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ABSTRACT

This paper presents results of a consistent work¯ow for processing and imaging applied to marine
seismic data. The data set was collected in the Southern Atlantic offshore Brazil. Searching for tech-
niques to increase the data resolution, fundamental steps of signal processing together with imaging
methods based on the data-driven CRS technology, such as CRS-stack based residual static correction
and pre-stack data enhancement, were applied and proved to be successful. The ®nal aim of the data
processing and imaging sequence was to obtain sections ready to be submitted to geological interpre-
tation. The latter was conducted on the ®nal stacked and CRS time migrated sections. The obtained
image panels allow for interpreting discontinuities, thinning, faults, anticlines, plays of horsts and
grabens. Some selected parts of the line needed detail processing to make structures more evident that
where partly hidden by the strong free surface multiples and diffractions.

INTRODUCTION

Recently, Gomes et al. (2007), Heilmann et al. (2007) and Leite et al. (2008) have presented different case
studies where CRS-stack-based imaging work¯ows have been applied to land datasets in order to obtain a
better structural image of structures relevant for oil exploration. The present work represents an extension
of these efforts to marine data. Main steps of CRS-stack-based seismic imaging were carried out with
results that clearly showed improvement on the continuity of re¯ection events, enhancement in the signal-
to-noise ratio, and enhancement of free surface multiples. Previous to the CRS processing, several tasks
were performed beginning with the geometry setup, muting of bad shot and receiver gathers,f ®ltering,f-k
®ltering, deconvolution, ®eld static correction, and spherical divergence correction. The work¯ow of the
present work is summarized in Figure 1, where the major steps follow Heilmann (2007).

Complex geological environments often pose severe dif®culties for accurate imaging in time and depth
domains, and even more if combined with complicated near surface conditions. Under such circumstances,
where simple model assumptions may fail, it is of particular importance to extract as much information
as possible directly from the measured data. The Common Re¯ection Surface (CRS) stack, described
by M ller et al. (1998) and Mann (2002), among others, has become a powerful data-driven method for
improving the zero-offset (ZO) simulation of seismic data. Topography can be directly considered during
the stack process which was irrelevant for the presented marine case. In 2D processing, for every ZO
sample three kinematic wave®eld attributes are obtained as useful by-products of the stacking process
(Hubral, 1999). These attributes have been applied to improve the stack itself, and to support subsequent
processing as described in Duveneck (2004), Gamboa (2003), and Koglin (2005), among others. Using
the CRS attributes for the transformations between time and depth domains, an advanced data-processing
work¯ow can be established, covering a broad range of seismic re¯ection imaging issues in a consistent
manner.
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Figure 1: Major steps of the re¯ection seismic data processing.

DATA

The marine data set used in this case study was acquired by PETROBRAS for petroleum exploration. It is
free for use for academic research, and it was obtained from the Ag!ncia Nacional do Petr"leo, G#s Natural
e Biocombust$veis (ANP) to support academic projects. In this case, the target was basin reevaluation based
on seismic reprocessing with non-commercial software for research purposes. The data set is offered in
the form of non-processed ®eld records, therefore a complete pre-processing stage was necessary that is
partially described in the sequel. In order to provide to the reader a ®rst orientation regarding the main
structural features present in the data at hand an idealized geological section is depicted in Figure 2.

Following the description of Mohriak et al. (2008), the geological sedimentary basins in the continental
shelf of the Brazilian Atlantic are classi®ed as passive. The rifts are directly related to the global tectonics
and the opening of the Atlantic ocean. They are ®lled with sediments starting in the Jurassic with the pres-
ence of diabase intrusions and halogenic tectonics. The structural scenario of these basins features horsts,
grabens, anticlines, synclines, ¯ower structures, and dip inversions. Transcurrent faulting is considered to

Figure 2: Selected idealized geological section of the Marine basin (Based information of the ANP site).
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Figure 3: Minimum offset section after pre-processing with automatic gain control applied for display.

have reactivated local features that were developed in the rift stage. The stratigraphic scenario is divided
into depositional sequences that re¯ect the geological evolution of the area.

PRE-PROCESSING

One marine line was selected for presentation, and it has the following general survey information: date
of acquisition 1985; direction SE-NW; length 40 km; 1578 shot points; time sampling interval 4 ms; 25 m
shot point and receiver station spacing; array guns placed at 8 m depth. The array distributions are from
left to right left-unilateral 0-120.

The pre-processing steps were performed with the free seismic processing package CWP/SU of the
Colorado School of Mines (Cohen and Stockwell, 2005). The SU data format can easily be created from
the original SEGY ®les and directly be used as input for the WIT/CRS codes. Pre-processing consisted of
3 main parts: (1) geometry setting; (2) muting of bad traces; and (3)f andf -k ®ltering. The work¯ow
was organized as an annotated sequence of targets in aMakefile with the aim to keep detailed reference
information to ensure the reproducibility of the results to emphasize the dependence of the processing on
several steps with various parameters. Conventional imaging was applied as well at this stage involving the
application of the following techniques: (4) velocity analysis; (5) NMO stacking; (6) migration.

Based on shot and receiver gathers, the original data was analyzed in order to locate noisy shot and
receiver sections and to look for dead or corrupted traces. Finally, all strongly corrupted traces were muted.
A trapezoidal band-pass ®lter was applied with corner frequencies of 8-10-70-80 Hz. Furthermore, af-k
®lter was used to suppress unwanted events such as water surface waves and critically refracted waves. The
decision for adopting ®lter parameters was based on the visual analysis of the trace gathers, their spectra,
and preliminary stack results that reinforced the importance of the pre-processing. Even though the data is
marine, residual static corrections, described by Koglin (2005) was also applied on the basis of geostatistics
and communication theory to obtain a better event correlation in the presence of vertical misplacement and
source and receiver delays. The Wiener-Hopf predictive error ®ltering and spiking deconvolution was
applied to the data to suppress ocean bottom multiples and to increase the temporal resolution. To show
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the results of the pre-processing stage, Figure 3 displays a minimum offset section for reference.

STACK OPERATOR

As resumed in Bernabini et al. (1987), numerous functionals have been proposed to evaluate quantitatively
the ®t between measured data and a model function, e. g., parametrized by a stacking velocity value aiming
at describing the hyperbolic re¯ection response of a planar re¯ector on a given CMP gather. The most
common functionals measure the likeness of the corrected gather's amplitude (u) based on correlation of
traces, and choices of normalization. The normalized 2D(h; x) measure semblanceS(t0; m) is composed
by averages, and it is given by

S(t0; m) =

1
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; (where 0 � S � 1); (1)

for a set of parametersm, from a ®rst half-offseth = hF to a last half-offseth = hL offset withNh points,
and for a midpointx ranging fromxF to xL with Nx points, and in a time window speci®ed by some�t
aroundt0. S(t0; m) takes values in the interval (0,1) regardless of the absolute signal amplitude, and it
quanti®es the uniformity of the signal polarity across the NMO corrected gather amplitudeu(t0; m). In
the NMO stack, the functionS(t0; m) can also be interpreted as the function to be optimized, from where
optimum a value of stack velocitym = v results.

Conventional velocity analysis is performed on common-midpoint (CMP) gathers by approximating the
two-way traveltimet(x; t0; v) of primary re¯ection arrivals from an interface by a second order hyperbolic
model of the type

t2(h; t0; v) � t2
0 +

4h2

v2 ; (2)

whereh stands for the half source-receiver offset,t0 for the normal two-way traveltime ath = 0 , andv
denotes the stacking velocity. The above law is exact for a single horizontal re¯ector with homogeneous
overburden. For the next level of complexity of the model, one can consider an ideal medium composed of
multiple homogeneous, isotropic, layers with horizontal interfaces and small apertures. The above law is
still constitutes a reasonably accurate approximation, as described by Ursin (1982).

For NMO correction, the criterion for expressing in quantitative form the degree of ®tting between the
model described by a stacking velocity value and the data usually involves a coherence measure. A typical
algorithm for velocity analysis in the(h; t ) domain calculates at each pointt0 the velocity spectrum which
consists of a coherence value for every stacking velocityv value within the search range. In practice, often
a simple 1D approximation is used to calculate the interval velocities of the medium from the previously
determined stacking velocity distribution: the stacking velocityv is assumed to approximate the root-mean-
square (RMS) velocityvRMS as described by Al-Chalabi (1992). Turning to a more realistic subsurface,
the underground geology can be described by a inhomogeneous velocity distribution that can be smooth or
with discontinuities separated by curved interfaces. Under such more general conditions, limitations of the
above NMO correction might emerge. The CRS stack concept takes a more complex re¯ector geometry
explicitly into account, which makes it necessary to extent the velocity analysis from the 2D time-offset
space to the 3D time-offset-midpoint domain.

The CRS stacking method does not explicitly depend on a macro-velocity model in the(x; t ) domain.
It employs an automatic data-driven parameter search based on semblance analysis (1) in the prestack data
and can thus be seen as an optimization problem where the objective function is the semblance value related
to a certain parameter combination. The CRS stack operator can be derived from paraxial ray theory or
homeomorphic imaging concepts and constitutes a second-order traveltime formulation for 2D and 3D
inhomogeneous models with arbitrarily curved interfaces. This traveltime operator is parametrized using
two notional eigenwave experiments generating the so-called normal-incidence-point (NIP) wave and the
normal (N) wave. The NIP wave is associated with an exploding diffractor (or point source) at the normal-
incidence point NIP of the zero-offset ray. This produces the NIP wave which reaches the surface atx0
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with the radiusRNIP. The N-wave is associated with an exploding re¯ector around the NIP location and
generates the normal wave which reaches the surface atx0 with of radiusRN.

In the context of paraxial ray theory, we consider a central ray with normal incidence on the re¯ector at
the NIP. Furthermore, only primary events taken into account. The central ray satis®es Snell's law across
the interfaces, and the wavefront curvatures of the NIP and N waves change according to the refraction and
transmission laws of curvature, as described in Hubral and Krey (1980). Following Schleicher et al. (2007),
the hyperbolic approximation for the two-way traveltime of primary re¯ections from a curved interface on
a ¯at observation surface is given by

t2
hyp(xm ; h) =

�
t0 +

2 sin� 0(xm  x0)
v0

� 2

+
2t0 cos2 � 0

v0

�
(xm  x0)2

RN
+

h2

RNIP

�
: (3)

P0(x0; t0) is the reference point of stack, and it is assumed that the velocityv0 is known and related to
the upper layer and around the observation pointx0. The independent variablesxm andh are the shot and
receiver midpoint coordinate and the half-offset, respectively. The parameter� 0 corresponds to the vertical
emergence angle of the wavefront at the observation pointx0. The quantities� 0, RNIP, andRN are related
to the central ray in the paraxial ray theory.

For the practical work, the data headers contain the CDP numbers, the source coordinatesxS , and
the receiver coordinatesxG . Their relationship to thexm and h coordinates and are given byxm =
(xG + xS )=2 andh = ( xG  xS )=2. The semblance analysis is performed along the spatial stacking
operator (3) spanned by the coordinatesh andxm according to Equation (1). The vectorm takes the values
m = ( RNIP; RN; � 0; v0), where the parametersRNIP, RN, and� 0 (with v0 ®xed) are searched for as an
optimization problem with the semblance (1) as object function, and the CRS operator (3) as the forward
model. The parameter search is classi®ed as a nonlinear ill-posed problem; therefore the strategy may need
a starting point in the parameter space and derivatives, or a controlled random search without derivatives.
M ller et al. (1998) and Mann (2001a) describe strategies for the parameter search, basically performed in
four steps.

Mann (2001b) described the problem related to con¯icting dips in the stack sections, analyzed the
dependence ofvNMO on � 0, and proposed a solution to this problem by detecting multiple values� 0 for
each contributing event by adapting the original search strategy of M ller et al. (1998). Soleimani et al.
(2009) addresses the con¯icting dip problem by proposing a strategy that considers a multitude of different
values of� 0 for each ZO sample, with the forward model (3) under the conditionRN = RNIP , to improve
the continuity of re¯ection events and diffraction events, in a process named common-diffraction-surface
stack.

CRS MIGRATION

A Kirchhoff-type time migration scheme is integrated in the CRS stack algorithm This application proposed
by Mann (2002) considers that the CRS attributes allow to approximate the (hypothetical) diffraction event
associated with re¯ection event in the data, and, thus, a Kirchhoff migration operator. The apex of the
ZO diffraction response provides an approximation of the image location for time migration. Due to the
symmetry considerations,@thyp (xm ; h = 0) =@xm = 0 for the ZO planeh = 0 . This yields the apex
location

xapex = x0  
RNIPt0v0 sin � 0

2RNIPsin2� 0 + t0v0cos2� 0
; (4)

t2
apex =

t0
3v0cos2� 0

2RNIPsin2 � 0 + t0v0cos2� 0
: (5)

This approximate ZO diffraction response can be parametrized in terms of the apex location (xapex, tapex)
instead of the ZO location (x0,t0):

t2
hyp(x) = t2

apex+
4(x  xapex)2

v2
c

, with (6)

v2
c =

2v2
0RNIP

2RNIPsin2� 0 + t0v0cos2� 0
: (7)
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A summation along the approximate diffraction response, with its result assigned to its apex, approxi-
mates a Kirchhoff time migration. Even more convenient, the already available stack value computed along
the CRS operator can be assigned to the apex (xapex; tapex).

RESIDUAL STATIC CORRECTION

Aiming at increasing resolution, the static residual correction strategy has been applied under the concept
of virtual source-receiver vertical and horizontal displacements, and in terms of communication theory
looking for better correlation between the ZO trace and its corresponding family's traces under small shifts.
Koglin (2005) and Koglin et al. (2006) describe in detail the CRS-based residual static correction as an
iterative process similar to the super-trace cross-correlation method as presented by Ronen and Claerbout
(1985). In this approach, the cross-correlations are performed within the CRS super gathers consisting
of all moveout corrected prestack traces within the spatial stacking aperture, instead of being con®ned to
individual CMP, common-shot or common-receiver gathers. Due to the spatial extent of the employed
stacking operator, a super gather contains many neighboring CMP gathers. For each considered super
gather centered around a particular ZO location, the moveout correction will, in general, be different. Since
each prestack trace is included in many different super gathers, it contributes to more cross-correlations than
in methods using only individual gathers. The cross-correlations of the stacked pilot trace and the moveout
corrected prestack traces are summed up for each shot and receiver location. This summation is performed
for all super gathers contained in the speci®ed target zone. The searched for residual time shifts are then
expected to be associated with the locations of the maxima in the cross-correlation stacks, and they are used
to correct the prestack traces. The stack result after residual static correction is presented and we observed
an improvement in resolution.

PRESTACK DATA ENHANCEMENT

As a next step aiming at increasing resolution, the concept of prestack data enhancement by interpolat-
ing new CDPs based on the CRS stack operator and data driven attributes as described by Baykulov and
Gajewski (2007) has been integrated into the processing work¯ow. The CRS-based interpolation constructs
super gathers to prescribed positionsxm , and results in better lateral resolution whereby the size of pro-
jected Fresnel zone is used for the lateral window control. Using the CRS attributes� 0 and RNIP, the
corresponding time obtained from thet0 is given by

t2(xm ; h) =

0

@ 
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�
: (8)

Depending on the quality of the data and on the acquisition geometry, the lateral windows for stacking
can be optimized in the directionsxm andh. In our examples the sizes were the same as chosen in the CRS
stack.

RESULTS AND DISCUSSIONS

Our main attention in the present work was directed to the following CRS results: (1) optimized stack;
(2) migration; and (3) multiple enhancement. The stack serves as the basis for the migration to collapse
diffractions, and for the post-stack multiple enhancement to serve for further development and application
of techniques for multiple attenuation. For these aims, the results are shown in the following order: (1)
coherence; (2)RNIP, (3) 1=RN; (4) angle; (5) optimized Fresnel stack; (6) interpreted optimized Fresnel
stack; (7) optimized time migration; (8) interpreted optimized Fresnel time migration.

The analysis of the results starts with the minimum offset panels depicted in Figure 3 which serve
as reference to the stack and migration results. The CRS results are controlled by the distribution of
semblance values in the coherence panel, which is used to identify locations with very low coherence
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Figure 4: Coherence section of CRS super gather stack.
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Figure 5: RNIP section of CRS super gather stack.
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values, considering that such locations are not expected to be associated with reliable attributes (RNIP, RN,
� 0) to obtain the stacking parameters of the CRS operator.

The panels of the kinematic CRS wave®eld attributesRNIP, 1=RN and� 0 are shown in Figures 5, 6
and 7, respectively. Where the latter two panel show structural trends in a similar way as the stack and
migration panels, theRNIP has more similarity to an (unsmoothed) stacking velocity model.

CONCLUSIONS

We are here restricted to the geometrical interpretation of geological structures carried out mainly on the
basis of migrated sections and stacked sections. The meaning of the interpreted lines in these ®gures are
colored as: (red) horizontal and dipping re¯ectors; (blue) multiples; (yellow) re¯ectors as anticline; (green)
vertical discontinuities.

The analysis of the stack section in Figure 8, comparing with the Kirchhoff-type time migration section
in Figure 10, clearly shows the sea¯oor followed by the response of basin sediments with several re¯ectors
with similar geological attitude. These events are intersected by free surface multiples and diffraction
events. On the other hand, the migration panels do not present the effect of the diffractions by showing the
collapsing points.

For the stack, the main panel for interpretation is Figure 8 to result in Figure 9. For the migration, the
main panel is Figure 10. To compare the results of the CRS Kirchhoff-type migration with the stack itself,
the interpreted colored lines in Figure 9 were superimposed onto Figure 10 to result in Figure 11. From
these Figures 9 and 11 one can see only slight shifts between events and drawn lines, what establishes both
sections being useful for tracking structures.

For drawing the structures, it is important that the section have the proper scale, axis exaggeration,
and size. From screen color display and details of the used ®gures and zooms, discontinuities, thinning,
anticlines, faults, plays of horsts and grabens, and rollovers can be identi®ed. On the other hand, the
basement is not easily traced, and the left part of the section needs more attention for structures to be better
recognized. Figure 11 shows details of re¯ector zones related to stratigraphical units. One of the most
prominent features is on the left side and can be interpreted as intrusions.

The quality of the marine seismic data is not a decisive limitation in enhancing different parts for the
imaging of the selected line. The intention with this conclusion is to geometrically trace structures and
to demonstrate the applicability of the CRS stack and and its integrated time migration towards basin
reevaluation providing a good basis for geological interpretation and, hopefully, for successful drilling.

The coherence sections served to indicate the ®t between the CRS stacking operators and the primary
re¯ection events in the prestack data. We consider that the overall quality of the marine seismic under-
ground image is quite reasonable compared to other high quality seismic images that served as reference
for the present processing. Even though, the results obtained by CRS revealed good resolution as measured
by signal-to-noise ratio and re¯ector continuity. We call attention to the fact of the granular appearance of
the migration panel, a consequence of the point-to-point mapping inherent to this strategy.

This example serves also to reinforce our perspectives and intentions on research collaboration between
different universities, and between university and industry to provide development and human resources
for the established seismic technology for oil and gas exploration. The research is part of the continuous
cooperation between the Faculty of Geophysics of the Federal University of Par# (Brazil) and Karlsruhe
Institute of Technology, Germany.
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