Fast Low-Memory Streaming MLS Reconstruction of Point-Sampled Surfaces

Gianmauro Cuccuru™ Enrico Gobbetti'

Sardegna DISTRICT CRS4

Fabio Marton*
CRS4 University of Zurich CRS4

Renato Pajarola§ Ruggero Pintus¥

Figure 1: Surface reconstruction of Michelangelo’s “Awakening Slave” from laser scans containing over 380M samples. This high quality reconstruction
was completed in less than 85 minutes on a quad core machine using 588MB/thread. The regularized manifold triangulation contains about 220M triangles,
corresponding to over 345M triangles before clustering. The model has been rendered with a highly reflective Minnaert BRDF to emphasize small-scale details.

ABSTRACT

We present a simple and efficient method for reconstructing tri-
angulated surfaces from massive oriented point sample datasets.
The method combines streaming and parallelization, moving least-
squares (MLS) projection, adaptive space subdivision, and regular-
ized isosurface extraction. Besides presenting the overall design
and evaluation of the system, our contributions include methods for
keeping in-core data structures complexity purely locally output-
sensitive and for exploiting both the explicit and implicit data pro-
duced by a MLS projector to produce tightly fitting regularized tri-
angulations using a primal isosurface extractor. Our results show
that the system is fast, scalable, and accurate. We are able to pro-
cess models with several hundred million points in about an hour
and outperform current fast streaming reconstructors in terms of
geometric accuracy.

Index Terms: 1.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—
1 INTRODUCTION

Reconstructing triangulated surfaces from oriented point samples
is required in many important applications, ranging from indus-

*e-mail:gmauro @crs4.it
Te-mail:gobbetti @crs4.it
fe-mail:marton @crs4.it
§e-mail:pajarola@ifi.unizh.ch
Ye-mail:ruggero@crsd4.it

try, over entertainment, to cultural heritage. The need of manag-
ing massive datasets and of requiring certain guarantees on recon-
structed surfaces, makes this problem an active subject of research,
that has produced a variety of solutions in the last years (see Sec. 2).
Our aim is to propose an efficient framework for the streaming im-
plementation of an important class of them.

The method combines a number of ingredients: streaming and
parallelization, moving least-squares (MLS) projection, adaptive
space subdivision, and regularized isosurface extraction. Although
not all the techniques presented here are novel in themselves, their
elaboration and combination in a single system is non-trivial and
represents a substantial enhancement to the state-of-the-art. In par-
ticular, besides presenting the overall design and evaluation of the
system, our contributions include methods for keeping in-core data
structures complexity purely locally output-sensitive and for ex-
ploiting both the explicit and implicit data produced by a MLS pro-
jector to produce tightly fitting regularized triangulations using a
primal isosurface extractor. Our results show that the resulting sys-
tem is fast, scalable, accurate and produces good quality meshes.
In particular, we are able to process models with several hundred
million points in about an hour (see Fig. 1) and outperform current
state-of-the-art fast streaming reconstructors in terms of geometric
accuracy.

2 RELATED WORK

Surface reconstruction has been extensively studied and literally
hundreds of different contributions have appeared in the last decade.
We provide here only a brief survey of the subject, emphasizing the
most closely related approaches.

Explicit reconstruction. Explicit methods, e.g., [5, 13, 14], are
based on the adaptive creation and maintenance of combinatorial

structures and typically create triangulations that interpolate a sub-
set of input points. These methods have strong theoretical guar-
antees, but their interpolation nature makes them sensitive to noise,
often requiring extensive pre- or post-processing to produce smooth
surfaces from noisy data [24,28]. Moreover, the need to track and
maintain neighboring information to produce triangulations makes
them hard to apply to large datasets because of the associated time-
and memory-overheads. Even though some of them can be imple-
mented in a streaming fashion to overcome memory issues, state-
of-the art techniques are reported to work only of models with few
millions polygons at speeds of 2M points/hour [4].

Local implicit reconstruction. Implicit schemes reconstruct an
approximating surface using a level-set of a function, typically sam-
pled on an adaptive Cartesian grid. This approach offers more space
to optimization and more robustness with respect to noise. Lo-
cal implicit schemes are scattered data approximation approaches
working on a subset of points at a time. Since access patterns
are localized, they are typically amenable to efficient out-of-core
implementation. A large variety of schemes have been proposed.
Many of them fit the point cloud data with a linear combination
of Radial Basis Functions (RBF), using compactly supported sup-
ported bases [30] and hierarchical partitioning combined with par-
tition of unity blending methods [29] to deal with large data. Our
scheme falls in the family of MLS methods [3, 6,25]. One of the
main strengths of these methods is the intrinsic capability to handle
noisy input. A large number of reconstruction techniques based on
this framework have been proposed (e.g., [15,17,23,33]), and our
contribution consists in a streaming framework for efficiently im-
plementing them in a low-memory setting. Even though many local
schemes are theoretically amenable to a streaming implementation,
the most common approaches either maintain an adaptive structure
fully in-core [9], or exploit an adaptive random access structure
maintained out-of-core [11, 16]. Streaming is advantageous over
pure out-of-core approaches because input data is accessed sequen-
tially from disk.

Global implicit reconstruction. Global implicit schemes work on
either the surface itself or on the volume’s indicator function. In
both cases, early global fitting methods (e.g., [10, 20]) required
contributions from all input samples at each reconstructed surface
point, leading to large memory and processing time overheads.
Methods working on the indicator function have proved to be very
robust to noise and have recently been improved to work on large
datasets. In particular, the Fourier method of [20] was later modi-
fied to reconstruct the indicator function by solving a Poisson equa-
tion with a streaming multigrid solver [8,21]. The resulting method
proved to be able to process massive data sets of hundreds of mil-
lions of points. The method requires, however, a large amount
of temporary storage for storing the entire octree before the equa-
tion is solved. Moreover, its speed is limited to about SM sam-
ples/hour [8]. These problems have been recently overcome by us-
ing wavelets with compact support for reconstructing the indicator
function [27]. The resulting system requires a moderate amount
of in-core memory and has an impressive speed of several hundred
million samples/hour. Our method has similar performance charac-
teristics, but provides different features. Wavelet reconstruction is a
fast, robust scheme tuned for producing watertight surfaces, while
our scheme is tuned for approximation near sample points of (open)
surfaces with attributes.

Isosurface extraction and regularization. Our method builds on
the primal approach of [19,22] for extracting crack-free isosurfaces
by a combination of cubical marching squares and edge-tree visits
for consistently locating isovertices. The method is improved by
combining it with a specialized topology preserving vertex cluster-
ing technique. In contrast to early isosurface regularization meth-
ods based on clustering [35], we support unconstrained octrees

and exploit both the projected points and the isovalues to produce
tightly fitting regularized triangulations.

3 METHOD OVERVIEW

Our system is applied to point clouds that are already registered in
3D. We assume that each point sample p; has an associated normal
n; and influence radius r;, representing local point spacing, as well
as other optional attributes (e.g., a color ¢;). During a streaming
pass over the input samples, assumed ordered along the samples’
major extent axis, a narrow sliding slab of octree cells is refined to
a resolution that adaptively matches the local point density. A pro-
jection operator is then iteratively applied to the leaf vertices of the
current octree region for projecting them on the surface implied by
the local point set, and to generate a discretized signed scalar dis-
tance field. Both the projected points and the distance field are then
exploited by a regularized isosurface extractor working on uncon-
strained octrees. By splitting the streaming reconstruction process
among multiple threads, the method can work in parallel, fully ex-
ploiting the power of current multi-core architecture. The follow-
ing sections provide details on the method’s building blocks and on
their combination.

3.1 Data preprocessing

Similarly to prior point streaming algorithms [31], we require that
the input points are sorted along a direction in Euclidean space
(assumed to be the z-axis without loss of generality) and that the
bounding box of the entire point cloud is known before streaming.
Before sorting, we rotate the point set to align the dominant axis
of its covariance matrix with the z-axis. This rotation reduces the
maximum complexity encountered during streaming, and therefore
peak memory size of the in-core streaming structures.

If normals and radii are missing, it is possible to estimate them
from the point cloud using a variety of methods, such as those based
on PCA. In most practical cases, however, normals and radii can be
derived directly from source data at little cost, e.g., from the range
maps provided by laser scanners. In the examples presented in this
paper, we assume that normals are already provided, and influence
radii are computed with a fast density estimation technique. In this
approach, also implemented in a streaming pass, we refine octree
cells containing sample points until we reach some maximum depth
dmax specified by the user. At each visited cell, we maintain the
count of contained points. When a octree region has been com-
pleted, we locate for each inserted point P; the finest level cell that
contains at least a prescribed number of samples (16 in our exam-

ples). Then, the value of r; is set to be equal to 2\/Z , where A is the

side area of that cell, and N the number of contained points. This
method is much faster than those based on k-neighborhoods [32],
since no neighbor searches are required.

3.2 Generating octree corner data by MLS

Our method produces a triangulated surface during a streaming pass
over the input samples. We associate an in-core octree to the points’
bounding box. During streaming, a sweep plane is advanced along
the z-axis in discrete steps to sequentially reconstruct one narrow
octree slice at a time.

Since we employ a primal approach for surface extraction, we
need to transform the input point cloud into implicit and explicit
data sampled at octree cell corners. Per-corner data consists of an
approximation of the signed distance to the point set surface, as well
as of the location, normal, and other attributes of the closest surface
point. We obtain this information by a MLS approach. Each in-

put sample is assumed to have a weight w;(x) = ¢; - © (@),

i
where H is a global smoothing factor allowing to adjust the influ-
ence radius of every point, ¢; is a sample quality factor, and P is

a smooth, decreasing weight function for which we use the follow-
ing compactly supported polynomial: ®(x) = max(0, (1 —x?))*.
Since the function has local support, only points within a distance
of R; = r; - H from x need to be evaluated. The quality factor g; is
used to incorporate in the system knowledge about error distribu-
tion in the dataset. In the examples considered in this paper, the
factor is set directly proportional to the local sampling density (the
higher, the better). More elaborate weighting schemes tuned for 3D
scanning are presented elsewhere (e.g., [12]).

Atreconstruction time, the octree is refined so that leaf cells have
a size proportional to the smallest influence radius R,,ip, = 7yin - H
among contributing points, i.e., among points that have a strictly
positive contribution. In all examples presented here, refinement
is performed up to the finest level / having a cell size greater than

% - Ryin, 1.€., to the coarsest level with cells containable in a ball

of radius Ry;;.

For constructing the triangulation, the corners of the octree cells
lying in the current active region are projected to the point-set by
applying the almost orthogonal MLS projection procedure starting
from the corner’s position [2]. The method is iterative. In the linear
case used for simplicity in this paper, for a point q(k) obtained in
the k-th iteration, a local average position and normal direction are
computed:

(x) Y ®i(llp: —a“|)ps |

M@0 = Tl a®) @
Ao — a® 1.

n(@®) = Y Pi(llpi —q™[)n;)

IZ®i(l[pi —a®|)ny

Other attributes, such as colors, are similarly interpolated. Then,
the original corner position is projected on the plane defined by

a(q(k)) and n(q(k)) to determine a new approximation %), In a
pure weighted least squares (WLS) approach, directly applicable in
many cases, the first value q1 is the final approximation. In a MLS
approach, the approximation is improved by iterating the projection
(we will see in Sec. 3.4 how this can be done in a limited memory
setting). In both the MLS and WLS cases, the end result is an ap-
proximation of the closest surface point q*, with associated normal
and attributes. The signed distance used to generate the scalar field
needed by the polygonization algorithm is then computed between
the original corner and its projection on the final MLS plane. A sim-
ilar procedure can be used for more complex local approximations.
For instance, a more robust fit can be obtained by locally approxi-
mating the point cloud by a fitted algebraic sphere that moves con-
tinuously in space [18]. This is orthogonal to the work presented in
this paper.

3.3 Fast surface smoothing by cell-to-vertex diffusion

The MLS procedure outlined above generates all the data required
for surface reconstruction per cell corner. The H parameter allows
users to control the amount of smoothing by modifying the sup-
port radii and, therefore, the number of points that are blended to-
gether at a given vertex. As noted in [34], another approach for
smoothing-out fine details without increasing blending cost is to
perform a post-processing smoothing step on the implicit function
prior to reconstruction. In our approach, this sort of smoothing step
is performed by applying the MLS projection procedure to the cell
centers instead of cell corners and then, prior to surface extraction,
computing the required information at cell corners by blending to-
gether the values associated with all the non-empty incident cells.
This blending is obtained by weighted averaging of all values, with
weights inversely proportional to cell sizes. Even though averag-
ing slightly decreases accuracy by removing high frequency details,
good looking surfaces can be obtained faster for two reasons. First
of all, the same degree of smoothing can be obtained with decreased

support radii, and therefore decreased MLS projection costs. Sec-
ond, the method can be fully implemented using cell location rather
than corner location operations, leading to increased efficiency for
most octree implementations.

3.4 Efficient low-memory streaming implementation

Streaming reconstruction assumes that the octree is adaptively re-
fined near the surface of the model at a level that matches the local
point density before processing it to extract a local triangulation.
At any given moment, to minimize memory needs, the refined and
updated octree must exist only in the smallest possible neighbor-
hood around the current processed slice, and the size of in-memory
structures should depend only on the local output size complexity.
At the same time, the octree refinement process must be kept in
sync with the process that sequentially consumes points extracted
from the input stream.

In order to efficiently implement this approach, we assume that
there are known bounds on the maximum radius of influence of
an input sample, Rmuax, and on the coarsest octree leaf cell level,
Lecoarse, defining a portion of the output surface. By using Ryayx, the
streaming process can conservatively determine while streaming if
samples further in the stream cannot possibly influence a given oc-
tree region because it is out of their influence radius. Furthermore,
by aligning processing regions with the grid of level Leoarse, and
forcing octree subdivision to at least that level at each sample inser-
tion, it is also possible to bound the effects of backward propagation
of cell subdivisions, which is required for a streaming implemen-
tation. By combining these two facts, it is therefore possible to
conservatively decide when a streaming region is completely deter-
mined by the samples already extracted from the stream. It should
be noted that the bounds on radius and cell size are related but do
not have the same effects. The cell size bound limits the maximum
size of triangles in the output triangulation. In order to limit mem-
ory occupation, we typically force the coarse level to be 0-3 levels
less than the finest one dictated by the maximum reconstruction
resolution. The maximum radius bound has no effect on the re-
construction, but limits the amount of look-ahead necessary before
processing a region, therefore improving performance.

A major problem that needs to be tackled in practice for very
large datasets is related to the sheer number of samples that may
contribute to a particular region, especially when not reconstruct-
ing at the finest resolutions. When the octree is restricted to a shal-
low depth due to a large blending factor H, it is not uncommon to
have neighborhoods of thousands of samples per cell. Per cell point
bins, or auxiliary structures for supporting point locations would
consume large amount of memory, limiting the scalability of the
methods. For instance, [8] noted that their streaming reconstruction
system requires radically more memory at coarse resolution than at
fine resolution.

refined but not
updated region

fully refined & updated
octree regions

I ——

' qutput stream ol o nput stream |

| e |ole e, |

! o © ® lo 0K !

Yy 1 e | o oo |
| | ‘hxENE

* o | o . | * ° |

I ! ° o ; !

! | | '

hi
update lookahead
refine lookahead

Figure 2: Streaming regions. The streaming axis is discretized at the reso-
lution of the coarsest cell size.

We solve this problem by totally avoiding the storage of samples
using a local multi-pass approach (see Fig. 2). At each sliding step,
we consider that we want to reconstruct the surface in the inter-
val z;,..25;, Where z;, and z;; are multiples of the coarsest cell size
dZcoarse determined by Leoarse. Having zj,; > zj,+ 1 enables the sys-
tem to emit data only once every few slices, increasing performance
at the cost of an increase in in-core memory needs.

Because of sequential streaming, all data before z;, has already
been constructed, which means that the triangulation has already
been emitted on output, and that this data is already available in the
octree if required. For reconstruction, the octree must be fully up-
dated not only in the cells contained within the current z range,
but also in the immediate neighborhood of it, depending on the
type of operations that are applied. Cell-to-vertex diffusion, for
instance, requires data from all cells in a one-ring neighborhood of
a cell’s corner vertex. As we will see in Sec. 3.5, vertex clustering
also requires one-ring neighborhood updates. Since we know that
the coarsest cell size containing data will be of a size bounded by
dZcoarse, We can conservatively assume that the reconstruction of
an octree slice would access at most all cells within a range of two
layers of width from the slice’s boundary dzcoarse-

The current active window is determined by identifying two ac-
tive stream ranges: one for refining the octree structure, and one
for iteratively updating the fully refined region to implement MLS
projection. We first ensure that the region up to zj; + 2 - dzcoarse 1S
fully refined, by refining all cells to the level implied by input point
samples up to zj; + 3 - dzcoarse. The extra look-ahead of one more
layer of refined cells is required to avoid back-propagation of fu-
ture octree subdivisions. Once this refinement is performed at the
first stream position with p; — Rax > zpi + 3 - dZcoarse, We restart
streaming from the first sample whose region of influence overlaps
with the current reconstruction range. We then execute a number
of update passes on the appropriate region by repeatedly streaming
over all samples in the identified active streaming range. For each
pass, the contributions of all samples are accumulated at the cells
into running sums to compute the current MLS solution. At the
end of the pass, the projection step is performed and all accumula-
tors are cleared in preparation for the next MLS iteration. When the
user-determined number of MLS projection steps has been reached,
the solution is finalized by eventually executing the cell-to-vertex
diffusion step and extracting the triangulation. Streaming then con-
tinues by advancing the sliding window and deleting all unneeded
data in the past before continuing with the refine-update-extract cy-
cle. The method requires an amount of in-core memory which is
proportional to the output complexity, since the only in-core struc-
ture is the octree with associated constant-size cell and vertex data.
This approach has the drawback of applying the same number of
MLS iterations to all points. This drawback is more than offset
by the reduced memory needs, which make the system fully scal-
able. In the rare cases in which different areas of a dataset require
radically different iteration counts to reach convergence, it is pos-

sible to reduce computational performance by detecting, at the end
of each cycle, which corners have already reached a good level of
approximation and inserting in future iterations only samples that
contribute to them. This requires an additional storage of one bit
per active sample for maintaining the bitmask.

3.5 Surface extraction

Our method relies on the ability to extract triangulated surfaces
from adaptively refined octrees. Hence we build on the primal ap-
proach of [19,22] for extracting crack-free isosurfaces by combin-
ing cubical marching squares with edge-tree visits for consistently
locating isovertices. The method is improved by a specialized ver-
tex clustering technique that is optionally able to preserve topology.
This approach allows us to create regular triangulations that nicely
adapt to sample density (see Fig. 3).

AR

YAV,
S
=

ot

RS

=
NN
K7

IS

KN
NN 14557
SUBSEE sy
SN,
TN
Y

N
yj

3
1V}
TN
KK
N
e
/.i'mt:%

a 3

) A
i

A'A'AVJAA

N

N,

/A,
"% %)

77
e,

1}: o S
S
o g WAV A %!
(A |V NV %)
A

N
LN
NN
NN
NN

L

A,

K

N

SRR
i

)
o
K n‘ﬂ
LT
RN

NN

Lk
2
it

SN
VANANAN 2 28
7~

NN
N
!
24
N

2}

7
i

(AVAY
7

1
SN
%
L
LN
ZZZ‘N‘;‘

71
2N

L

B4

o
LN
L
AR
NN
M
S
VA Sy

Ry

17

N

£

oy

SN
KK
vave
)
=
L

Zaa
/NN
ZeS
NN
AVANAN
mﬁ&‘
EREE

N
”ﬂ
N7

Pty

N,
oV
]

4
) AVA A
AT

98

AN Ny

N
NSNS
A

N
N
K7
/4!
L
2|
NNNNA

ravavara)
SR

:

NN
NN,
N

7

N
N
KN

=
7
77

AN

NN

1]

N
FRVEN

N

Figure 3: Coarse reconstruction of the Neptune model. Triangles are
regularly distributed and at a density that matches the density of the input
samples.

Each time an octree slice has been updated completely, all leaf
cells within this region are visited, and isovertices and triangles are
located and extracted as in [22]. The isovertices are selected on all
edges that exhibit a sign change in the implicit value and have both
projected points close enough to the weighted average of the input
points (see [1] for details).

Without vertex clustering, the triangulation is simply emitted to
the output triangle stream, and the process can continue. Such a
triangulation, however, is far from optimal, since on average 3 tri-
angles per non-empty octree cell are extracted. In addition, where
the cubic lattice just intersects the surface, these triangles can be
arbitrarily small or thin (see Fig. 4(a)). Instead of relying on a post-
processing beautification step, we regularize the mesh by adopting
a specialized constrained vertex clustering approach. During the
recursive surface extraction, we do not immediately emit vertices
and triangles, but temporarily maintain them in a vertex table and
triangle list. Each time an isovertex is generated on a octree cell
edge, it is also assigned to the vertex set corresponding to the clos-
est octree corner. Before emitting the triangulation, the vertex sets
associated to all active octree corners are visited, and the algorithm
determines which of the vertices can be clustered together. Each
vertex in a cluster is then replaced by a single representative, with
a unique vertex reference and aggregated attributes. Once all cor-
ners are processed, the triangles stored during isosurface extraction
are emitted by replacing the original vertex references with those
resulting from clustering. Any triangles which contain two or more
identical vertex references are discarded before output.

Central to this method is the algorithm used to synthesize new
vertex values for a given cluster. In the simplest case of uncon-
strained clustering, all isovertices associated to a given corner need
to be replaced by a single representative. In this case, we can take
advantage of the fact that during the MLS projection step each cor-
ner not only computes an implicit value but also the explicit posi-
tion, normal, and attributes of its projection on the point set surface.
By using the projected MLS values for the representative vertex we
can thus produce a surface that has nice triangulations and, at the
same time, tightly follows the original point cloud, similar to ex-
plicit methods that directly interpolate MLS-projected data [15].

Unconstrained clustering, however, may in some situations cre-
ate topological and geometrical artifacts, such as non-manifold ver-
tices/faces and holes (see Fig. 4(b)). We overcome this problem by
using a topology preserving clustering approach. In this case, we
also associate to each corner the set of incident triangles. At cor-
ner processing time, we first separate the triangulation associated

(a)

(c)

Figure 4: Triangulation regularization. (a): Original marching cubes reconstruction of a hip bone. (b): Unconstrained regularization, producing holes and
non-manifold vertices (in red) (c): Topology preserving regularization, producing a manifold surface. input samples.

to it into its separate connected components. For each component,
we then check whether collapsing the vertices associated to the cur-
rent corner would not modify the topology and generate a new rep-
resentative vertex only if this check is positive. The topological
check consists in verifying three conditions: (a) that the triangula-
tion is homeomorphic to a disk before clustering; (b) that it remains
disk-like after clustering; (c) that it contains vertices associated to
at least three different clusters. These conditions guarantee that the
end-result of clustering will have at least three vertices, and thus
cannot degenerate to points or segments even if all incident clus-
ters will perform clustering. Since only few triangles are part of a
cluster, verification that a cluster is homeomorphic to a disk is per-
formed explicitly, by checking that no edge is shared by more than
one triangle, and that the region is bounded by a single closed loop
of boundary edges.

In most cases (over 95% of all tested practical situations), the
topological check results in a single collapsable cluster per corner.
In that case, we revert to the unconstrained case and use as repre-
sentative vertex the MLS projection associated to the corner. In the
few remaining cases, we perform a separate quadric collapse per
component [26].

The advantages of the resulting method are that the original man-
ifold topology is preserved, and that explicit data generated at oc-
tree corners in addition to signed distances is exploited to produce
a tightly fitting surface (see Fig. 4(c)). The additional time required
for clustering is offset by the reduction in points and triangles gen-
erated. On the other hand, it should be noted that in a streaming
implementation clustering increases the amount of memory that has
to be kept in core at any given moment. First of all, in order to clus-
ter vertices associated to a given corner, all cells around it should
already be complete. This imposes a look-ahead of one completed
cell layer into the input stream. Moreover, triangles and vertices
generated for the slice need to be kept in core for further processing
rather than being emitted on the fly. As for the rest of the system,
the additional memory costs are strictly locally output sensitive.

3.6 Parallelization

The streaming reconstruction approach outlined above performs a
series of sequential operations on the stream that consist of a se-
quence of octree refinements, octree MLS updates, and surface ex-
tractions that are applied only on a small sliding window which
advances at discrete steps of size determined by Lcoarse. Hence
the method can easily be parallelized by splitting the data stream
among threads into chunks aligned with the grid of level Lcoarse
and perform reconstruction separately for each chunk. Since work
is largely proportional to input data complexity, it is sufficient for
load balancing to create chunks of approximately the same number
of input points. The overall consistency of the triangulation is en-

sured by assigning to each thread chunks of input points that over-
lap by the number of processing regions sufficient to ensure bound-
ary conditions. In the overlap region at the beginning of the as-
signed chunk, each thread executes only the refine and update oper-
ations and skips the actual triangulation pass which is completed by
the corresponding other thread. In order to reduce synchronization
overhead, we let each thread produce separate streaming triangula-
tion files using purely local per-thread vertex indices. This sort of
very simple parallelization approach does not require shared mem-
ory among threads and thus easily supports execution on distributed
memory machines such as PC clusters. We will in the future look
at more fine-grained parallelization at the level of each reconstruc-
tion thread. A final consolidation pass, executed after all threads
have completed their triangulation jobs, joins all files together by
re-indexing all vertices in a single streaming pass. This operation
is performed efficiently by separately storing for each triangulated
chunk the indices of the vertices lying on a chunk boundary, which
are the only ones shared among chunks. With this information, tri-
angle mesh merging can be performed using a small table per chunk
to re-index shared vertices. All other vertices within a chunk are re-
indexed by just offsetting them by a fixed value.

4 IMPLEMENTATION AND RESULTS

An experimental software library supporting the presented tech-
nique has been implemented on Linux using C++ and MPI. Here,
we present results obtained from streaming reconstruction from
large point clouds.

4.1 Speed and scalability on massive models.

We have applied our algorithm with various parameter settings to
the aligned range scans of Michelangelo’s “Awakening Slave” un-
finished statue consisting of over 380M samples, as well as to the
“Pisa Cathedral” dataset consisting of over 154M samples. The
points and normals used for reconstruction were taken directly from
the original scans and the radii were computed using our fast octree
based method, with undersampled areas discarded to filter out clear
outliers and misalignment. The Pisa Cathedral dataset also has a
color channel associated to part of the scans. In all other scans the
color is set by default to average gray. The benchmark results dis-
cussed here are relative to a four-thread configuration running on a
single quad core PC with a Intel Core 2 Quad CPU 2.4GHz, 4GB
RAM, and a single SATA?2 disk storing both input point clouds and
reconstructed meshes.

Reconstruction memory footprint. Table 1 summarizes the re-
sults obtained with a blending factor of H = 1, which generated the
models in Fig. 1 and 5. On the largest model, all the runs were com-
pleted with a peak in-core memory between 409MB and 614MB

Edge Output

odel Diffus. Clust. Time Mem Len Triangles
Awakening No NO 1h44m 1.6GB 0.28 388.9M
Awakening No Unrest. 1h49m 1.8GB 0.35 227.7M
Awakening No Constr. 1h58m 2.0GB 0.35 232.8M
Awakening Yes NO 1hlIm 2.1GB 0.29 345.5M
Awakening Yes Unrest. 1h16m 2.3GB 0.35 219.6M
Awakening Yes Constr. 1h24m 2.4GB 0.35 219.9M
Cathedral No NO 55m 2.3GB 19 142.1M
Cathedral No Unrest. 57m 2.6GB 26 68.8M
[Cathedral No Constr. 1h2m 2.8GB 26 70.9M
[Cathedral Yes NO 38m 3.0GB 19 141.2M
[Cathedral Yes Unrest. 40m 3.3GB 26 68.8M
[Cathedral Yes Constr. 45m 3.4GB 26 69.6M

Table 1: Statistics for the reconstruction of “Awakening Slave” and
“Pisa Cathedral” at H=1 and 1 MLS projection step. Data gathered on
a single quad-core PC running four parallel reconstruction threads.

per thread depending on the configuration. The Cathedral, even
if smaller, has a peak in-core memory footprint that varies from
588MB to §70MB, due to the larger maximum cross-section. As
expected, cell-to-vertex diffusion and clustering both increase in-
core memory cost because of the need for larger cell neighborhoods
kept in memory. Nevertheless, our results favorably compare in all
cases with other state-of-the-art streaming reconstruction results on
the same datasets and with similar settings. For instance, streaming
wavelet reconstruction of the Awakening requires 574MB when us-
ing Haar wavelets and more than 1.6GB when using the smoother
D4 wavelets [27]. The Poisson reconstruction code requires for the
same dataset 2GB of in-core memory and over 100GB of out-of-
core octree memory [8]. The lower memory usage of our approach
is particularly important for reconstructions with large blending fac-
tors, as illustrated in Table 2, which shows data gathered for recon-
structions with varying blending factors H. Corresponding recon-
struction details of the Awakening model are presented in Fig. 6. A
detail of the facade of the Pisa Cathedral, with color details, is also
presented in Fig. 7. Our memory footprint is fully output sensitive,
and at H = 4 we use only 153MB/thread for the largest model. By
contrast, the Poisson reconstruction code tends to use even more
memory at coarse than at fine resolutions because of the cost of
point sample binning (e.g., 521MB for a level 8 reconstruction of
a 200M samples dataset versus 212MB for a level 11 reconstruc-
tion) [8]. It must be also noted that our approach also handles col-
ors, not managed by the Poisson and Wavelet reconstruction codes.

Speed Edge Gen. Out.
odel H Time | Points/s Mem | Level Len Tri Tri

i 1| 2nd4om 359K | 23GB 14 035 | 3902M 228.3M
Awakening | 2 | 2hl6m 448K | LIGB 13 071 86.2M 55.8M
Awakening | 4 2him 501K | 0.6GB 12 141 214M 13.9M
(Cathedral 1| 1hdom 250K | 33GB 13 2 | 141.0M 68.7M
(Cathedral 2 | 1h2sm 296K | 18GB 12 52 347M 16.9M
(Cathedral 4 49m 508K | 05GB 11 103 41M 8.3M

Table 2: Statistics for the reconstruction of “Awakening Slave” and
“Pisa Cathedral” at different resolutions using 4 MLS projection steps.
Data gathered on a single quad-core PC running four parallel reconstruction
threads.

Reconstruction speed. The small memory footprint of our ap-
proach makes it possible to run multiple reconstruction processes in
parallel on a single PC. As illustrated in Table 1, using four threads,
reconstruction times at H = 1 and one MLS iteration ranges from
1h11m to 1h58m for the Awakening and from 45m to 1h02 for the
Cathedral, depending on reconstruction parameters. Preprocessing
times are not included in these times since they can be amortized
over many reconstruction runs. Moreover, they are relatively small.
Sorting the datasets, which needs to be done by current streaming
methods, takes 49m for the Awakening and 23m for the Cathedral
using a simple out-of-core quicksort implementation working on a
memory-mapped file. Computing influence radii using our density
based method streaming method takes 24m for the Awakening and
11m for the Cathedral.

The lowest reconstruction times are for reconstructions made

RARet r

IHM H

hu

lu u“’f ‘i"iTTL

Figure 5: Reconstruction of “Pisa Cathedral” from laser scans with over
154M samples. This reconstruction was completed in 45 minutes on a quad
core machine using 870MB/thread. The regularized manifold triangulation
contains about 70M triangles, corresponding to over 140M triangles before
clustering. The color channel, present in only a few scans, is preserved in
the reconstruction.

Figure 6: Details of the reconstruction of “Awakening Slave”. Extreme
zooms of the reconstruction with global blending parameter H=1,2,4,8. Note
how the blending parameter controls surface smoothness and gap filling. At
H=2 the surface is fully continuous and even small chisel marks are recon-
structed with high accuracy.

with cell-to-vertex diffusion enabled, which is explained by the
fact that octree cell location operations are implemented more ef-
ficiently than vertex location operations. The slight reduction in
the triangle count of the cell-to-vertex diffusion version is due to
the increased amount of smoothing, which reduces the overall out-
put surface size. Enabling or disabling clustering has little effect
on speed, but a large effect on output mesh quality and complex-
ity, since the clustered version generates on average 60% of the
triangles of the non-clustered version. Increasing the number of
MLS iterations increases accuracy as well as reconstruction times,
but does not require additional memory. For instance, reconstruc-
tion with topology preserving clustering and cell-to-vertex diffu-
sion of the Awakening dataset requires 1h24m with one MLS iter-
ation, 2h49m with 4 iterations, and 4h53m with 8 iterations. On
the given datasets, there are, however, very little visual differences
among these versions.

The reconstruction times obtained qualify our method among
the fastest streaming reconstructors, even including pre-processing
times. The code is still significantly slower on a single thread with
respect to wavelet reconstruction with Haar wavelets, but is on par
with wavelet reconstruction with D4 wavelets [27], which provide
a visual quality more similar to that attained by our method. Other
contemporary streaming frameworks are considerably slower (e.g.,
two days for a Poisson reconstruction of the same model [8]).

Figure 7: Detail of the reconstruction of “Pisa Cathedral”. Note how the
color channel is preserved.

4.2 Reconstruction accuracy evaluation

The visual quality of our reconstructions for the “Awakening Slave”
is illustrated in Fig. 1 and 6. Fig. 5 shows a reconstruction of the
“Pisa Cathedral”, which illustrates one of the advantages of the
method, i.e., the ability to seamlessly handle attributes associated
to point samples, in this case color. Since it is difficult to mea-
sure “accuracy” of reconstructions of a possibly noisy range scan,
we use the approach of [27] of sampling points and normals from
dense polygonal models and then computing the two-sided Haus-
dorff distance between reconstructed models and original surfaces.
Distance evaluation has been performed using the MESH [7] soft-
ware for comparing discrete surfaces. It should be noted that this
kind of benchmark is biased towards methods that work well on
“well behaved” surfaces. For this reason, we have also included
results with models artificially distorted by uniform random noise
in sample positions. The noise is in the interval [—5,+7] for each
coordinate, where r is the local sample spacing of the undistorted
model. In order to make the test more similar to a real-world sit-
uation, noise is also included in normals, recomputed by PCA us-
ing 8 nearest neighbors on the noisy point sets, as well as in in-
fluence radii, recomputed on the noisy datasets using our density
based technique.

Noisy Noisy Noisy

Arm. Drag. Nept. Arm. Drag. Nept.

1 0.177 0.111 0.123 0312 0.392 0.236

4 0.175 0.106 0.119 0310 0.393 0.240
C.N1 0.182 0.118 0.135 0315 0.391 0.240
C.N4 0.181 0.110 0.135 0311 0.392 0.244
IS.N1 0.208 0.155 0.189 0312 0.368 0218
IS.N4 0.203 0.151 0.204 0311 0.367 0.225
IS.C.N1 0.210 0.163 0.208 0317 0.381 0.229
IS.C.N4 0.208 0.154 0.189 0314 0.376 0.229
ISW.Haar 0.358 0.683 0.320 0.441 0.699 0.390
ISW.D4 0.491 0.747 0.455 0.538 0.772 0.492
ISW.Haar S 0.871 0.841 0.934 0.869 0.803 0917
SW. D4 S 1.000 1.000 1.000 1.000 1.000 1.000

Table 3: RMS distance comparison. Comparison of RMS distance be-
tween original and reconstructed surfaces. Each row is normalized with re-
spect to the worst geometric error. Rows represent runs with different param-
eters: C is clustering (enabled/disabled); N is the number of MLS iterations;
S is cell-to-vertex diffusion. Last four rows (SW) are relative to streaming
reconstruction using wavelets approach [27] with Haar or D4 wavelets and
with/without post-process smoothing (S).

In order to compare the performance of our code with respect
to the state-of-the-art, we also reconstructed the same models
with the publicly available code of streaming reconstruction using
wavelets [27]. The original paper contains comparisons with results
obtained by other recent methods (Poisson reconstruction [8] and
MPU implicits [29]) that demonstrate that wavelet reconstruction
consistently produces better results. We thus limited comparison to
only that method, using Haar and D4 wavelets, possibly in conjunc-
tion with indicator function smoothing. We tuned algorithm param-
eters to generate reconstructions with about the same number of tri-
angles for the streaming wavelet code and our code with clustering
disabled. Thus, the comparison for the clustered version uses less
triangles in our versions than in the the other cases. Table 3 presents

the RMS error of the various reconstructions with respect to the
original input mesh. The meshes used in this benchmark are the
Armadillo and Dragon from the Stanford repository and Neptune
from the Aim@ Shape repository. All values have been normalized
to the worst value, which results to be equal to one in the table.
In all the cases our code is able to produce a mesh whose geomet-
ric error is significantly smaller than in the streaming wavelet best
run. The accuracy improvement is at least 30%. Not surprisingly,
the reconstructions with the best accuracy is the one that we obtain
without clustering, without diffusion and with the largest amount
of MLS projection steps. It is however interesting to analyze the
behavior of the system in the other cases. As expected, the number
of MLS projection steps increase the quality of the mesh in terms of
root mean squared distance. Since we start from vertices which are
near the implicit surface, due to the adaptivity of the octree struc-
ture, the number of iterations can often be kept small, especially in
well-behaved cases such as these ones. It is also important to note
that clustering does not sensibly reduce the method accuracy even
though the triangle count is drastically reduced (about 60% of the
original model). This is because clustered vertices are in general
projected onto the implicit surface near the octree corner. In such
a way, we are able to have a new mesh with a strongly reduced tri-
angle count while maintaining practically unchanged the distance
from the original surface. Clustering also tends to increases visual
quality of the shaded output mesh because of the well behaved tri-
angles with good aspect ratio. The smoothness of the output mesh
can be increased using the diffusion version of the code: with this
approach we are able to produce a smoother version of the mesh.
We can see from Table 3 that using the diffuse version slightly re-
duces the quality of the mesh in terms of distance from the original
dataset, removing some details with high frequency information. In
the worst case, the error is increased by 20%.

4.3 Limitations

As for all current surface reconstruction techniques, the method has
features that are advantageous, but also has limitations. In particu-
lar, as the method is based on surfaces, and considers reconstructed
values valid only in the neighborhood of the original point cloud,
it can seamlessly handle open models. On the other hand, closed
models are not guaranteed to lead to watertight reconstructions if
the influence radii of the input points are set too small or the input
noise level is to high, leading to holes or spurious surfaces. Noise
and misalignment can be handled by MLS blending and projection,
at the cost of local smoothing and increased projection costs (see
Fig. 8). More general gap filling, when required, must be handled
by other specialized methods. We should emphasize, however, that
the paper does not focus on proposing new techniques for faithful
reconstruction, but, rather, on an efficient streaming implementa-
tion for an important class of them.

Figure 8: Extreme details of the reconstruction of “Awakening Slave”.
Left: at H = 1 the areas in which influence radii have been underestimated
produce holes, highlighted in red. Right: at H = 2, the surface’s appearance
is smoother and holes have disappeared.

5 CONCLUSIONS

We have presented an efficient framework for streaming reconstruc-
tion of high quality triangulated surfaces from very large point
clouds. The main benefits of the method lie in its performance,
quality, and flexibility. Our results show that the resulting system is
fast, scalable, accurate and produces good quality meshes. Besides
improving the proof-of-concept implementation, we plan to extend
the presented approach in a number of ways. In particular, it should
be clear that the presented method is a framework on top of which
more elaborate projection procedures can be implemented. The cur-
rent system uses a linear least squares with the quasi-orthogonal
projection scheme [2]. In the future, we plan to integrate algebraic
sphere fitting [18] to improve robustness in areas with high curva-
ture and/or noise and improve convergence speed. Finally, we are
working on the integration of the presented reconstruction pipeline
within a complete streaming framework for large point clouds.

Acknowledgments. The models are courtesy of Benedict Brown,
Szymon Rusinkiewicz and the Digital Michelangelo Project (Awak-
ening), the ISTI-CNR Visual Computing Group (Pisa Cathedral),
the Stanford 3D Scanning Repository (Armadillo and Dragon) and
INRIA (Neptune). This work was also partially supported by
Sardegna DISTRICT (P.O.R. Sardegna 2000-2006 Misura 3.13)
and by the Swiss National Science Foundation Grants 200021-
111746 and 1IZAI120-121072.

REFERENCES

[1] A. Adamson and M. Alexa. Approximating bounded, non-orientable
surfaces from points. In Shape Modeling International, pages 243—
252,2004.

[2] M. Alexa and A. Adamson. On normals and projection operators for
surfaces defined by point sets. In Symposium on Point-Based Graph-
ics, 2004.

[3] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.
Silva. Point set surfaces. In IEEE Visualization, pages 21-28, 2001.

[4] R. Allegre, R. Chaine, and S. Akkouche. A streaming algorithm for
surface reconstruction. In Symposium on Geometry Processing, pages
79-88, 2007.

[5] N. Amenta, S. Choi, and R. Kolluri. The power crust. In Symposium
on Solid Modeling, pages 249-260, 2001.

[6] N. Amenta and Y. J. Kil. Defining point-set surfaces. ACM Transac-
tions on Graphics, 23(3):264-270, 2004.

[71 N. Aspert, D. Santa-cruz, and T. Ebrahimi. M.E.S.H.: Measuring
errors between surfaces using the hausdorff distance. In /IEEE Inter-
national Conference on Multimedia, pages 705-708, 2002.

[8] M. Bolitho, M. Kazhdan, R. Burns, and H. Hoppe. Multilevel stream-
ing for out-of-core surface reconstruction. In Symposium on Geometry
processing, pages 69-78, 2007.

[9] T. Boubekeur, W. Heidrich, X. Granier, and C. Schlick. Volume-
surface trees. Computer Graphics Forum, 25(3):399-406, 2006.

[10] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,
B. C. McCallum, and T. R. Evans. Reconstruction and representation
of 3D objects with radial basis functions. In Proc. ACM SIGGRAPH,
pages 67-76, 2001.

[11] P.Cignoni, C. Montani, C. Rocchini, and R. Scopigno. External mem-
ory management and simplification of huge meshes. [EEE Transac-
tions on Visualization and Computer Graphics, 9(4):525-537, 2003.

[12] B. Curless and M. Levoy. A volumetric method for building complex
models from range images. In Proc. ACM SIGGRAPH, pages 303—
312, 1996.

[13] T.K.Dey,J. Giesen, and J. Hudson. Delaunay based shape reconstruc-
tion from large data. In IEEE Symposium on parallel and large-data
visualization and graphics, pages 19-27,2001.

[14] T. K. Dey and S. Goswami. Provable surface reconstruction from
noisy samples. Computational Geometry Theory and Applications,
35(1):124-141, 2006.

[15]

[16]

[17]

(18]

[19]

[20]
[21]

(22]

[23]

[24]

[25]
[26]
[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

T. K. Dey and J. Sun. An adaptive MLS surface for reconstruction
with guarantees. In Symposium on Geometry processing, page 43,
2005.

V. Fiorin, P. Cignoni, and R. Scopigno. Out-of-core MLS reconstruc-
tion. In CGIM, pages 27-34, 2007.

S. Fleishman, D. Cohen-Or, and C. T. Silva. Robust moving least-
squares fitting with sharp features. ACM Transactions on Graphics,
24(3):544-552, 2005.

G. Guennebaud and M. H. Gross. Algebraic point set surfaces. ACM
Transactions on Graphics, 26(3):23, 2007.

C.-C. Ho, E-C. Wu, B.-Y. Chen, Y.-Y. Chuang, and M. Ouhyoung.
Cubical marching squares: Adaptive feature preserving surface ex-
traction from volume data. Computer Graphics Forum, 24(3):537—
546, 2005.

M. Kazhdan. Reconstruction of solid models from oriented point sets.
In Symposium on Geometry Processing, pages 73-82, 2005.

M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruc-
tion. In Symposium on Geometry Processing, pages 61-70, 2006.

M. Kazhdan, A. Klein, K. Dalal, and H. Hoppe. Unconstrained iso-
surface extraction on arbitrary octrees. In Symposium on Geometry
Processing, pages 125-133, 2007.

R. Kolluri. Provably good moving least squares. ACM Transactions
on Algorithms, 4(2):1-25, 2008.

R. Kolluri, J. R. Shewchuk, and J. F. O’Brien. Spectral surface re-
construction from noisy point clouds. In Symposium on Geometry
Processing, pages 11-21, 2004.

D. Levin. Geometric Modeling for Scientific Visualization, chapter
Mesh-independent surface interpolation. Springer, 2003.

P. Lindstrom. Out-of-core simplification of large polygonal models.
In Proc. ACM SIGGRAPH, pages 259-262, 2000.

J. Manson, G. Petrova, and S. Schaefer. Streaming surface reconstruc-
tion using wavelets. In Symposium on Geometry processing, 2008.

B. Mederos, N. Amenta, L. Velho, and L. H. de Figueiredo. Surface
reconstruction for noisy point clouds. In Symposium on Geometry
Processing, pages 53-62, 2005.

Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel. Multi-
level partition of unity implicits. ACM Transactions on Graphics,
22(3):463-470, 2003.

Y. Ohtake, A. Belyaev, and H.-P. Seidel. A multi-scale approach to 3D
scattered data interpolation with compactly supported basis functions.
In Shape Modeling International, page 153, Washington, DC, USA,
2003. IEEE Computer Society.

R. Pajarola. Stream-processing points. In /EEE Visualization, page 31,
2005.

M. Pauly, M. H. Gross, and L. Kobbelt. Efficient simplification of
point-sampled surfaces. In /EEE Visualization, pages 163-170, 2002.
P. Reuter, P. Joyot, J. Trunzler, T. Boubekeur, and C. Schlick. Surface
reconstruction with enriched reproducing kernel particle approxima-
tion. In Symposium on Point-Based Graphics, pages 79-88, 2005.

S. Schaefer and J. Warren. Dual marching cubes: Primal contouring
of dual grids. Computer Graphics Forum, 24(2):195-203, 2005.

G. M. Treece, R. W. Prager, and A. H. Gee. Regularised marching
tetrahedra: improved iso-surface extraction. Computers & Graphics,
23(4):583-598, 1999.

