The 10th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST

(2009)
C. Perlingieri and D. Pitzalis (Editors)

Interactive Remote Exploration of Massive Cityscapes

M. Di Benedetto' P. Cignoni 'F Ganovelli ' E. Gobbetti> F. Marton” R. Scopignol

!'Visual Computing Laboratory, ISTI-CNR, Italy
2Visual Computing Group, CRS4, Ttaly

Abstract

We focus on developing a simple and efficient unified level-of-detail structure for networked urban model viewers.
At the core of our approach is a revisitation of the BlockMap [CDG*07] data structure, originally introduced for
encoding coarse representations of blocks of buildings to be used as direction-independent impostors when ren-
dering far-away city blocks. The contribution of this paper is manifold: we extend the BlockMap representation to
support sloped surfaces and input-sensitive sampling of color; we introduce a novel sampling strategy for building
accurate BlockMaps; we show that BlockMaps can be used as a versatile and robust way to parameterize the visi-
ble surface of a highly complex model; we improve the expressiveness of urban models rendering by integrating an
ambient occlusion term in the representation and describe an efficient method for computing it; we illustrate the
design and implementation of a urban models streaming and visualization system and demonstrate its efficiency
when browsing large city models in a limited bandwidth setting.

1. Introduction

Real-time 3D exploration of remote models of our environ-
ment has long been one of the most important applications
of distributed real-time graphics. Even though, historically,
these tools have focused on textured digital elevation mod-
els, the interest is now rapidly shifting towards urban envi-
ronments. Focusing on such environments is extremely im-
portant, since a large part of Earth’s population lives and
works in dense urban areas, and much of our cultural her-
itage revolves around complex cityscapes. Moreover, recent
advances in city acquisition and modeling (e.g., specialized
3D scanning [TAB*03, FJZ05, CCGO06], assisted reconstruc-
tion from photos and video streams [PVGV*04], or paramet-
ric reconstruction [PMO1, MWH*06]) lead to a rapidly in-
creasing availability of highly detailed urban models for both
modern and ancient cities.

Exploring large detailed urban models, seamlessly going
from high altitude flight views to street level views, is ex-
tremely challenging. What makes urban models so pecu-
liar is that their geometry is made of many small connected
components, i.e., the buildings, which are often similar in
shape, adjoining, rich in detail, and unevenly distributed.
While multiresolution texturing and geometric levels of de-
tail may provide acceptable solution for buildings near to the

(© The Eurographics Association 2009.

viewer and moderate degrees of simplification, major prob-
lems arise when rendering clusters of distant buildings, hard
to faithfully and compactly represent with simplified textured
meshes. Therefore, state-of-the-art solutions propose switch-
ing to radically different, often image-based, representations
for distant objects having a small, slowly changing on-screen
projection. This dual representation approach, however, in-
creases implementation complexity, while introducing hard
to manage bandwidth bottlenecks at representation changes.

In this work, we focus on developing a simple and effi-
cient level-of-detail structure that can serve as a basis for
an Internet urban model viewer. To reach this goal, we en-
hance the BlockMap, a GPU- friendly data structure for en-
coding coarse representations of both geometry and textured
detail of a small set of buildings [CDG*07]. BlockMaps
are stored into small fixed-size texture chunks, and can be
efficiently rendered through GPU-based raycasting. How-
ever, BlockMaps have been originally designed to replace
the geometry-based representation only when the single
block of buildings represented by the BlockMap projects
on the screen to just a few tens of pixels. Being tuned for
this situation, the BlockMap geometry and color encoding
is very coarse, basically a set of discretized textured ver-
tical prisms, and exhibits aliasing artifacts when used in

M. Di Benedetto et al. / Remote Exploration of Massive Cityscapes

close range views. For this reason, a hybrid multiresolu-
tion framework had to be employed in [CDG*07], where
BlockMaps are used together with a textured polygons rep-
resentation [BDO0S5]. The contribution of this paper is mani-
fold:

e we extend the BlockMap representation to support sloped
surfaces and input-sensitive sampling of color, making it
an all-round block of buildings representation;

e we introduce a novel and more elegant sampling strategy
that allow us to build more accurate BlockMaps;

e we show that BlockMaps can be used as a versatile and
robust way to parameterize the visible surface of a highly
complex model;

e we improve the expressiveness of urban models render-
ing by integrating ambient occlusion in the representation
and describe an efficient precomputation method;

e we illustrate the design and implementation of urban
models streaming and visualization system;

Although not all the techniques presented here are novel in
themselves, we believe their elaboration and combination in
a single unified system is non trivial and represents a substan-
tial enhancement to the state-of-the-art. Using the proposed
approach, we can produce a scalable multiresolution repre-
sentation of a large urban model that can be interactively
transmitted and visualized over the network. The overall ap-
proach is focused on a particular, but very important, data
and application class and should not be intended for the visu-
alization of general 3D datasets. Even though this fact limits
the general applicability of the method, such a targeted fo-
cus allows us to produce a particularly simple, compact and
efficient model and system.

2. Related work

We provide a rapid overview of the approaches more closely
related to ours. For a recent survey on the problem of render-
ing large environments we refer the reader to [YGKMOS].

Adaptive streaming and rendering. Massively textured ur-
ban models require the management of very large amounts
of textures. The classic solution for managing large textured
urban models is the texture-atlas tree [BD05], which, how-
ever, considers multi-resolution textures but single resolution
geometry, and does not take into account network stream-
ing issues. At the core of our approach is a compact hier-
archical representation of both geometry and texture of ur-
ban models. Using a simpler geometric representations for
far geometry is the core idea of LOD techniques, while
switching to a radically different image based representa-
tion characterizes impostor approaches. Impostor-like tech-
niques, introduced a decade ago (see, e.g., Textured Depth
Meshes [SDB97,DSV97], Layered Environment-map Impos-
tors [JWS02,JW02], and Layered Depth Images [SGWHS98,
WWSO01]), are enjoying a renewed interest, because of the
evolution of graphics hardware, which is more and more
programmable and oriented toward massively parallel ras-
terization. The Relief Mapping approach was introduced

in [OBMOO0], where a warping approach is used to find the
final position of an orthogonally displaced texel over a given
flat texture. An approach to the problem of rendering gen-
eralized displacement mapped surfaces by GPU raycasting
was proposed in [WWT*03, WTL*04]. In these methods,
the results of all possible ray intersection queries within a
three-dimensional volume are precomputed and stored in a
compressed five-dimensional map. While general, this ap-
proach implies a substantial storage overhead. Other gen-
eralizations involve replacing the orthogonal displacement
with inverse perspective [BDO06], replacing the texture plane
with a quadric [Man05], handling self shadowing in general
meshes [POCO5]. In [ABB*07] the scene is approximated
with a cloud of relief maps, renamed omnidirectional relief
impostors, and a GPU raycasting is done for each frame on
the subset of such cloud which is optimal with respect to
the point of view. The approach was subsequently imple-
mented in a hierarchical fashion and tailored to urban dataset
visualization [ABOS]. In this work, we follow instead the
BlockMap approach [CDG™*07] of exploiting a small number
of precomputed maps to efficiently encode and render urban
models as a set of compactly encoded textured prisms. This
representation is more similar to LODs than to impostors,
since it encodes a discretization of the original geometry. The
original simple encoding, however, limits its applicability to
only coarse levels of details.

Parameterization and perceptual improvements. Since
we aim to enhance shape perception during visualization,
we include in our level-of-detail structure information that
allows us to adopt a shading model based on the Ambient
Occlusion term [Lan02], which approximates a uniformly
diffusing lighting environment. From a perceptual point of
view this choice has a grounded foundation, as there is ev-
idence that it improves shape perception over direct light-
ing [LB99]. In the context of geo-viewing, non-local shading
approaches to enhance image readability have been applied
in terrain visualization [Ste98], and off-line city model ren-
dering [WMWO7], but not in an interactive streaming and
rendering context. It should be noted that precomputation
of an ambient occlusion term or more sophisticated radi-
ance transfer information [KLS05] require either a good uni-
form texture parametrization of the surface or a good mesh-
ing of the whole scene, something that usually is difficult to
be achieved for general large models like the one used for
urban environments. Encoding shape and appearance into a
texture is the goal of geometry images [GGHO2], which en-
able the powerful GPU rasterization architecture to process
geometry in addition to images. Geometry images focus on
reparametrizations of meshes onto regular grids, while we
focus on a specialized representation of urban structures.

3. The BlockMap concept

The BlockMap representation has been introduced as a way
to compactly represent a small city portion (i.e. a group of
nearby buildings) as seen from a distance. In the following

(© The Eurographics Association 2009.

M. Di Benedetto et al. / Remote Exploration of Massive Cityscapes

we briefly review the concepts behind it. Please refer to the
original paper [CDG*07] for a more detailed description.

32x32 32x32 _
L o

distancemap

heightmap offsetmap

Figure 1: A single node of the BlockMap data representa-
tion encodes the geometry and texture detail of a small set
of nearby buildings in a small texture chunk (courtesy of the
authors of [CDG*07]).

The BlockMap representation stores in a rectangular por-
tion of texture memory all the data required to represent a
group of textured vertical prisms defined and discretized on a
square grid (see an example in Figure 1). The left-most 32x32
texture region gives a top view of the represented region and
stores with each color channel: the heightmap (it encodes ex-
plicit discretized geometry information on buildings heights,
and implicitly the discretized buildings plans), the offsetmap
(storing for each texel the u coordinate of the correspond-
ing column in the right most portion of the BlockMap, where
textures for the vertical sides of the prisms and relative nor-
mals are stored), and a distancemap (used to speed up GPU
raycasting of the BlockMaps by space leaping). Resolutions
mentioned in Figure 1 refer to the BlockMap version used
to render block of buildings far from the viewpoint, as pro-
posed in [CDG*07]. In this representation, all the roofs are
assumed to be flat, or considered as such when seen from a
distance. Moreover, the amount of texture stored for each of
the prisms is fixed, and thus not depends on a prism height.

4. A unified approach for far and near geometry

The advantage of the BlockMaps is that they encode the
large scale features of a urban-like dataset, i.e. the verti-
cal flat walls of the buildings, with little memory footprint.
Thanks to these characteristics, the BlockMaps have been
successfully integrated in a hybrid multiresolution scheme
employing them for the coarse level of the hierarchy and
textured meshes for the fine ones. While this dual represen-
tation approach is satisfactory when used locally, it is not
as much suitable for remote browsing of large cities, be-
cause, ultimately, a large amount of geometry and texture
will need to be transmitted for the textured geometry in the
near field. Due to constraints in semi-automatic urban ac-
quisition methods, the very large scale urban databases tar-
geted by internet viewing, consists of many small connected

(© The Eurographics Association 2009.

components (single or small group of buildings), each one
represented with a relatively small number of polygons but
a large amount of color information, typically one or more
photographs for each fagcade of the building. While the orig-
inal BlockMap representation is too crude for close views, a
full unstructured mesh representation can be considered an
overkill. We therefore propose to improve the BlockMaps in
terms of geometry content and visualization quality at the
point that they can be used both for far-away and for near
geometry, and to build a multiresolution representation en-
tirely based on this data structure. To reach this goal, we
extend the BlockMap representation to support sloped sur-
faces and input-sensitive sampling of color, we introduce a
novel and more elegant sampling strategy that allow us to
build more accurate BlockMaps, and we improve the expres-
siveness of urban models rendering by supporting ambient
occlusion. Figure 2 illustrates our new BlockMap datastruc-
tures. The rest of this section details the modification made
to the blockmap datastructure. The next section illustrates an
efficient method for attribute sampling.

roof color

heightmap ~ offsetmap
¥ ,,\
b i
e T Rt
roo_f'normais roof AO walls AO

Figure 2: Improved version of BlockMap data structure.

hit a roof
hit a vertical wall

viewpoint

viewport

Original Shape BlockMap heigtmap

Figure 3: Left: original shape. Right: BlockMap encoding.
The corresponding tiles are marked as roof, so also when
the ray its on the side, the roof data (normal, color, ambient
occlusion) are used.

Sloped rooftops. One of the assumptions taken in the
blockmap representation is that the roof’s shape of most
buildings is negligible in far distance views. If a BlockMap
covers a small region of the domain, a single rooftop spans

M. Di Benedetto et al. / Remote Exploration of Massive Cityscapes

over more than one texel. In the case shown in Figure 3, for
instance, a sloped rooftop of a building (left most picture) is
sampled to produce a heightmap (right most picture). When
ray-casting this BlockMap, some rays will hit the sides of
the prisms (the red rays in the figure) and others will hit the
rooftops (the cyan rays). As a result, the sloped rooftop sil-
houette will have a step-like appearance, and shading will in-
correctly ignore slopes. We overcome this problem by mark-
ing the prisms which correspond to some roof, so that when
the ray hits such a prism the data for shading are fetched
from the roof maps (roof normal, roof color and roofAO in
Figure 2) even if the hitting point is on a side of the prism.
We need one boolean value per pixel in the heightmap to
store this information which is encoded assigning the con-
ventional value O to the offsetmap. At the present this infor-
mation is computed at preprocessing by analyzing the height
of the neighbours, which could lead to classify stairs as roof
and viceversa. However, more sophisticated algorithms may
be adopted, or the information can be present of the original
dataset, without effects on the rest of the framework.

Figure 4: A BlockMap sliced in four parts, each one with its
own parameterization. In this example the alpha channel of
the BlockMap has been removed for clarity.

Adaptive parametrization by slicing BlockMaps. In typ-
ical urban datasets, the ratio between the total perimeter of
a block of buildings and their maximum height varies from
block to block, typically increasing with the number of build-
ings. In contrast, in the BlockMaps the number of texture
samples in the horizontal and vertical direction is fixed. The
parameterization made by the BlockMaps (i.e., the mapping
from the boundary texel to the wall textures/normals) assigns
the same number of vertical samples to all the prisms, in-
dependently from their height, leading to over- and under-
sampling. We greatly improve sampling by supporting a vari-
able perimeter/height ratio within the same BlockMap. In-
stead of unrolling all the building boundaries in a single strip
of columns, we subdivide the BlockMap in slices of equal
size and parameterize each slice individually. Figure 4 shows
an example of a 4-sliced BlockMap. Note that we could,
alternatively, use BlockMaps of different sizes to adapt to
the characteristics of the specific region of the model. Do-
ing so would, however, lose the advantage of having memory
chunks of fixed size when handling fetching and caching of
data at rendering time. By slicing the BlockMaps, we con-
serve all the advantages of fixed-memory management, and

only have to make a minor modification to the ray-casting al-
gorithm. We recall that when a ray hits the vertical side of a
prism, the u coordinate used to fetch its color is taken from
the offsetmap, while the v coordinate is given by the height of
the intersection point. The only modification needed to sup-
port sliced BlockMaps is to change the computation of the
v coordinate, by scaling and translating the height value de-
pending on the slice s; the texel is in. We choose to slice the
BlockMaps regularly, so that the value s; can be quickly com-
puted by the ray casting algorithm without having to store
it. The number of slices in a BlockMap is chosen to pro-
vide a perimeter/height ratio as close as possible to the value
found in the original dataset. The construction algorithms re-
peatedly constructs BlockMaps with an increased number of
slices until a satisfactory value is found. For each block, we
start trying to build a single-slice BlockMap. If the number
of boundary texels exceeds the number of available columns,
we try with 2 slices and so on, until either no slice exceeds
the number of columns or the maximum number of slices has
been reached. In a m x n BlockMap, this number cannot ex-
ceed n/2, with a slice made of exactly one row of colors and
one row of normals. However, we experimentally determined
that having at least 3 texels/slice provides better results, so
we stop slicing when the number of slices is n/4.

Ambient Occlusion. The original blockmap stores as ma-
terial attributes a single diffuse color and a normal, forcing
the real-time renderer to use a local shading model. Since we
aim to enhance shape perception during visualization, we in-
clude in our level-of-detail structure information that allows
us to adopt more a sophisticated shading model that approx-
imates the light coming from an uniformly diffusing lighting
environment. Ambient occlusion is a technique to account
for the accessiblity of the surface points in the local shad-
ing models. It consists of computing the percentage of the
hemisphere above each surface point not occluded by geom-
etry and to use this value to weight the ambient term of the
lighting equation [Lan02]. Given the fact that our approach
offer an unique parametrization of each visible point of the
surface, the modification to the BlockMaps data structure to
include ambient occlusion term is quite simple: it consists of
storing its value in the alpha channel (not used) of the texture
color. Figure 5 show the same view with or without using
ambient occlusion.

Figure 5: Close view of a block without (left) or with (right)
ambient occlusion.

(© The Eurographics Association 2009.

M. Di Benedetto et al. / Remote Exploration of Massive Cityscapes

5. Multi-view sampling of shading attributes

The sampling of shading attributes for vertical walls is the
most critical step in the process of building a BlockMap.
In the original BlockMap version, for each visible side of a
prism, a texture column was computed by simply performing
orthographic renderings of the correspoding textured geom-
etry and copying the result in the assigned texture column.
This simple process potentially leads to two kinds of sam-
pling artifacts. We illustrate the problem with an example.

Figure 6: Top view of few pixels partially included in the
boundary of two buildings. The drawing shows a manifac-
tured example of how the sampling process may generate
rendering artifacts.

Sampling strategies. Figure 6 shows three boundary texels
and respective columns. The geometry inside texels a and
b is sampled independently by taking orthogonal renderings
from positions v, and vp,. These renderings can be performed
with arbitrarily large viewports, but the result will ultimately
be resampled to at most one-pixel-large adjacent columns,
causing a resampling artifact at the boundary between the
columns. A more severe issue can be observed in the sam-
pling of the texel c. If the rendering is done from the posi-
tion v, (the center of the adjacent texel), a whole portion of
the geometry will be missed. On the other hand, placing the
point of view further away would include unwanted geome-
try from texel d. To solve this problem we take views of the
whole geometry from uniformly distributed directions in the
hemisphere centered at the BlockMap center, and reproject
the result of each view onto the BlockMap’s prisms. Since
each surface point can be seen from several directions, the
final value is obtained by gathering all the contributions and
combining them to a single value per point.

Implementing multiple-view sampling. We developed a
GPU accelerated technique that harnesses the performance
and programmability of current graphics hardware to effi-
ciently perform multi-view sampling. The sampling process
is performed by iterating the followig steps for each view:

1. render the geometry from the viewpoint with an orthogo-
nal projection to a n X n texture (called GeoBuffer in Fig-
ure 7);

(© The Eurographics Association 2009.

GeoBuffer

AddressBuffer

draw point
BlockMap \

Bt

Figure 7: Scheme of the computation of the contribution of a
single view to the BlockMap construction.

2. ray-trace the BlockMap with the same viewing settings,
targeting rendering to a n X n texture (called Address-
Buffer in Figure 7); whenever a ray hits a prism, the cor-
responding address is written to the data that should be
fetched for shading, i.e. a pointer to a texel of the roof or
to a column in the wall textures.

3. set the BlockMap as rendering target and draw n X n point
primitives, one for each pixel of the GeoBuffer. In the ver-
tex shader, the color corresponding to pixel i, j is fetched
from the GeoBuffer, while the vertex position is read from
the AddressBuffer at the same coordinates.

The result of these steps is to build the BlockMap that,
when ray-traced with the same viewing parameters, would
produce the same result as rendering the geometry. This ap-
proach is used to sample all the shading attributes in the
blockmap, i.e., color, normal and accessibility. For the color,
the rendering of geometry at step 1 is done with texture map-
ping alone (i.e. without lighting), while the value written in
the BlockMap at step 3 is blended with the value possibly
present in the BlockMap because of other samples fallen
in the same texel (either in the same or in an earlier view).
The same is done for the normals, encoded as color for the
sampling. In this manner, colors and normals stored on each
texel of the BlockMap are averaged among all the views
from which the corresponding portion of surface is visible.
For the accessibility, we also need the geometry outside the
BlockMap because it may occlude part of the geometry in-
side the BlockMap. Here, we conservatively assume to use
the entire geometry as potential occluder, although we ver-
ified that, in practical cases, using only the geometry closer
than a fixed distance also leads to good visual results. Step 1
is modified by rendering all the potentially occluding geome-

M. Di Benedetto et al. / Remote Exploration of Massive Cityscapes

try and saving the depth buffer. Step 3 is modified by check-
ing, for each point, is the depth value of the corresponding
fragment in the GeoBuffer is greater than the depth value
stored at step 1. If not, the contribute of the point is ignored
(the sample is occluded), otherwise the value written into the
BlockMaps is the value already present plus one. With this
approach, the final value per texel corresponds to the number
of views from which the corresponding portion of the surface
is visible. The accessibility is then obtained by dividing that
result by the total number of views.

6. The remote rendering architecture

The major application of our system is networked browsing
of very large urban environments. We implemented a pro-
totype client-server architecture enabling multiple clients to
explore city models stored on a remote server. Since our en-
hanced BlockMaps are able to provide approximate repre-
sentations of blocks of buildings which are visually valid for
a wide range of viewpoints, we can create a full quadtree
hierarchy of levels of detail by associating BlockMaps to
larger and larger areas. Thanks to the constant footprint
of BlockMaps, memory management is particularly simple
and effective. In particular, no fragmentation effects occur
throughout the memory hierarchy, and data transfers at all
levels can be optimized by grouping BlockMaps for tuning
message sizes. Upon connection, the node hierarchy struc-
ture is transmitted to the client, which stores it in main mem-
ory. The hierarchy (few Kilobytes) is the only data structure
permanently kept in client memory, while all the BlockMaps
reside only on the server and are transmitted only on de-
mand. Each client maintains a 2-level cache of recently used
BlockMaps in video RAM and local storage, and requests
data to the server only at cache misses.

The main client thread, called RenderThread from now
on, is responsible for visiting the hierarchy to determine the
level-of-detail required for all parts of the scenes and per-
forming the rendering. Other two threads, VRAMThread and
NetworkThread, transparently handle the BlockMap requests
made by the RenderThread to the remote data server. The
VRAM cache is organized as an array of fixed size chunks
of texture memory, where the BlockMaps to be rendered are
copied from local storage. The RenderThread works in three
stages: RequestingVisit, LockingVisit, and Rendering.

In the RequestingVisit stage, the RenderThread performs
a top down traversal of the hierarchy according to the cur-
rent viewing parameters and issues a request for each visited
node. If the node is present in the local database, then the
request is queued to the VRAMRequestsQueue, meaning that
the BlockMap is waiting to be loaded in VRAM, otherwise
the request is queued in the NetworkRequestsQueue. In order
to prioritize requests, we distinguish among different request
classes: class A requests, if the requested node is inside the
view frustum, class B requests if the node is not inside the
view frustum but is a neighbor of a class A node, or class
C requests if its error is below the accepted error. Note that

requests of class B and C define the neighborhood of the set
of nodes required for rendering the current view.

In the LockingVisit stage, the RenderThread performs a
second top-down traversal stopping at nodes of class A. The
goal of the visit is to lock all the nodes that satisfy the er-
ror criterion and add them to the RenderList, i.e. the list of
nodes that will be rendered in the current frame. A node can
be locked if the associated BlockMap is in the VRAM. Lock-
ing a node sets a flag that prevents its unloading. The visit is
implemented as a recursive procedure which starts by trying
to lock the current node. If locking is successful, but the er-
ror is above the user specified threshold, then children are
visited. If the error is within the threshold, the node is added
to the RenderList. In case all children of a locked node have
been locked, their parent is unlocked. Otherwise, the region
occupied by the children that cannot be locked will be drawn
using the corresponding portion of the parent node, as show
in Figure 8. This is done by inserting the parent node in the
RenderList with a code that specifies which of the four por-
tions of the BlockMap must be used for rendering.

Figure 8: On the left side an example of a node with its four
children (top-view). In the right side the representation used
when only nodes c, ¢y and c3 can be locked, with a zoomed
image of the border region between the two resolutions.

The final stage is Rendering, which simply consists of
scanning the RenderList and sending the BlockMaps to the
GPU raycasting process. To minimize the number of texture
switches, the RenderList is ordered in buckets on the base of
the texture id containing the BlockMap and processed front
to back within each bucket, thus reducing pixels overdraw
and enabling the use of occlusion strategies (see [CDG*07]).

Prioritization of requests is crucial for interactive render-
ing. Both the requests to load BlockMaps from local stor-
age to the VRAM and from the network to local storage
are kept in dedicated priority queues (VRAMResquestsQueue
and NetworkRequestsQueue, respectively). The comparison
operator to sort the requests is implemented by combining
three criteria. The first criterion is the time the request is
issued. At every frame all the necessary nodes that are not
present in local memory (in VRAM) are enqueued in the
NetworkRequestsQueue (VRAMResquestsQueue), while the
queue is purged of the requests older than a predefined life
time. This means that after having satisfied all the requests

(© The Eurographics Association 2009.

M. Di Benedetto et al. / Remote Exploration of Massive Cityscapes

of the last frame are satisfied, recent unsatisfied requests
can be processed. In this manner we avoid to continuously
delete/reinsert in the queue the nodes close to the boundary
of the view frustum. If the time does not discriminate the re-
quest and prefetching is enabled, the class of the requests is
used as criterion, giving higher priority to class A requests.
Finally, if both previous criteria fail, which happens for all
the nodes in the view frustum, the screen space error is used.

7. Implementation and results

We implemented the described system on Windows Vista
platform using C++, OpenGL, and GLSL shaders. We have
extensively tested our system with a number of urban mod-
els. The quantitative and qualitative results discussed here are
for the Paris urban environment, which shows an example
of large scale models created from cadastral maps, and two
smaller models of the ancient Pompeii environment and the
ancient city of Rome, representative of a smaller scale but de-
tailed model created by procedural means. The Paris model
is created from the cadastral maps, containing a vector repre-
sentation of 80,414 buildings described with 3.7M triangles.
The original dataset has no texture information for the build-
ing fagades, so, for the sake of testing, we have created and
stored for each building a different 5122 procedural texture.
Roof textures were taken from aerial photographs composed
in 64 2K x 2K tiles. Overall, the texture information for the
fagades is composed by 20G texels (almost 60GB of uncom-
pressed data). The Pompeii model represents a reconstructive
hypothesis of the ancient Pompeii described by 30M trian-
gles and 30M of PNG compressed texture data [Pro07]. The
Rome model is made of 3.5M triangles and 10M texels and
is part of the Rome Reborn project [Pas07].

Preprocessing. For the Paris dataset the creation of all the
geometry from the cadastral profiles, the geometric parti-
tioning and the quadtree construction took less than a cou-
ple of minutes and generated a tree of 20,229 nodes with
15,072 leaves, with maximum depth of 10. The recursive par-
titioning of the tree targeted less than 10000 polygons and
buildings for each leaf and a set of textures that could be ar-
ranged in a 2048 x 2048 atlas. The construction of the atlas-
tree, used to speed-up sampling, took approximatively four
hours starting from the original 80,414 5122 facade textures.
Once the data is reorganized this way, in the case of 128:512
BlockMaps used in our experiments, the creation of a tree of
3,104 BlockMaps took 140 mins.

Streaming and rendering. The reported times were ob-
tained on a dual core Pentium IV @ 3 GHz PC equipped with
1 GB Ram, two HD 160 GB SATA and a NVIDIA GeForce
8800 GTX with 768 MB running the client application and
a Pentium IV @ 3 GHz, 2 GB RAM, IDE hard disk for the
server side. The goal of our tests was to show how our system
can provide an efficient solution for remote visualization of
large urban models. We run a flythrough over the Paris model
performed with a controlled bandwidth of 100, 20, 8 and 4
Mb/s on a 640 x 480 viewport (see Figure 10) to evaluate the

(© The Eurographics Association 2009.

system. Since the system is multi-threaded and the render-
ing cycle does not have to wait for BlockMaps to be received
from the server the frame rate is is always above 50 fps. A
more interesting data is the number of network cache misses,
i.e. the number of nodes that should have been rendered ac-
cording to the screen space error threshold and which has not
been rendered because was not available locally. The ratio
between the cache misses tends to be (inversely) proportional
to the bandwidth only when the point of view moves at a suf-
ficient speed, so that the set of nodes in the frustum changes
rapidly, while for a normal inspection, where the user is not
interested to the maximum level of detail while moving from
a point to another, but only when stopping to a region of in-
terest, the 4 Mb/s bandwidth provides a comparable result.

Figure 9: A view of ancient Rome with only AO term (left)
and also with color (right). Note that not only sloped rooftops
are represented but also the covering rooftiles are realisticly
rendered.

Rendering quality is easier to appreciate when looking at
the detailed Pompeii and Rome models (see Figure 5 and
Figure 9), which contains fine geometric features and many
sloped roofs, impossible to faithfully represent with the orig-
inal BlockMap approach.

8. Conclusions

We have proposed an approach for the interactive remote
visualization of large urban environments. The proposed
framework is based on a significant enhancement of the
BlockMap structure. Our improvements include augmenting
the expressiveness and quality of the representation, the read-
ability of the visualized structure and the robustness of the
conversion from general possibly ill-formed input datasets.
In some sense, our approach can be interpreted as a robust
and practical way to create a new textured simplified repre-
sentation of a urban environment, and, therefore, as a way of
finding a unique parameterization of its surface. As a side ef-
fect, our approach produces a complete, multiresolution pa-
rameterization of the visible surface: in this paper we have
used it to store a simple ambient occlusion term, but it is
quite trivial to extend it for storing more sophisticated pre-
computed transfer radiance information [KLSO05].

Acknowledgements This research is partially supported

M. Di Benedetto et al. / Remote Exploration of Massive Cityscapes

4 Mbit/s

Figure 10: A snapshot from the accompanying video showing the same flythrough as seen from four different clients with

increasing network bandwidth availability.

by the European projects V-City (reference ICT-231199-V-
CITY). We also thank Past Perfect Production for providing
the ancient Rome Model.

References

[ABO8] ANDUJAR C., BRUNET P.: Relief impostor selection for
large scale urban rendering. In /IEEE Virtual Reality Workshop on
Virtual Citiscapes: Key Research Issues in Modeling Large-Scale
Immersive Urban Environments. 2008.

[ABB*07] ANDUJAR C., BoO J., BRUNET P., FAIREN M.,
NAVAZO 1., VAZQUEZ P., A. VINACUA: Omni-directional re-
lief impostors. Computer Graphics Forum 26, 3 (Sept. 2007),
553-560.

[BDO5] BUCHHOLZ H., DOLLNER J.: View-dependent rendering
of multiresolution texture-atlases. In IEEE Visualization (2005),
p. 28.

[BD06] BABOUD L., DECORET X.: Rendering geometry with
relief textures. In Graphics Interface (2006), Gutwin C., Mann
S., (Eds.), pp. 195-201.

[CCGO06] CORNELIS N., CORNELIS K., GooL L. V.: Fast com-
pact city modeling for navigation pre-visualization. In Proc.
CVPR (2006), pp. 1339-1344.

[CDG*07] CIGNONI P., DI BENEDETTO M., GANOVELLI F.,
GOBBETTI E., MARTON F., SCOPIGNO R.: Ray-casted
blockmaps for large urban visualization. Computer Graphics Fo-
rum 26, 3 (Sept. 2007).

[DSVO7] DARSA L., SILVA B. C., VARSHNEY A.: Navigating
static environments using image-space simplification and morph-
ing. In SI3D (1997), pp. 25-34, 182.

[FJZ05] FRUEH C., JAIN S., ZAKHOR A.: Data processing al-
gorithms for generating textured 3d building facade meshes from
laser scans and camera images. International Journal of Com-
puter Vision 61, 2 (feb 2005), 159-184.

[GGHO2] Gu X., GORTLER S. J., HOPPE H.: Geometry images.
In Proc. SIGGRAPH (2002), Hughes J., (Ed.), Annual Confer-
ence Series, pp. 335-361.

[JWO02] JESCHKE S., WIMMER M.: Textured depth meshes
for realtime rendering of arbitrary scenes. In Proceedings
of the 13th Eurographics Workshop on Rendering (RENDER-
ING TECHNIQUES-02) (Aire-la-Ville, Switzerland, June 26-28
2002), Gibson S., Debevec P., (Eds.), Eurographics Association,
pp. 181-190.

[JWS02] JESCHKE S., WIMMER M., SCHUMANN H.: Layered
environment-map impostors for arbitrary scenes. In Graphics In-
terface (2002), pp. 1-8.

[KLS05] KAUTZ J., LEHTINEN J., SLOAN P.-P.: Precomputed
radiance transfer: Theory and practice. Course Notes of ACM
SIGGRAPH, 2005.

[Lan02] LANDIS H.: Production ready global illumination. In
SIGGRAPH 2002 Course Notes (July 22-26 2002), ACM Press,
pp. 331-338.

[LB99] LANGER M. S., BULTHOFF H. H.: Perception of Shape
From Shading on a Cloudy Day. Tech. Rep. 73, Max-Planck-
Institut fur biologische Kybernetik, October 1999.

[Man05] MANUEL M.OLIVEIRA F. P.: An Efficient Representa-
tion for Surface Details. Tech. Rep. RP 351, Universidade Federal
do Rio Grande, January 2005.

[MWH*06] MULLER P., WONKA P., HAEGLER S., ULMER A.,
VAN GooL L.: Procedural modeling of buildings. ACM Trans-
actions on Graphics (TOG) 25, 3 (2006), 614—-623.

[OBMO0O] OLIVEIRA M. M., BISHOP G., MCALLISTER D.: Re-
lief texture mapping. In Proceedings of the Computer Graphics
Conference 2000 (SIGGRAPH-00) (New York, July 23-28 2000),
Hoffmeyer S., (Ed.), ACMPress, pp. 359-368.

[Pas07] PAST PERFECT PRODUCTIONS:
http://www.pastperfectproductions.com/, 2007.

[PMO1] PARISH Y., MULLER P.: Procedural modeling of cities.
Proceedings of the 28th annual conference on Computer graphics
and interactive techniques (2001), 301-308.

[POCO5] PoLICARPO F., OLIVEIRA M. M., ComBA J. L. D.:
Real-time relief mapping on arbitrary polygonal surfaces. ACM
Trans. Graph 24, 3 (2005), 935.

[Pro07] PROCEDURAL, INC.: Procedural modeling of cg ar-
chitecture. http://www.procedural.com/cityengine/production-
pipeline/export-samples.html, 2007.

[PVGV*04] POLLEFEYS M., VAN GOOL L., VERGAUWEN M.,
VERBIEST F., CORNELIS K., Tops J., KocH R.: Visual Model-
ing with a Hand-Held Camera. International Journal of Computer
Vision 59, 3 (2004), 207-232.

[SDB97] SiLLION F., DRETTAKIS G., BODELET B.: Effi-
cient impostor manipulationfor real-time visualization of urban
scenery. Computer Graphics Forum 16, 3 (Aug. 1997), 207-218.
Proceedings of Eurographics *97. ISSN 1067-7055.

[SGWHS98] SHADE J., GORTLER S. J., WEI HE L., SZELISKI
R.: Layered depth images. In SIGGRAPH (1998), pp. 231-242.

[Ste98] STEWART A. J.: Fast horizon computation at all points
of a terrain with visibility and shading applications. /EEE Trans.
Vis. Comput. Graph 4, 1 (1998), 82-93.

[TAB*03] TELLER S., ANTONE M., BODNAR Z., BOSSE M.,
COORG S., JETHWA M., , MASTER N.: Calibrated, registered
images of an extended urban area. International Journal of Com-
puter Vision 53, 1 (June 2003), 93-107.

[WMWO07] WATSON B., MUELLER P., WONKA P.: Urban design
and procedural modeling. Course Notes of ACM SIGGRAPH,
2007.

[WTL*04] WANG X., TONG X., LIN S., HU S., GUO B., SHUM
H.-Y.: Generalized displacement maps. In Proceedings of the
2004 Eurographics Symposium on Rendering (June 2004), Fellner
D., Spencer S., (Eds.), Eurographics Association, pp. 227-234.

[WWSO01] WIMMER M., WONKA P., SILLION F.: Point-based
impostors for real-time visualization, May 29 2001.

[WWT*03] WANG L., WANG X., TONG X., LIN S., HU S.-M.,
Guo B., SHUM H.-Y.: View-dependent displacement mapping.
ACM Trans. Graph. 22, 3 (2003), 334-339.

[YGKMO08] YOONS., GOBBETTI E., KASIK D., MANOCHA D.:
Real-time Massive Model Rendering, vol. 2 of Synthesis Lectures
on Computer Graphics and Animation. Morgan and Claypool,
August 2008.

Rome reborn.

(© The Eurographics Association 2009.

