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I present here the classical boundary value problem of obliquely incident compressional plane waves

impinging the interface between two homogeneous acoustic media. Each incident wave gives rise to

reflected and transmitted components satisfying Snell’s law. The reflection is usually quantified by

the reflection coefficient, simply defined, on each point of the interface, as the ratio of the reflected

and incident wave amplitudes.
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Reflection coefficient: the boundary value problem

• Consider two homogeneous acoustic media having equal density but different

propagation velocities vI and vT , separated by a plane boundary, Fig.1;

• An incident, compressional plane wave φI propagating across the first medium is

partially reflected at the boundary and partially transmitted to the second

medium:

φI(x, t) = <e
{
A eıω(t−pI ·x)

}
; (1)

• Let us denote by pI and pR the slowness vectors characterizing, respectively, the

incident wave orientation and the reflection direction:

pI = nI (cos θI d + sin θI d⊥) , d · d⊥ = 0, (2)

pR = nI (− cos θR d + sin θR d⊥) , ||d|| = ||d⊥|| = 1. (3)

d⊥ is a vector lying on the interface and orthogonal to d; together, d and d⊥
define the reflection plane; nI = 1/vI is the slowness value of the first medium;

• Let us characterize the transmission direction in the second medium by the

slowness vector pT : ||pT || = nT , where nT = 1/vT .
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Medium 1: The assumed form of the pressure wavefield is at each time t, on each

point x of the medium, Φ1 = φI + φR, where φR indicates the reflected

component of the incident plane wave:

φR(x, t) = <e
{
B eıω(t−pR·x)

}
, ||pR|| = nI . (4)

Medium 2: The assumed form of the pressure wavefield is at each time t, on each

point x of the medium, Φ2 = φT , where φT denotes the transmitted component

of the incident plane wave:

φT (x, t) = <e
{
C eıω(t−pT ·x)

}
, ||pT || = nT . (5)

• To complete the description of the plane wave scattering in terms of θI , vI , and

vT , some condition of continuity must be provided to patch Φ1 and Φ2 across the

interface separating the two media;

• The patching condition must lead to four relations for the evaluation of R = B
A

and T = C
A
, and the reflection and transmission angles θR and θT ;

• Because the two media are homogeneous, R and T can only be real numbers;

they are called, respectively, the reflection and the transmission coefficients.

3



Conditions of continuity across the interface

• Without loss of generality we can assume that the plane interface contains the

origin of the global reference system.

Condition 1: We impose for every time t the continuity of the pressure field on

each point x0 of the boundary, Φ1 = Φ2:

e−ıωpI ·x0 + R e−ıωpR·x0 = T e−ıωpT ·x0 . (6)

Condition 2: We impose for every time t the continuity of the first spatial

derivatives of the wavefield on each point x0 of the boundary, ∂
∂xi

Φ1 = ∂
∂xi

Φ2:

pI e−ıωpI ·x0 + pR R e−ıωpR·x0 = pT T e−ıωpT ·x0 . (7)

• Expression (7) sets pT as a linear combination of pI and pR, meaning that even

the transmitted slowness vector lies on the reflecting plane spanned by d and d⊥:

pT = nT (cos θT d + sin θT d⊥) . (8)

4



Figure 1: Schematic representation of incident, reflected, and transmitted waves.
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Snell’s law at the interface

• Projecting twice the vector equation (8), respectively onto d and d⊥, we find -

using (2), (3) and (8) - the following two scalar relations,

nI cos θI e−ıωpI ·x0 − nI cos θR R e−ıωpR·x0 = nT cos θT T e−ıωpT ·x0 , (9)

nI sin θI e−ıωpI ·x0 + nI sin θR R e−ıωpR·x0 = nT sin θT T e−ıωpT ·x0 , (10)

that, together with equation (6), e−ıωpI ·x0 + R e−ıωpR·x0 = T e−ıωpT ·x0 , form an

over-determined linear system in R and T .

Hypothesis 1: By setting

nI sin θI = nI sin θR = nT sin θT , (11)

equation (10) is transformed into (6) and, as a matter of fact, the initial linear

system may now recover the proper rank to exhibit a unique solution.

• Condition (11), illustrated in Fig.2, is well known as Snell’s law : it relates

incident, reflection and transmission directions of the wavefield to the

propagation velocity in each one of the two adjacent media.
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• Thanks to Snell’s law, the reduced linear system may now be written as follows:

nI cos θI e−ıω cos θId·x0 = nI cos θR R e−ıω cos θRd·x0 + nT cos θT T e−ıω cos θT d·x0 ,

−e−ıω cos θId·x0 = R e−ıω cos θRd·x0 − T e−ıω cos θT d·x0 .

(12)

Hypothesis 2: Because R and T must be real solutions, we impose on (12) to have

real coefficients by requiring d · x0 = 0 for every point x0 on the interface:

nI cos θI = nI cos θR R + nT cos θT T,

−1 = R − T.
(13)

With this requirement we have imposed the reflection plane - spanned by d and

d⊥ - to be orthogonal to the interface between the two media.

• Finally, from (13) we can estimate the reflection and the transmission coefficients:

R =
nI cos θI − nT cos θT

nI cos θI + nT cos θT

, T =
2 nI cos θI

nI cos θI + nT cos θT

. (14)

These two relations must, however, be completed with the companion equation

(11).
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• Combining (14) and (11), we obtain two expressions only depending on the

incident angle θI and the ratio of vI to vT , here denoted as z:

R =
z −

√
1 + tan2 θI (1− z2)

z +
√

1 + tan2 θI (1− z2)
, T =

2z

z +
√

1 + tan2 θI (1− z2)
, z =

vT

vI

. (15)

Remark 1: Because R end T must be real numbers, to fulfill this requirement

we need 1 + tan2 θI (1− z2) ≥ 0, a condition constraining θI to z:

– if z ≤ 1, then 0 ≤ |θI | ≤ π/2;

– if z > 1, then 0 ≤ |θI | ≤ arctan( 1√
z2−1

).

• Transmission and reflection of the incident wavefront, see Fig.(2), are then

controlled by the contrast of velocity of one medium with regard to the other.

Remark 2: As long as two adjacent media are homogeneous, R and T do not

depend on the deep angle of the reflecting interface.

• Under the condition of homogeneity, both expressions (15) remain valid in the

case of non planar interfaces.
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Figure 2: Spherical incident wavefront at the contact point with an interface, z > 1,

and the resulting reflected and transmitted components: the three slowness vectors

are normal to the propagating fronts and, together, they satisfy Snell’s law.
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