
The 10th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST

(2009)

K. Debattista, C. Perlingieri, D. Pitzalis, and S. Spina (Editors)

A point-based system for local and remote exploration of

dense 3D scanned models

Fabio Bettio, Enrico Gobbetti, Fabio Marton, Alex Tinti, Emilio Merella, Roberto Combet

Visual Computing Group, CRS4, Pula, Italy – http://www.crs4.it/vic/

Abstract

We present a client-server framework for network distribution and real-time point-based rendering of large 3D

models on commodity graphics platforms. Model inspection, based on a one-touch interface, is enriched by a

bidirectional hyperlink system which provides access to multiple layers of multimedia contents linking different

parts of the 3D model many information sources. In addition to view and light control, users can perform simple

3D operations like angle, distance and area measurements on the 3D model. An authoring tool derived from the

basic client allows users to add multimedia content to the model description. Our rendering method is based on

a coarse grained multiresolution structure, where each node contains thousands of point samples. At runtime,

a view-dependent refinement process incrementally updates the current GPU-cached model representation from

local or remote out-of-core data. Vertex and fragment shaders are used for high quality elliptical sample drawing

and a variety of shading effects. The system is demonstrated with examples that range from documentation and

inspection of small artifacts to exploration of large sites, in both a museum and a large scale distribution setting.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Picture and Image

Generation—; Computer Graphics [I.3.7]: Three-Dimensional Graphics and Realism—.

1. Introduction

Today’s 3D laser scanning and digital photography systems

make it possible to rapidly acquire multi-million samples 3D

textured models at sub-centimetric resolution, providing de-

tailed multi-gigabyte descriptions of real 3D objects. Cul-

tural heritage particularly benefits from these technologies,

for archiving, restauration and dissemination purposes. Be-

yond the possibility of visiting a site, which is not always

within everyone’s reach, the ability to interactively browse a

3D model from different points of view provides an invalu-

able tool to experience and understand an artwork. Some-

times this virtual approach can also enhance on-site experi-

ences, when, as the case with a large statue like Michelan-

gelo’s David, many point of views are not directly visible to

the ordinary visitor. The virtual knowledge experience can

be further enriched if additional layers are available contex-

tually to 3D interaction, supplying a way to move from/to a

particular 3D hot spot to textual, visual, and other multime-

dia data.

The 3D scanning process is able to produce at high speed

millions up to billions of samples, and this information needs

an intensive, not completely automated, processing to pro-

duce a final high quality triangulated textured mesh. Gen-

erally this mesh is heavily simplified before being dissemi-

nated to allow unspecialized end users to browse a stream-

able, relatively small 3D model, thus hindering the qual-

ity of the original high resolution scan. In fact, despite the

rapid improvement in graphics hardware performance, ren-

dering at interactive speeds the multi-gigabyte datasets gen-

erated by the acquisition pipe-line remains a very challeng-

ing problem, since they still largely overload the perfor-

mance and memory capacity of state-of-the-art graphics,

computational and networking resources. For such complex

and dense models, multiresolution hierarchies of point prim-

itives have in recent years emerged as a viable alternative

to the more traditional mesh refinement [CGG∗04]. These

methods are based on the assumption that model sampling

rate is so high that triangles are projected onto such small

screen areas that the advantages of scanline coherence are

lost, and appropriately selected point samples are sufficient

to accurately reproduce the model. One of the major bene-

fits of this approach is its simplicity, stemming from the fact

c© The Eurographics Association 2009.



Bettio et al. / Local and remote exploration of dense 3D scanned models

that there is no need to explicitly produce and maintain mesh

connectivity during both preprocessing and rendering.

Figure 1: Model Inspection Sant’Antioco Basilica inspec-

tion with the polyline tool for area measurement. Clip plane

tool on an ancient bowl.

Our contribution is an easy to use point-based streaming so-

lution for remote high performance view-dependent visual-

ization of very large static point sampled models on con-

sumer graphics platforms. The progressive block-based re-

finement nature of our rendering traversal is well suited to

hiding out-of-core data access latency, and lends itself well

to incorporate view frustum culling, as well as compression

and view-dependent progressive transmission. The imple-

mented client-server framework is able to give end user a

real-time interaction experience of the full resolution model

using a limited bandwidth. The model description is en-

hanced through a tree of information layers, each of them

made of several 3D hot spots which allow users to visual-

ize additional textual information. With a bidirectional hy-

perlink system the user can move from the 3D model to a

web page and vice versa. Moreover, a potentially extensi-

ble tool set improves model exploration by providing basic

measurement functionalities to get quantitative informations

like distances, areas and angles (see figure 1). A user inter-

face, based on context and gesture recognition, allows users

to navigate within a 3D environment, as well as to manip-

ulate a 3D model/tool in an intuitive manner. The interface

requires only a single-button stylus or mouse (or a single-

touch screen) to directly invoke specific operations within a

single 3D view. The system is thus appropriate both for local

(museum) settings and remote viewing.

2. Related work

Cultural heritage 3D inspection applications, as proposed by

the London Charter [RBN], should promote transparency,

adding sufficient information to allow computer-based vi-

sualisation methods to be understood and evaluated in re-

lation to the contexts and purposes for which they are de-

veloped. Niccolucci et al. [ND06] demonstrated the integra-

tion of 3D into semantic databases based on the X3D format.

Havemann et al. [HSB∗08] proposed an application similar

to the previous one, but based on Collada, which is able to

visualize 3D models with updatable textual content similar

to hyperlink and link anchor. This application does not solve

the problem of visualizing huge unsimplified 3D models, as

the ones that can be obtained by 3D laser scanner. Virtual

Inspector [CPCS08] is a system that allows naive users to

inspect a very dense 3D model at interactive frame rates, pre-

senting the 3D model and all the multimedia content that has

been linked to selected points of its surface. Our system is

similar to Virtual Inspector, but is centered on a point-based

multiresolution hierarchy rather than a triangulated one, thus

requiring less preprocessing of acquired data. Moreover, we

tackle both local and remote model inspection.

Point-based 3D graphics techniques for processing and ren-

dering of dense models are an old idea [LW85, Gro98]. QS-

plat [RL00, RL01] has for long been the reference system

in this particular area. The system is based on a hierarchy

of bounding spheres maintained out-of-core, locally or re-

motely, which is traversed at run-time to generate points.

This algorithm is CPU-bound, because all the computa-

tions are made per point, and CPU/GPU communication

requires a direct rendering interface; so the graphic board

is never exploited at its maximum performance. A num-

ber of authors have proposed various ways to push the ren-

dering performance limits in particular situations, in most

cases using a retained-mode interface working with blocks

of points [WFP∗01, SD01, DVS03, GM04, PSL05, WS06].

Layered Point Clouds [GM04] was the first system to pro-

pose coarse grained multiresolution approach, which ex-

ploits a partitioning of the model into clouds to improve the

efficiency of CPU/GPU communication through a batched

communication protocol and to support conservative occlu-

sion culling for high-depth complexity models. Our render-

ing subsystem builds on Layered Point Clouds, but while

they use finer hierarchy levels to increase resolution of the

coarser representation, so that their representation is made

using all the nodes from the root to the current cut, in our

case all nodes are self-contained, and the model representa-

tion is given only by the leaf nodes in the current cut. More-

over, our inner nodes are produced by a high quality sim-

plification methods, while Layered Point Clouds are con-

strained to work on uniformly sampled models using pure

subsampling. There is a large body of work that aims at

improving the rendering quality of point-sampled models.

For dense models, it is common to use spheres [RL00], tan-

gential disks [PZvBG00,ZPvBG01], or high degree polyno-

mials [ABCO∗01] instead of raw point primitives, as well

as improving filtering in image space [ZPvBG01] or ob-

ject space [RPZ02]. In our work, we provide two rendering

modes: a simple one based on OpenGL smooth points for

basic graphics cards, and a second one which uses a vertex

and a fragment shader to perform elliptical splatting as pro-

posed in [BK03]. Tone mapping and screen-space ambient

occlusion are also available in the rendering pipe-line.

Systems which allow new-to-3D users to inspect 3D mod-

els need to provide an intuitive and easy-to-use interface. A

great body of research has studied related issues. Our single-

touch interface is similar in spirit to Unicam [ZF99], while

offering additional possibilities that cover both ambient ex-

c© The Eurographics Association 2009.



Bettio et al. / Local and remote exploration of dense 3D scanned models

ploration and model manipulation. In addition, we integrate

our direct camera manipulation interface with a system for

selecting predefined views, as, done, e.g., in the recent Safe

3D navigation interface [FMM∗08].

3. Data representation

In high quality real-time networked model viewing appli-

cations, the client has to rapidly adapt a visually seamless

level-of-detail representation in response to viewer motion,

using data coming from the server. In this context, a com-

pressed data representation must possess a number of re-

quirements: ability to support random access to different

portions of the dataset; resolution scalability for progressive

resolution increase; hierarchical structuring able to support

variable resolution seamless LOD; high compression ratio,

to reduce transmitted data; low server side complexity, to

ensure scalability with a number of clients; low client-side

decoding complexity, to support heterogeneous clients. We

meet these requirements by proposing a data representation

based on a coarse-grained multiresolution point hierarchy.

We also need to associate the 3D model framework to a

service able to provide different layers of multimedia infor-

mation which can be related to the model through a set of

3D hot spots. This information is edited using a specialized

version of the end-user viewer, and is then made available

through the layer service.

3.1. Stream processing points

We assume that the input model is represented by a set of

N sample points with associated attributes including posi-

tion, normal and possibly color and radius information. In a

preprocessing step we perform data prefiltering, radius com-

putation and other operations using a streaming approach,

as proposed by [Paj05]. Points are sorted along a direction

in Euclidean space (assumed to be the z-axis without loss of

generality). Before sorting, we rotate the point set to align

the dominant axis of its covariance matrix with the z-axis.

This rotation reduces the maximum complexity encountered

during streaming. Then, different kinds of operators can be

applied to compute attributes which depend only on a local

neighborhood, by only loading into memory a small layer of

data around the currently processed point. In our system, the

first preprocessing step consists in associating an influence

radius to each point, which is done either by using a PCA

approach [PGK02] or by fast density estimation [CGM∗09].

3.2. Multiresolution model construction

Our multiresolution structure is a coarse-grained kd-tree par-

tition of the input dataset, with leaves containing less than a

predefined target sample count (few thousands of samples)

and with inner nodes containing a filtered version of their

children, with a number of samples equal to the target count.

The multiresolution point-cloud structure is constructed

off-line, starting from a generic point cloud model. We

have implemented a simple I/O efficient recursive cluster-

ing method, which is realized on top of a single out-of-

core component: a standard C++ array (compatible with

std::vector), which encapsulates a resizable file ac-

cessed through system memory mapping functions. The pro-

cedure consists of two phases.

The first phase partitions the input dataset into a kd-tree of

point clouds. The partitioning procedure takes as input an ex-

ternal memory array of uniformly distributed point samples,

together with its bounding volume. If the number of points

N is less than the predefined node sample count M, a leaf

node is generated, otherwise samples are distributed to the

two children by bisecting the bounding box at the midpoint

of its longest axis, and recursively continuing the partition-

ing procedure.

In the second phase we build inner nodes from their chil-

dren: the parent node contains M samples created by merg-

ing children samples. In order to obtain a filtered version,

we proceed using an edge collapse simplification procedure

adapted to point clouds. Each point is connected to its eight

nearest neightbors. Neighbor information is computed by

building a local kd-tree with all the samples of the two chil-

dren, while a map of edges sorted by edge length is used

for the simplification. The simplification procedure collapses

the two points with the lowest edge length, and then updates

all the structures that permit to identify the vertex neigh-

bors and the new edge lengths. This procedure continues

until onlyt M samples remain. When merging two samples,

their new position is placed at their midpoint. A weight pro-

portional to the sample splat area is used tolinearly com-

bine their colors and normals. The new sample radius is the

minimum radius that covers both original samples from the

new sample position (i.e., the distance of one input sample

from the target position plus the maximum of the two sample

radii).

3.3. Compression

Even though multiresolution approach builds a view-

dependent model representation for a particular point of

view, using only the necessary data for that view, it is ad-

vantageous to compress node data to better exploit available

network bandwidth, especially in remote settings.

Each node in our data structure contains per-node data and

per-point data. The per-node data consists in a flag (indicat-

ing whether the node is a leaf or not), the node’s bounding

box, the radius range (minimum, maximum, and average)

and the number of points contained in the associated point

cloud. The per-point data consists in the sample attributes

(position, normal, color, and radius) stored in parallel arrays.

Per-node data is stored and transmitted uncompressed, while

we focus on compressing per-point data.

c© The Eurographics Association 2009.



Bettio et al. / Local and remote exploration of dense 3D scanned models

We use a simple wavelet-based compression scheme, which

is fast and able to to reduce memory occupancy by almost an

order of magnitude. Compression proceeds in the following

phases. First, the samples within the point cloud are sorted in

an order that minimizes the Euclidean distance among sub-

sequent points, to produce a point strip. The attributes of

the points in the point strip are then stored in a the rows

of a 2D array. These rows are then transformed using a re-

versible n-bit to n-bit transform based on the Haar wavelet

transform in order to reduce entropy [SLDJ04]. The trans-

form is performed iteratively, at each iteration applying the

transform to the low-pass coefficients resulting from the pre-

vious iteration, until there is only a single low-pass coef-

ficient remaining. The resulting coefficient are then mapped

to positive integers and encoded using a simple Elias gamma

code [Eli75], in which a positive integer x is represented by:

1 + ⌊log2 x⌋ in unary (that is, ⌊log2 x⌋ 0-bits followed by a

1-bit), followed by the binary representation of x without its

most significant bit. Upon decompression, all the steps are

undone in the reverse order (with the obvious exception of

sorting).

The quantization used to transform input data to coefficients

is adaptive and takes into account local sample spacing. Po-

sitions are expressed in relation to the node bounding box

and quantized to minum number of bits per component that

produce a quantization error less than a quarter the mini-

mum sample radius. Radii are also expressed in relation to

radius range, using the same error threshold. Upon decom-

pression, radii are enlarged by the quantization error to en-

sure that no additional hole is introduced. Normals are quan-

tized to 16 bits using radial projection. Colors are mapped

to the YCoCg-R color space [MS03] to reduce correlation

and mapped to 5 bits for the luminance and 6 bits for each

chroma components. Since the compression subsystem is

used by both the preprocessing and the run-time systems,

quantization effects in a given node are taken into account

when constructing its parent.

With this compression scheme, we obtain on our test datasets

an average compression rate of 3.6 bytes per sample, using

on average 7KB bytes for a patch of 2000 samples which

would otherwise occupy about 62KB. The compression rates

are competitive with those of other point based systems. For

instance, QSplat [RL00] uses 5.375bytes/sample to encode

the same attributes.

3.4. Information layers

The interaction experience is enriched by the possibility to

access further multimedia information of different types.

This kind of information is linked to various parts of the

3D models through 3D hot spots which allow the viewer to

display textual information. Bidirectional connection is sup-

ported: clicking on a hot spot a related web page is shown

on a standard web browser, while links from a web page

can open the viewer with different models or set a particular

point of view. A hierarchical tree structure enables different

layers to be activated, selecting various types of informa-

tion which can be reached through the hot spot interface.

Information layers can provide the user not only with histor-

ical information, but also with useful scanning annotations

used to keep track of the acquisition procedure. When too

many hot spots are active, a focus function allows to acti-

vate only the ones inside a circle around the current cursor

to avoid damaging the overall model perception. A possibly

separeted server takes care of deploying these additional in-

formations, which are structured as a hierarchy of xml files.

Figure 2: Sant’Antioco Basilica. Information layer struc-

ture, hot spot, and web browser additional information.

4. Client server framework

Our compressed multiresolution point cloud representation

forms the basis of a scalable 3D model streaming system

able to adapt to client characteristics and to exploit available

network bandwidth. A block diagram of our system’s design

is presented in figure 3. In the following sections, we discuss

the data storage and server side distribution components, as

well as the client-side streaming and rendering methods.

Figure 3: Client-server architecture.

Server design and implementation. The server is able to

manage different repositories. From the server’s point of

view, a repository is just a database with a unique key for

indexing a block of bytes containing an encoded bitstream

which represents a compressed node point cloud. In order to

increase server-side scalability, no component is present in

the server, whose only action is to return a block of bytes if

present. This approach makes it possible to leverage existing

database components instead of forcing us to implement a

storage manager. In this work, storage management is done

c© The Eurographics Association 2009.



Bettio et al. / Local and remote exploration of dense 3D scanned models

through Berkeley DB, and data serving is done through an

Apache2 server extended with an appropriate module.

Berkeley DB is a widely tested open source embeddable

database which provides a fast, scalable, transactional

database engine with industrial grade reliability and avail-

ability, able to manage up to terabytes of data. Moreover, the

amount of per-process replicated cache is configurable, and

different instances of the same database are able to share in-

dex memory, thus reducing memory load for servers dealing

in parallel with hundreds of clients. Apache2 is a secure, ef-

ficient and extensible open source server that provides many

HTTP services in sync with the current HTTP standards. Be-

sides, it is scalable, multithreaded and includes features like

persistent server processes and proxy load balancing, which

are essential for the performance of our application.

A custom apache module manages a connectionless proto-

col based on HTTP. Clients requests include database name

and node identifiers. The node identifier is a single unsigned

int value which addresses the node as if it stored in a full bi-

nary tree. The module parse the request, queries the associ-

ated database, and sends in response either a compressed bit-

stream extracted from the database encoding a point cloud,

or an empty message if no data is available.

This approach based on open-source components is simple

to implement and maintain, and provides very good per-

formance. In particular, the concurrency features of apache

are exploited to handle thousands of clients in parallel

through the forking of multiple child servers sharing the

same database.

4.1. Multi-threaded clients for remote visualization

Incremental view-dependent refinement. The client man-

ages a binary graph which represents the 3D model from

the coarser representation (given by the root) to the current

view-dependent representation, which is the current cut of

the graph. The traversal algorithm, which extracts the view

dependent representation of the multiresolution model from

the current point of view, is based on a stateless coarse-

to-fine refinement of our structure, which exploits the pro-

gressive nature and coarse granularity of the multiresolu-

tion hierarchy to reduce CPU refinement costs and to im-

prove repository-to-host and host-to-graphics communica-

tion. In particular, asynchronous repository requests hide

out-of-core data access latency, and communication with the

GPU is made exclusively through a retained mode interface,

which reduces bus traffic by managing a least-recently-used

cache of point clouds maintained on-board as OpenGL Ver-

tex Buffer Object.

The user-selected pixel threshold is the value that drives

the refinement of the rendering algorithm: this value repre-

sents the required average sample distance between adjacent

splats on the screen. The refinement algorithm performs a

single-pass recursive traversal of the multiresolution struc-

ture and selects the nodes that have to be rendered. For each

node, we use its bounding box to test whether the node is to-

tally outside the view frustum. In this case, recursion stops,

discarding the entire branch of the tree, otherwise we can

render the node, or possibly continue the refinement with

its children. We project the node’s average sample distance

onto the screen to obtain its average splat size. A consistent

upper bound on the projected size is obtained by measur-

ing the apparent size of a sphere with a diameter equal to

the object space average sample distance and centered at the

bounding box point closest to the viewpoint. If the projected

splat size is less than the threshold, we select the node’s point

cloud for rendering and we coarsen the subtree underlying

the node, to remove overrefined data from the current rep-

resentation. Otherwise, if the projected splat size is higher

than the threshold, we try to refine the node. In that case, in

order to avoid blocking the renderer because of data access

latency, especially in the case of rendering data over wide-

area networks, we first check whether the node’s children

data is immediately available, i.e., if it is already in the GPU

cache or considered in-core by the data access layer. If data

is available, we proceed with refinement, otherwise, we se-

lect the node for rendering. When refinement is completed,

all the selected nodes can be rendered, using their cached

GPU version if already available or creating a new VBO en-

try in the GPU, for the nodes which were just created in the

last traversal (see figure 4).

Figure 4: Sant’Antioco Basilica. Patch refinement: 1665

patches with a total of 1.3M samples, rendered at 100 fps on

a 1024x768 window, with elliptical splats enabled.

Multithreaded data access layer. A multithreaded data ac-

cess layer hides from the application the technique used for

accessing the terrain repository. In our current implemen-

tation, we use a HTTP/1.1 persistent connection approach

and optionally employ HTTP pipelining. The combination

of these two techniques improves bandwidth usage and re-

duces network latency, while keeping the protocol simple

from API point-of-view, since clients benefit from an under-

lying connection-based implementation hidden under a re-

liable connectionless interface. The pipelining approach al-

lows multiple HTTP requests to be written together out to

the socket connecting client and server without waiting for

the corresponding responses. The client then waits for the re-

c© The Eurographics Association 2009.



Bettio et al. / Local and remote exploration of dense 3D scanned models

sponses to arrive in the order in which they were requested.

The act of pipelining the requests can result in a dramatic

improvement in response times, especially over high latency

connections.

The client data access layer is subdivided into two threads

that communicate through a shared cache of compressed

point clouds indexed by node ids to hide network latencies.

The main thread requests the node data which is needed

to refine the kd-tree graph from the current point of view.

Requests are pushed in a priority queue. At the end of the

frame, only as many new requests as those allowed by the

estimated network bandwidth are issued and managed by a

separate network access thread, and the remaining ones are

ignored. Since issued requests are sorted coarse to fine and

by estimated projected error, and unhandled requests are re-

peated at each frame, a simple limited memory first-in/fist-

out queue induces a request ordering that is both I/O efficient

and ensures to download the most relevant data as soon as

possible. The second thread managing the network receives

the compressed bitstream from the server and stores them in

the shared cache.

Rendering process. At the end of the incremental refine-

ment process, the leafs of the graph contain the current

model approximation, in a format suitable for graphics ren-

dering. Since we have to manage heterogeneous clients with

varying graphics capabilities, in our implementation at the

beginning of rendering we detect which kind of GPU is

available, thus tuning the graphics approach that will be used

to enable our application to work also on low-end GPUs or,

in the extreme case, in software-only environments. Com-

munication with the GPU is made exclusively through a re-

tained mode interface. We manage a cache of Vertex Buffer

Objects in the GPU to exploit spatial and temporal coher-

ence, reusing the same data for several frames without no

need to move it again to the GPU. A backup solution is

also used for the CPU - GPU data comunication if no Ver-

tex Buffer Objects are available, and it is based on the stan-

dard Vertex Arrays which are provided since OpenGL 1.1.

We support two rendering modes: a first simple straight ren-

dering method which uses a single splat size for each point

cloud, and draws circular splats through glPointSmooth. A

higher quality representation can be obtained using a vertex

and a fragment shader to draw an oriented 3D ellipse, de-

picting a textured quad for each sample [BK03].

4.2. User interaction

Typical 3D navigation applications provide modal tools like

pan, zoom, and rotation to facilitate freeform navigation in

the 3D scene. Mastering these navigation tools requires a

significant amount of learning, while we want to provide an

inspection experience which could be enjoyed also by new-

to-3D users. Our application can be used as a remote explo-

ration tool through a web plugin to facilitate dissemination

of huge 3D models, but can also be placed in a museal kiosk

installation next to a real 3D artwork to improve museum

visitor’s experience. In both cases, we must allow for in-

experienced users. User interaction must be kept as simple

as possible and the application should not only be operated

with standard 2D mouse, but also through a touch-screen

for multimedia kiosk installations. In our approach, all the

user interface is designed to require input from a single-

button mouse or a single-touch screen. Context information

and gestural recognition are exploited to intuitively choose

among different actions.

Figure 5: Single-touch interaction scheme. Red arrows,

activated when an anchor is present: A) rotation about an-

chor; B) animation toward anchor. Black arrows, activated

without anchor: C) rotation about camera; D) x-y pan.

Anchor-independent: E) Move inward/outward; F) precom-

puted views.

Single-touch interaction. Our approach, based on context

and gesture recognition, allows users to navigate within a

3D environment, as well as to manipulate a 3D model/tool

in an intuitive manner. It requires only a single-button stylus

or mouse (or a single-touch screen) to directly invoke spe-

cific operations within a single 3D view. No 2D widgets or

keyboard modifiers are necessary. Our viewing window is

subdivided into two areas: a rectangular center region and a

small bar on the right, highlighted in a light semi-transparent

color (see figure 5). If the mouse is over the right bar, the

movement along the y screen axis is interpreted as moving

forward/backward. When the mouse is over the main area,

we need to differentiate among four different actions: rota-

tion around a pivot, rotation around camera, panning, and

moving toward a target. A single click on the 3D model ac-

tivates a target, a small sphere below the 2D mouse position

is displayed. Subsequent actions have the following mean-

ings: click and drag within the main area performs a rotation

around the target. Click on the target will automatically an-

imate the camera from its current position to a new position

that looks at the target. The target is deactivated by clicking

outside the small sphere. If the target is not active, actions

within the main area are interpreted in two different ways. A

film-plane translation (panning) is performed by starting the

movement vertically, while a rotation around the viewpoint

is performed by starting the movement horizontally. This last

c© The Eurographics Association 2009.



Bettio et al. / Local and remote exploration of dense 3D scanned models

gesture is particularly useful when the user explores an envi-

ronment. In addition to camera motion, single touch interac-

tion is also used for operating simple 3D tools (see below).

For camera motion, the single-touch interaction system has

been enriched with the possibility of browsing a list of pre-

computed view positions, displayed as a series of thumbnails

in the lower part of the screen. When a view is selected, the

camera is smoothly animated from the current position until

it reaches the selected view (see figure 6).

Tools. The client framework provides some simple tools to

perform different kinds of measurements: lenghts, areas and

angles. The tools can be optionally enabled in the viewer,

depending on configuration. All these tools are based on the

ability to project the 2D mouse position onto the model to

find a 3D intersection. This is achieved by casting a ray to-

ward the 3D model and exploiting the kd-tree structure for

traversing all the intersected leaf nodes in a front-to-back

order until an intersection with the point cloud is found. Ex-

amples of tools are measuring tools (for distances, areas, and

angles). The polyline tool, which measures an area and a

perimeter defined by a polyline, performs a minum-area tri-

angulation of the polyline and calculates the area by sum-

ming up all triangle areas. Other tools include clipping and

the possibility of drawing axis-aligned grids (see figure 7).

Figure 7: Cavallo alato from Sant’Antioco Basilica. Poly-

line tool for area and perimeter measurement. Angle tool

and axis-aligned grid.

5. Results

Two case studies are described here: the Sant’Antioco

Cathedral (see figure 8) made of 37M samples, which has

been acquired with a Leica ScanStation2, and a detail of the

same cathedral: the Cavallo Alato bas-relief (8M samples),

acquired with a Minolta Vivid-9i. The cathedral was digi-

talized in two one-day sessions by three people, while the

Cavallo Alato was acquired in about two hours, by the same

group of people. Both models were acquired under a project

in cooperation with Roberto Coroneo, professor of Medieval

Art History at University of Cagliari, who also produced the

multimedia information related to the two models.

Our framework has been implemented in C++ and OpenGL

on a standard Linux PC. Tests have been performed on an

Intel Core2 Quad CPU Q6600 2.40GHz - RAM 4GB run-

ning Gentoo Linux 2.6.24, with nVidia GeForce 9800 GX2

- 1GB, and a SATA2 hard-drive 500GB. Rendering tests

were also performed on a lower performace laptop Intel

Core2 CPU T7200 2.0 GHz RAM 2GB with GeForce Go

7400 graphic board, running a Gentoo Linux 2.6.25 distribu-

tion, and connected with a standard 7Mb ADSL. The cathe-

dral was preprocessed in 2h47m, producing a BerkeleyDB

database of 439MB. The bas-relief was preprocessed in

40m, producing 111MB. It should be noted that these figures

include BerkeleyDB overhead. Rendering of the two models

has been tested on the two PCs in a variety of situations, on

a window of 1000x900 pixels, with pixel tolerance 2. On the

high-end PC frame rates exceed on average 100 fps with a

mean throughput of about 110Msplat/sec. On the lower-end

PC average frame rates are 25 fps, and go down to 5 fps

for an extreme closeup in the cathedral environment, with

an average throughput of 8Msplat/sec. The system is fully

usable in a standard remote settings. The measured band-

width on the ADSL link was 1.3Mbps, which enables load-

ing full refined views from scratch in few seconds. Thanks

to our compressed representation, this bandwidth permits to

upload about 47K point samples per second. The user inter-

face has been found profitable and easy-to-use from differ-

ent user kinds, ranging from new-to-3D users, to Cultural

Heritage scholars, to 3D graphics experts. In particular, the

single-touch interface has proven easy to learn even with-

out any explanation. Figure 6 illustrates a simple interaction

sequence using a wall-mounted touch screen.

6. Conclusions

We presented a distributed system for exploring massive 3D

models. It supports streaming and rendering of very large

datasets, multiple multimedia information layers, and sim-

ple measurement tools. Our future work includes setting up

a publicly available web server to disseminate our 3D acqui-

sition repository, as well as setting up multimedia kiosks to

support on-site inspection of 3D artworks.

Acknowledgments. This work was partially supported by Sardegna

DISTRICT (P.O.R. Sardegna 2000-2006 Misura 3.13).

References

[ABCO∗01] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN

S., LEVIN D., SILVA C. T.: Point set surfaces. In Proc. IEEE

Visualization (2001), pp. 21–28.

[BK03] BOTSCH M., KOBBELT L.: High-quality point-based
rendering on modern gpus. In Proc. Pacifig Graphics (Oct. 2003),
pp. 335–343.

[CGG∗04] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: Adaptive TetraPuzzles
– efficient out-of-core construction and visualization of gigantic
polygonal models. ACM Trans. Graph. 23, 3 (August 2004).

[CGM∗09] CUCCURU G., GOBBETTI E., MARTON F., PA-
JAROLA R., PINTUS R.: Fast low-memory streaming MLS re-
construction of point-sampled surfaces. In Graphics Interface

(May 2009), pp. 15–22.

c© The Eurographics Association 2009.



Bettio et al. / Local and remote exploration of dense 3D scanned models

Figure 6: Touch screen. Selection and animation moving toward precomputed view.

Figure 8: Sant’Antioco Basilica. Three views: gateway, cathedral plant, transept with Sacred Heart of Jesus statue and altar.

[CPCS08] CALLIERI M., PONCHIO F., CIGNONI P., SCOPIGNO

R.: Virtual Inspector: a flexible visualizer for dense 3D scanned
models. IEEE Computer Graphics and Applications 28, 1 (Jan.-
Febr. 2008), 44–55.

[DVS03] DACHSBACHER C., VOGELGSANG C., STAMMINGER

M.: Sequential point trees. ACM Trans. Graph. 22, 3 (2003),
657–662.

[Eli75] ELIAS P.: Universal codeword sets and representations
of the integers. IEEE Trans. Inform. Theory 21, 2 (Mar. 1975),
194–203.

[FMM∗08] FITZMAURICE G., MATEJKA J., MORDATCH I.,
KHAN A., KURTENBACH G.: Safe 3D navigation. In Proc. Sym-

posium on Interactive 3D Graphics and Games (2008), pp. 7–15.

[GM04] GOBBETTI E., MARTON F.: Layered point clouds. In
Proc. Eurographics Symposium on Point Based Graphics (2004),
pp. 113–120,227.

[Gro98] GROSSMAN J. P.: Point Sample Rendering. Master’s
thesis, Dept. of Electrical Engineering and Computer Science,
MIT, 1998.

[HSB∗08] HAVEMANN S., SETTGAST V., BERNDT R., EIDE

O., FELLNER D. W.: The Arrigo Showcase reloaded toward a
sustainable link between 3D and semantics. In Proc. VAST (Dec
2008), pp. 125–132.

[LW85] LEVOY M., WHITTED T.: The use of points as a display

primitive. Tech. Rep. TR 85-022, University of North Carolina
at Chapel Hill, 1985.

[MS03] MALAVAR H., SULLIVAN G.: YCoCg-R: A color space
with RGB reversibility and low dynamic range. In JVT ISO/IEC

MPEG ITU-T VCEG, no. JVT-I014r3. JVT, 2003.

[ND06] NICCOLUCCI F., D’ANDREA A.: An ontology for 3D
cultural objects. In Proc. VAST (Oct. 2006), pp. 203–210.

[Paj05] PAJAROLA R.: Stream-processing points. In Proc. IEEE

Visualization (2005), p. 31.

[PGK02] PAULY M., GROSS M., KOBBELT L. P.: Efficient sim-
plification of point-sampled surfaces. In Proc. IEEE Visualiza-

tion (Oct. 27– Nov. 1 2002), pp. 163–170.

[PSL05] PAJAROLA R., SAINZ M., LARIO R.: Xsplat: Exter-
nal memory multiresolution point visualization. In Proc. VIIP

(2005), pp. 628–633.

[PZvBG00] PFISTER H., ZWICKER M., VAN BAAR J., GROSS

M.: Surfels: Surface elements as rendering primitives. In Proc.

SIGGRAPH (2000), pp. 335–342.

[RBN] RICHARD BEACHAM H. D., NICCOLUCCI F.: London
charter. London charter initiative.

[RL00] RUSINKIEWICZ S., LEVOY M.: QSplat: A multireso-
lution point rendering system for large meshes. In Proc. SIG-

GRAPH (July 24-28 2000), pp. 343–352.

[RL01] RUSINKIEWICZ S., LEVOY M.: Streaming QSplat: A
viewer for networked visualization of large, dense models. In
Proc. Symposium on Interactive 3D Graphics (2001), pp. 63–68.

[RPZ02] REN L., PFISTER H., ZWICKER M.: Object space EWA
surface splatting: A hardware accelerated approach to high qual-
ity point rendering. Computer Graphics Forum 21, 3 (Sept.
2002), 461–470.

[SD01] STAMMINGER M., DRETTAKIS G.: Interactive sampling
and rendering for complex and procedural geometry. In Render-

ing Techniques (2001), pp. 151–162.

[SLDJ04] SENECAL J. G., LINDSTROM P., DUCHAINEAU

M. A., JOY K. I.: An improved N-bit to N-bit reversible Haar-
like transform. In 12th Pacific Conference on Computer Graphics

and Applications (Oct. 2004), pp. 371–380.

[WFP∗01] WAND M., FISCHER M., PETER I., AUF DER HEIDE

F. M., STRASSER W.: The randomized z-buffer algorithm: Inter-
active rendering of highly complex scenes. In Proc. SIGGRAPH

(2001), pp. 361–370.

[WS06] WIMMER M., SCHEIBLAUER C.: Instant points. In Proc.

Symposium on Point-Based Graphics (July 2006), pp. 129–136.

[ZF99] ZELEZNIK R., FORSBERG A.: UniCam: 2D gestural
camera controls for 3D environments. In Proc. Symposium on

Interactive 3D Graphics (1999), pp. 169–173.

[ZPvBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS

M.: Surface splatting. In Proc. SIGGRAPH (2001), pp. 371–
378.

c© The Eurographics Association 2009.


