum error metrics control
but requires storage of two matrix coefficients per diamond, and a

two-step construction process. By contrast, we recast BDAM in
the framework of standard wavelet lifting [Kovacevic and Sweldens
2000] and propose a lighter integer-to-integer implementation more
suited to a networking environment with heterogenous clients.

We have to note that many other authors have explored the prob-
lem of creating compressed representations for geometric data, but
in most of these cases the focus is on compression ratio rather than
the real-time view-dependent rendering from the compressed repre-
sentation; for a recent survey of this field we refer the reader to [Al-
liez and Gotsman 2005].

3 Data representation

In high quality real-time networked terrain viewing applications the
client has to rapidly adapt a seamless level-of-detail terrain repre-
sentation in response to viewer motion, using data coming from the
server. In this context, a compressed data representation must pos-
sess a number of requirements: ability support random access to dif-
ferent portions of the dataset; resolution scalability for progressive
resolution increase; hierarchical structuring able to support variable
resolution seamless LOD; high compression ratio, to reduce trans-
mitted data; low server side complexity, to ensure scalability with
number of cliens; low client side decoding complexity, to support
heterogeneous clients. We meet these requirements by proposing a
data representation based on an integer wavelet lifting transforma-
tion of the BDAM structure.

Figure 2: BDAM on a regular grid. Left: a diamond hierarchy. Right: diamond

coarsening and refinement operations on a regular grid.

BDAM exploits the partitioning induced by a recursive subdi-
vision of the input domain in a hierarchy of right triangles. The
partitioning consists of a binary forest of triangular regions, whose
roots cover the entire domain and whose other nodes are generated
by triangle bisection. This operation consists in replacing a trian-
gular region σ with the two triangular regions obtained by splitting
σ at the midpoint of its longest edge. In order to guarantee that a
conforming mesh is always generated after a bisection, the (at most)
two triangular regions sharing σ ’s longest edge are split at the same
time. These pairs of triangular regions are called diamonds and
cover a square. The dependency graph encoding the multiresolution
structure is thus a DAG with at most two parents and at most four
children per node. This structure has the important property that, by
selectively refining or coarsening it on a diamond by diamond basis
while keeping the boundary vertices fixed, it is possible to extract
conforming variable resolution mesh representations. The structure
of a BDAM mesh, when operating on regular grids, is depicted in
figure 2. As we can see, the two patches that form a diamond have
their vertices placed on a uniform square grid, while the vertices of
the refined patches are placed at the centers of the square cells of
the grid. Diamond coarsening has thus to remove cell-centered val-
ues and filter vertex-centered ones, while diamond refinement has

to undo the operation.
In order to represent data in a domain more amenable to com-

pression, in this work diamond coarsening is associated to wavelet
analysis, while diamond refinement corresponds to wavelet synthe-
sis (see figure 3.

Data compression is performed by iterating a wavelet analysis
process starting from the leaf level storing the original data and ter-
minating at the root. The analysis process for constructing a level
l diamond starts by gathering vertex data from child diamonds at
level l + 1 (or from the input dataset) into two interleaved square

matrices of values: a matrix V (l+1) of vertex centered values, and
a matrix C(l+1) of cell-centered values. A new set of vertex values
L(l) and a matrix of detail coefficients H(l) can then be computed
by the following high- and low-pass filtering operations:

H
(l)
i j = V

(l+1)
i j −Pi j(C

(l+1)) (1)

V
(l)
i j = C

(l+1)
i j +

1

2
Ui j(H

(l)) (2)

Here, P(.) is a prediction operator that predicts a vertex centered
value from neighboring cell centered values, and U (.) is an update
operator that averages the deltas on neighboring cell-centered values
to update a cell-centered value. In order to comply with BDAM
diamond boundary constraints, it is sufficient to set Ui j(.) = 0 for all
diamond boundary vertices, which ensures that boundary vertices
remain unmodified by diamond filtering.

For prediction, we use a order 4 Neville interpolating filter if all
support points fall inside the diamond, and an order 2 filter in the
opposite case [Kovacevic and Sweldens 2000]. For update, we al-
ways use an order 2 filter. These filters predict points by a weighted
sum of 12 (order 4) or 4 (order 2) coefficients, use only integer op-
erations, and are therefore very fast to compute (see figure 3).

By iterating the analysis process from leaf diamonds up to the
roots, all the input data get filtered up to the coarsest scale. The
resulting wavelet representation is multiscale, as it represents the
original terrain dataset with a set of coarsest scale coefficients as-
sociated to the root diamonds, plus a set of detail coefficients with
increasingly finer resolution. During synthesis it is possible to pro-
duce variable resolution representations by refining a diamond at
a time, using a process that simply reverses the analysis steps. At
diamond refinement time, first face and vertex-centered values are
computed from the coarser level diamond vertex values:

C
(l+1)
i j = V

(l)
i j −

1

2
Ui j(H

(l)) (3)

V
(l+1)
i j = H

(l)
i j +Pi j(C

(l+1)) (4)

Then, this data is reassembled and scattered to child diamonds.
The approach is similar to that of nonseparable wavelets applied

to a quincunx lattice [Kovacevic and Sweldens 2000]. However,
by constraining the boundary vertices of each diamond to remain
fixed, and by restricting all other filters to use only diamond in-
ternal values, we can efficiently support variable resolution recon-
structions with independent diamond operations. Moreover, these
constraints do not induce a tiling effect, as no boundary remains
locked for more then one level due to the properties of the BDAM
hierarchy [Cignoni et al. 2003a].

Lossless, near-lossless, and lossy data compression. For typ-
ical terrain datasets, the wavelet representation produces detail co-
efficients that decay rapidly from coarse to fine scale, as most of
the shape is captured by the prediction operators. By entropy cod-
ing the detail coefficients it is thus possible to efficiently compress
the input dataset. The achievable lossless compression ratio is how-
ever limited. More aggressive lossy compression can be achieved
by quantizing detail coefficients or discarding small ones. In C-
BDAM [Gobbetti et al. 2006], the problem is solved by using a

Figure 3: Wavelet transformation in a BDAM diamond. Diamond coarsening removes cell-centered values and filters vertex-centered ones, while diamond refinement performs

the inverse operation.

two-stage near-lossless scheme which ensures that each diamond
is within a given maximum value of the original filtered data, but
requires a non reversible wavelet transformation based on update
lifting, a two-step compression process, as well as storage and com-
putation of two matrices per node. In this work, tuned for internet
application with heterogeneous clients, we have opted for a more
straightforward approach directly based on the reversible integer-
to-integer wavelet representation. In order to obtain a compressed
representation, we quantize coefficients with a uniform quantizer
without deadzones and then entropy code the quantized results with
the same quadtree-based approach used in [Gobbetti et al. 2006].
Lossless and near-lossless compression can be obtained by apply-
ing the quantization only to leaf diamonds. This approach is much
simpler, but tuned for lossless or RMS control.

4 Client-server framework

Our compressed representation forms the basis of a scalable ter-
rain streaming system able to adapt to client characteristics and to
exploit available network bandwidth. A block diagram of our sys-
tem’s design is presented in figure 4. In the following sections, we
discuss the data storage and server side distribution component, as
well as the client-side streaming and rendering methods.

Figure 4: Client-server architecture.

4.1 Data storage and distribution

Diamond data repositories. Compressed data is stored in
repositories that contain root diamond values and wavelet coeffi-
cient matrices for each diamond. We assume that each repository
contains a single elevation or color value per sample. In a single
client renderer, multiple repositories can be combined, provided that
they meet consistency constraints. The repositories are required to
cover the same domain but, in contrast to [Gobbetti et al. 2006] may
use different diamond patch granularity. In particular, we found it

profitable to use twice as many color samples than elevation samples
per diamond side. This means that at rendering time we associate a
texture diamond with (2N +1)2 samples to each geometry diamond

with (N +1)2 samples.

Moreover, repositories can be, and generally will be, of different
depths, as the original datasets are typically provided at different
resolutions (generally, color has a higher sampling rate than eleva-
tion). Data can be requested from the repositories using a unique
identifier which is the integer 3D center position of the selected di-
amond. For a planar terrain, we use a single root diamond with 2D
coordinates, while for spherical datasets we use a cube map repre-
sentation with one root diamond per cube face.

Server design and implementation. The server is able to man-
age different repositories, and does not differentiate among color or
elevation components. From the server’s point of view, a reposi-
tory is just a database with a unique key for indexing a block of
bytes containing an encoded bitstream representing a compressed
wavelet coefficient matrix. In order to increase server-side scalabil-
ity, no component is present in the server, whose only behavior is to
return a block of bytes if present. This approach makes it possible
to leverage existing database components instead of being forced to
implement a storage manager. In this work, storage management
is done through Berkeley DB, and data serving is done through an
Apache2 server extended with an appropriate module.

Berkeley DB is a widely tested open source embeddable database
which provides a fast, scalable, transactional database engine with
industrial grade reliability and availability, able to manage up to
terabytes of data. Moreover, the amount of per-process replicated
cache is configurable, and different instances of the same database
are able to share index memory, thus reducing memory load for
servers dealing in parallel with hundreds of clients. Apache2 is
a secure, efficient and extensible open source server that provides
many HTTP services in sync with the current HTTP standards. Be-
sides, it is scalable, multithreaded and includes features like persis-
tent server processes and proxy load balancing, which are essential
for the performance of our application.

A custom apache module manages a connectionless protocol
based on HTTP. Clients requests include database name and dia-
mond identifiers. The module parse the request, queries the associ-
ated database, and sends in response either a compressed bitstream
extracted from the database and encoding a matrix of wavelet detail
coefficients, or an empty message if no data is available (and thus
the diamond is a leaf that has no refinement data associated to it).

This approach based on open-source components is simple to im-

plement and maintain, and provides very good performance. In par-
ticular, the concurrency features of apache are exploited to handle
thousands of clients in parallel through the forking of multiple child
servers sharing the same database.

4.2 Multi-threaded clients for remote visualization

Incremental diamond graph refinement. The client manages
a diamond graph which represents the terrain and its relative tex-
ture from the coarser representation (given by the root) to the cur-
rent view dependent representation, which is the current cut of the
graph. Elevation and texture come from different repositories, that
are matched at run-time. Both color and elevation are represented
using the same technique.

For the sake of interactivity, the multiresolution extraction pro-
cess should be able to support a constant high frame rate, given the
available time and memory resources. This means that the algo-
rithm must be able to fulfill its task within a predetermined budget
of time and memory resources, always ending with a consistent re-
sult, or, in other words, it must be interruptible. Our extraction
method uses a time-critical variation of the dual-queue refinement
approach [Duchaineau et al. 1997] to maintain a current cut in the
diamond DAG by means of refinement and coarsening operations.
The graph with the reconstructed values of all the diamonds from
the root until the current cut is kept incore.

Each diamond has an associated error equal to the maximum be-
tween the estimated mean projected edge length of its triangles and
the mean projected size of the associated texels in case of colored
datasets. In the typical case, more texels are associated to each tri-
angles, as we typically diamonds with more samples for color than
for elevation. This means that, at rendering time, the renderer will
seek to produce images with a prescribed number of texels/pixel
for colored datasets. Since rendering is very efficient, the typical
rendering tolerance is in the range of 1 texel/pixel. This makes it
possible to use a very simple error metric, stated purely in terms of
sampling density, without the need to resort to a complex estimation
of perceivable features.

A coarsen operation is performed on a diamond above the cut if
its projected error is lower than a user selected screen threshold and
all its children are leaves, while we perform a refine operation on a
diamond of the cut when its error is larger than the threshold, and all
its parents have been already refined. This means that coarsening is
obtained just by moving up the cut in the diamond graph, and free-
ing unreferenced memorym and does not require particular compu-
tation. In the refinement operation, instead, children data must be
constructed, starting from current color and elevation data and re-
questing detail coefficients from the server. If detail coefficients are
not immediatly available, the refinement of that diamond stops and
refinement of other diamonds in the queue is performed until the
queue is empty or the elapsed time has exhausted the time budget.
While waiting for data coming from the server, the renderer keeps
using the current terrain approximation. Latency in data arrival can
be reduced by using a prefetching approach (see below). When new
data come from the server, the client takes care of decompressing
the bitstream into a matrix of wavelet detail coefficients, then uses
them to reconstruct the actual values to be stored in the multireso-
lution structure.

Multithreaded data access for fecthing and prefetching
wavelet coefficients. A multithreaded data access layer hides to
the application the technique used for accessing the terrain reposi-
tory. In our current implementation, we use a HTTP/1.1 persistent
connection approach and optionally employ HTTP pipelining. The
combination of these two techniques improve bandwidth usage and
reduce network latency, while keeping the protocol simple from API
point-of-view, since clients benefit from an underlying connection-
based implementation hidden under a reliable connectionless inter-
face. The pipelining approach allows multiple HTTP requests to

be written together out to the socket connecting client and server
without waiting for the corresponding responses. The client then
waits for the responses to arrive in the order in which they were
requested. The act of pipelining the requests can result in a dra-
matic improvement in response times, especially over high latency
connections. Pipelining can also dramatically reduce the number of
TCP/IP packets, since it is possible to pack several HTTP requests
into one TCP/IP packet, reducing the burden on IP routers and net-
works. This is particularly important in our setting, since diamond
data is higly compressed (e.g., few tens of bytes per diamond), and
multiple requests are typically issued at each frame. With a typical
TCP/IP MSS (maximum segment size) in the range of 536 to 1460
bytes, a single packet can pack multiple requests to the server as
well as multiple responses.

The client data access layer is subdivided into two threads that
communicate through a shared cache of wavelet coefficients in-
dexed by diamond ids to hide network latencies. The main thread
requests the wavelet coefficients which are needed to refine the di-
amond graph from the current point of view. Requests are pushed
in a prioritity queue. At the end of the frame, only as many new
requests as those allowed by the estimated network bandwidth are
issued and managed by a separate network access thread, and the
remaining ones are ignored. Since the dual queue incremental re-
finement approach ensures that requests are issued sorted coarse to
fine and by estimated projected error, and that unhandled requests
are repeated at each frame, a simple limited memory first-in/fist-
out queue induces a request ordering that is both I/O efficient and
ensures to download the most relevant data as soon as possible. In
addition, this method makes it possible to incorporate prefetching to
request refinement data before it is needed. This is done by pushing
to the request queue also a set of diamonds which are not scheduled
for refinement, but are likely to be refined in the near future. Since
these diamonds are at the end of the queue, they are considered only
if all true refinement requests can be managed whithin the current
fetching budget.

The second thread managing the network receives the com-
pressed bitstream from the server and decodes it to wavelet coef-
ficients before storing them in the shared cache. Moving all the
decoding in this second thread reduces CPU work in the main one,
which will receive directly wavelet coefficient matrices in a form
usable for the wavelet synthesis operation required to update the di-
amond graph. If color and elevation data are not available at the
same resolution it could happen that requests are issued for a di-
amond that is present only in one of the two repositories. In that
case, this fact is hidden to the main diamond refinement thread, and
the missing wavelet data are procedurally generated by the client
to be able to refine the graph to the maximum depth of the color
and elevation datasets. In our current implementation, this proce-
durally generated matrix can either be a null one, or a matrix of
zero-centered uniform random numbers for high frequency detail
synthesis.

When we request a diamond which is not present in either of the
two datasets, the server returns two null bitstreams. This diamond
is marked as empty, so that none of the successive requests of this
data is sent to the server. A cache of identifiers of empty diamonds is
stored in the data access layer; when the diamond graph requests an
empty diamond nothing is returned, and thus the processed diamond
is no further refined.

Rendering process At the end of the incremental refinement pro-
cess, the leafs of the graph contain the current terrain approxima-
tion, in a format suitable for graphics rendering. Communication
with the GPU is made exclusively through a retained mode inter-
face, which reduces bus traffic by managing a least-recently-used
cache of triangular patches and textures maintained on-board. Since
we have to manage heterogeneous clients with varying graphics ca-
pabilities, in our implementation at the beginning of rendering we

detect which kind of GPU is available thus tuning the graphics ap-
proach that will be used to enable our application to work also on
low-end GPUs or in the extreme case, in software only environ-
ments.

As stated above, in contrast to C-BDAM, we decouple geometry
resolution from color resolution and put the color information into
texture images, instead of using per-vertex color. It is thus possi-
ble to decouple color resolution from geometry resolution by using
different diamond sizes.

On non programmable graphics systems, the computation of
all the vertex information (position and eventually normal) start-
ing from an array of heights and from the boundary corner of the
patch, is performed by the CPU before sending data from the dia-
mond graph to the GPU in the form of a Vertex Buffer Object. On
high-end hardware this decompression of vertex information is per-
formed directly by vertex shaders, allowing the application to move
compressed data from the CPU to the GPU. A similar approach is
taken for colors, for which the decompression from the YCoCg-R
colorspace used for compression is performed either in CPU or on a
fragment shader depending on the capabilities of the graphics board.

We manage a cache of Vertex Buffer Objects in the GPU to ex-
ploit spatial and temporal coherence, reusing the same data for sev-
eral frames without the need of moving it again to the GPU. A
backup solution is also used for the CPU - GPU data comunica-
tion if no Vertex Buffer Objects are available, and it is based on the
standard Vertex Arrays which are provided since OpenGL 1.1.

5 Implementation and results

An experimental software library and a rendering application sup-
porting the C-BDAM technique have been implemented on Linux
and Windows platforms using C++ with OpenGL and NVIDIA Cg.
An early version of this library has been incoporated into a widely
distributed regional geo-viewing system with tens of thousands of
clients1. As for most contemporary goeviewing systems, the client
application enriches the digital terrain model with different kinds of
static and dynamic geocoded data. A snapshot of the GUI is de-
picted in figure 6.

We have extensively tested our system with a number of large
terrain datasets. In this paper, we discuss the results obtained on
two terrain datasets with different characteristics. The first dataset
is a global reconstruction of the planet Earth from SRTM data at
3 arcsec resolution (one point every 90m at the Equator. Source:
CGIAR Consortium for Spatial Information. srtm.csi.cgiar.org).
The dataset is reasonably large (29 billion samples) and provides
an example of variable resolution planetary data, as it is described
by a sparse set of tiles providing data only for emerged land in the
66S-66N latitude range. The total size of this dataset is 58GB un-
compressed. The second dataset is a reconstruction of the island
of Sardinia textured with a high resolution ortho-photo. Elevation
data has a 10m/sample resolution (800MB uncompressed), while
the texture has a 1m/sample resolution (123GB uncompressed).

Preprocessing and compression rates All the preprocessing
tests were run on a single PC running Linux 2.6.15 with two Dual
Core AMD Opteron 1.8 GHz processors, 2 GB of RAM, SATA
10000 rpm, 150 GB hard drive.

We constructed all geometry multiresolution structures with a
prescribed diamond dimension of 33 × 33 samples for the eleva-
tion and 65 × 65 samples for color. Each diamond is thus com-
posed by two patches formed by 1K triangles each and is covered
by a texture with two texels per triangle edge. Preprocessing planet
earth (29G input samples) took 9.5 hours, while preprocessing the
Sardina dataset took 6 minutes for the elevation (400M input sam-
ples), and 30.5 hours for the colors (41G samples). In all the results

1Viewer available from: http://www.sardegna3d.it - at the time of

this writing, over 40’000 users are served by two AMD64 servers.

presented here we make use of four threads (one per CPU core),
with a speed-up of 3X with respect to the sequential version. The
sub-linear speed-up is due to the fact that time is taken up with I/O
operations on the input, temporary and output files. We expect a per-
formance increase when distributing them on multiple disks. Pro-
cessing speed ranges from 360K samples/s for color up to 850K
samples/s for height, more than 3 time faster than C-BDAM [Gob-
betti et al. 2006] This is mainly because we reduced the processing
to one pass, we generate roughly half the temporary data, and we
compute only one matrix per diamond instead of two matrice using
integer only operations.

The tolerances used for compressing were chosen to provide
near-lossless results, using root mean square error tolerance to drive
the compression. In both the elevation datasets we used a prescribed
maximum RMS error tolerances of 10% of sample spacing: 9 me-
ters for Planet Earth and 1 meter for the Sardinia heightfield, while
colors have been compressed imposing a RMS error of 11% per
component which gives an error lower than what is achieved for the
S3TC compression algorithm, commonly used in terrain rendering.
The achieved bit rate for planet Earth is 0.13bps (bits per sample)
(or 0.296bps considering the Berkeley DB overhead). Sardinia has
a bit rate of 0.23bps for elevation (0.68bps with Berkeley DB over-
head), and 2.67bps (3.743bps) for color. The color bit rate is higher
because elevation data is much smoother. It should be noted that we
imposed a strict tolerance in preprocessing to conserve all extremely
sharp features and to test the near lossless behavior of the compres-
sor. In any case, the compression is similar to that of other wavelet
based image compressors, with the additional advantage of ability
to produce seamless variable resolution representation at neglible
costs. By using larger kernels for prediction and update operators
and using a more elaborate entropy encoder it would be possible to
further improve compression rates, at the expense, however, of de-
coding speed and code complexity. The figures above show that the
Berkely DB database has a noticeable overhead due to its generality,
e.g., for supporting variable size keys, and data paging organization.
It should be considered, however, that for a networked application
this is not an issue, since the stream bit rate is independent of storage
overhead.

An important consideration here comes from a comparison with
current tile-based technology. Current tiling systems apply com-
pression at the tile level. To achieve high compression rates, they
are forced to use tile sized much larger than our diamond sizes. This
is because, otherwise, not enough context in a single tile would be
present to offer compression possibilities. For instance, Microsoft
Virtual Earth has a compression rate of about 3bps for the color
dataset using a tile size of 256x256 and a lossy JPEG encoding.
Using such a large tile size (over 16x the number of samples in
one of our diamonds) forces the application to refine the model at a
much larger granularity. This implies that more data is required to
achieve the same approximation quality, and that refinement is not
as smooth as in our solution. Reducing the tile size is not an option,
since, for instance, the same JPEG compression applied to tiles of
64x64 samples produces a bit rate of 4.5bps. Note also that our rep-
resentation is critically sampled and has twice the refinement levels,
while a standard tile-based replicates data among levels and offers
only power of two refinement.

Adaptive rendering. The rendering tests were run on low- and
medium-end PCs with NVIDIA, ATI or Intel graphics boards and
CPUs ranging from AMD64 to Pentium3 800MHz. In all cases we
are able to sustain interactive rendering rates ranging from 20Hz
to over 100Hz with pixel-sized texels datasets or triangles when no
color layer is displayed. The qualitative performance of our adap-
tive renderer is illustrated in an accompanying video that shows
live recordings of flythrough sequences. The video was recorded
at 640x480 window size due to recording equipment constraints.

(a) SRTM 3arcsec Earth (Elevation: 29G samples (sparse); Color: 2D lookup-table indexed by latitude and elevation)

(b) Sardinia 10m/1m (Elevation: 10m resolution; Color: 1m resolution)

Figure 5: Inspection sequences: selected frames. All images were recorded live on a AMD 1.8 GHz PC with 2 GB RAM and PCI Xpress NVIDIA Geforce 7800GT graphics using

a tolerance of 1triangle/pixel for the shaded model and 1texel/pixel for the phototextured model. See also figure 8 (color plate).

Network streaming. Extensive network tests have been per-
formed on all test models, on an ADSL 4Mbit/s connection as well
as on an intranet. Tests have been made for the viewer application
under interactive control, as well as using synthetic benchmarks to
push the streaming layer to the limit.

The combination of compression with HTTP pipelining has
proven particularly effective. Even in the less favorable situation
of low-latency high speed network connection, this combination
leads to a speed-up of 3x over a non-pipelining approach. Syn-
thetic benchmark designed to push the data access layer to the limit
have shown that a single client is able to pull from the server over
12.8Mbps, versus 4.5Mbps for a non-pipelining approach. It is in-
teresting to note that the performance improvement is also due to
the improved packing of data into TCP/IP packets. As a result of
this better packing, the pipelining version trasmits on average over
30% less TCP/IP packets than the non-pipelining one, noticeably
reducing burden on IP routers and networks. Speed-ups for the
pipelining version are noticeably better for long distance commu-
nications, where network latency is also reduced by the fact that
multiple HTTP requests are sent to the server without waiting for
the corresponding responses.

In an interactive setting, the network usage of a single client is
obviously lower than the peak achievable performance cited above.
Since rendering is progressive and, on average, viewpoint motion is
smooth, only few diamonds per frame need to be refined, and only
data for diamonds not already cached are requested to the server.
We have measured the bandwidth required by a client to provide a
“no delay” experience in low altitude flights at typical interactive
speeds over the Sardinia dataset. We measured an average bit rate
of 1600Kbps for exploration of areas not previously seen, and peaks
of 2400Kbps at viewpoint discontinuities, i.e., when the application
has to refine the model all the way to the new viewpoint and the
refinement algorithm has to always push new diamonds to refine in
the request queue because of non incremental update. The above
average bit rate corresponds to refining over 133 diamonds per sec-
ond, i.e., over 5 diamonds per frame at a 25Hz refresh rate, which

means that within 2s the entire screen can be refined.

By introducing client-side or server-side bandwidth limitations,
it is possible to reduce burden on network and server, making the
system more scalable while maintaining a good interactive quality.
Due to the high compression rate and refinement efficiency, we have
found that limiting the speed to 300Kbps produces nice interactive
results. In that case, delays in case of rapid motion become visible,
but with little detriment to interaction (e.g., only 10s are needed to
produce a full quality full screen image from scratch).

Figure 6: Snapshot of GUI of a regional geoviewing client. Thanks to the efficiency

of our approach, two AMD64 servers are able to manage a community of over 40’000

users.

6 Conclusions

We have described a compressed multiresolution representation and
a client-server architecure for supporting interactive high quality re-
mote visualization of very large textured planar and spherical ter-
rains. Our approach incrementally updates a chunked level-of-detail
BDAM hierarchy by using precomputed wavelet coefficient matri-
ces decoded from a compressed bitstream originating from a thin
server. As illustrated by our experimental results, the structure pro-
vides a number of practical benefits, as it combines the aggressive
compression rates of wavelet-based image representations with the
ability to ensure overall geometric continuity for variable resolution
views of planar and spherical terrains with no need for run-time
stitching.

This work shows that it is possible to combine the generality and
adaptivity of batched dynamic adaptive meshes with the compres-
sion rates of wavelet image encoders and the network friendliness of
tiled block techniques. Our current work is concentrating in improv-
ing the capability to preprocess very large datasets using cluster-
parallel techniques.

Acknowledgments. This research is partially supported by the CYBERSAR

and CSR-VIC-TERRAIN3D projects. The authors wish to thank the Autonomous Re-

gion of Sardinia Authorities for their support, CORE Soluzione Informatiche for system

integration, and CGR for providing orthophoto datasets.

References

ALLIEZ, P., AND GOTSMAN, C. 2005. Recent advances in com-
pression of 3d meshes. In Advances in Multiresolution for Geo-
metric Modelling, Springer, M. S. N.A. Dodgson, M.S. Floater,
Ed.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., F.MARTON, PON-
CHIO, F., AND SCOPIGNO, R. 2003. BDAM: Batched dy-
namic adaptive meshes for high performance terrain visualiza-
tion. Computer Graphics Forum 22, 3 (Sept.), 505–514.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F.,
PONCHIO, F., AND SCOPIGNO, R. 2003. Planet-sized batched
dynamic adaptive meshes (P-BDAM). In IEEE Visualization,
147–154.

CLASEN, M., AND HEGE, H.-C. 2006. Terrain rendering using
spherical clipmaps. In Proc. EuroVis, 91–98.

DE FLORIANI, L., MAGILLO, P., AND PUPPO, E. 1997. Building
and traversing a surface at variable resolution. In Proceedings
IEEE Visualization 97, 103–110.

DEB, S., AND NARAYANAN, P. 2006. Streaming terrain rendering.
In Proc. SIGGRAPH 2006 Sketches.

DECORO, C., AND PAJAROLA, R. 2002. Xfastmesh: fast view-
dependent meshing from external memory. In VIS ’02: Proceed-
ings of the conference on Visualization ’02, IEEE Computer So-
ciety, Washington, DC, USA, 363–370.

DUCHAINEAU, M., WOLINSKY, M., SIGETI, D., MILLER, M.,
ALDRICH, C., AND MINEEV-WEINSTEIN, M. 1997. ROAMing
terrain: Real-time optimally adapting meshes. In Proceedings
IEEE Visualization ’97, IEEE, 81–88.

GOBBETTI, E., MARTON, F., CIGNONI, P., BENEDETTO, M. D.,
AND GANOVELLI, F. 2006. C-BDAM – compressed batched dy-
namic adaptive meshes for terrain rendering. Computer Graphics
Forum 25, 3 (September). Proc. Eurographics 2006.

HITCHNER, L. E., AND MCGREEVY, M. W. 1993. Methods for
user-based reduction of model complexity for virtual planetary
exploration. In Proc SPIE, vol. 1913, 622–636.

HOPPE, H. 1998. Smooth view-dependent level-of-detail control
and its aplications to terrain rendering. In IEEE Visualization ’98
Conf., 35–42.

HWA, L. M., DUCHAINEAU, M. A., AND JOY, K. I. 2005. Real-
time optimal adaptation for planetary geometry and texture: 4-8
tile hierarchies. IEEE Transactions on Visualization and Com-
puter Graphics 11, 4, 355–368.

JR., R. L. C., DAVIS, G. M., SWELDENS, W., AND BARANIUK,
R. G. 2003. Nonlinear wavelet transforms for image coding via
lifting. IEEE Transactions on Image Processing 12, 12, 1449–
1459.

KIM, J. K., AND RA, J. B. 2004. A real-time terrain visualization
algorithm using wavelet-based compression. The Visual Com-
puter, 20, 67–85.

KOVACEVIC, J., AND SWELDENS, W. 2000. Wavelet families of
increasing order in arbitrary dimensions. IEEE Transactions on
Image Processing 9, 3, 480–496.

LEVENBERG, J. 2002. Fast view-dependent level-of-detail render-
ing using cached geometry. In Proceedings IEEE Visualization
’02, IEEE, 259–266.

LINDSTROM, P., AND PASCUCCI, V. 2001. Visualization of large
terrains made easy. In Proc. IEEE Visualization 2001, IEEE
Press, 363–370, 574.

LINDSTROM, P., AND PASCUCCI, V. 2002. Terrain simplification
simplified: A general framework for view-dependent out-of-core
visualization. IEEE Transaction on Visualization and Computer
Graphics 8, 3, 239–254.

LINDSTROM, P., KOLLER, D., RIBARSKY, W., HODGES, L.,
FAUST, N., AND TURNER, G. 1996. Real-time, continuous
level of detail rendering of height fields. In Comp. Graph. Proc.,
Annual Conf. Series (SIGGRAPH 96), ACM Press, 109–118.

LOSASSO, F., AND HOPPE, H. 2004. Geometry clipmaps: terrain
rendering using nested regular grids. ACM Trans. Graph 23, 3,
769–776.

MALVAR, H. S. 2000. Fast progressive image coding without
wavelets. In Data Compression Conference, 243–252.

PAJAROLA, R. 1998. Large scale terrain visualization using the
restricted quadtree triangulation. In Proceedings of Visualization
‘98, H. R. D. Elbert, H. Hagen, Ed., 19–26.

PAJAROLA, R. 2002. Overview of quadtree based terrain triangu-
lation and visualization. Tech. Rep. UCI-ICS TR 02-01, Depart-
ment of Information, Computer Science University of California,
Irvine, Jan.

POMERANZ, A. A. 2000. ROAM Using Surface Triangle Clusters
(RUSTiC). Master’s thesis, University of California at Davis.

WAHL, R., MASSING, M., DEGENER, P., GUTHE, M., AND

KLEIN, R. 2004. Scalable compression and rendering of tex-
tured terrain data. In Journal of WSCG, UNION Agency/Science
Press, Plzen, Czech Republic, vol. 12.

Figure 7: Real-time exploration of remote terrain models. Our method is capable of producing high quality seamless renderings of terrain data at high frame rates from highly

compressed bitstreams, improving the scalability of servers and the behavior of clients in network environments with narrow bandwidth and low computational power. In this

example, we show three frames of an interactive session with an internet geo-viewing tool based on our library exploring a detailed height colored terrain model at high frame rates

over an ADSL 4Mbps network.

(a) SRTM 3arcsec Earth (Elevation: 29G samples (sparse); Color: 2D lookup-table indexed by latitude and elevation)

(b) Sardinia 10m/1m (Elevation: 10m resolution; Color: 1m resolution)

Figure 8: Inspection sequences: selected frames. All images were recorded live on a AMD 1.8 GHz PC with 2 GB RAM and PCI Xpress NVIDIA Geforce 7800GT graphics using

a tolerance of 1triangle/pixel for the shaded model and 1texel/pixel for the phototextured model.

