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Abstract

This report tries to develop a common representation for diffusion and sur-
face tension in two components newtonian flows. First, we make some prelim-
inary considerations: (1) the Navier-Stokes equations of a fluid with two im-
miscible components is derived from the single components equations.In this
case, the surface tension arrives from external consideration; (2) we shortly
review the Cahn-Hilliard and Allen-Cahn equations describing a phase sep-
aration process, the surface-tension being considered as the terminal part of
this process; and (3) we report a conservative representation of the surface
tension and some of its variants.

Second, we reinterprete the conservative form of the single components
as also valid for miscible fluids. Making an hypothesis common in diffusion
phenomena, we make the surface tension naturally appear from the single
phase equations. An anti-diffusive term connected with the surface tension is
put in evidence. Compatibility with diffusion is discussed.
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1 Introduction

The original aim of this work was the derivation of a conservative sharpening

algorithm for free-surface flows. It is very common, to explain free-surface

smearing, to invoque errors from the discretisation, from the convection or

the temporal numerical schemes. The result is that the surface smearing is

fighted with numerical schemes adaptation. Our feeling is that the core of

the problems lies inside the set of solved equations. We therefore want to

derive a set of equations whose numerical resolution should naturally give

a sharp interface when it is due. Our basis is the Navier-Stokes equation

for isothermal incompressible Newtonian homogeneous flows. However, most

of the derivations are performed without using that the phase densities are

constant. The paper is organised as follows. We derive rigorously the unclosed

equations of a flow composed of two immiscible fluids. This derivation in some

sense generalizes and simplifies the first part of the derivation performed by

Zhang and Prosperetti [1] in their fundamental paper in 1993. This derivation

allows us to introduce the notations and some of the issues. It is based on the

use of generalised functions which are relatively touchy to manipulate. Second,

we discuss the usual form given to the surface tension, with a particular

emphasis on the usefulness of the conservative form. We present and discuss

the Cahn-Hilliard and Allen-Cahn equation which were built to represent

the separation of two immiscible fluids. We discuss the link between these

equations and the surface tension. Third, we postulate a momentum equation

of a single component fluid, having a constant density but not necessarily

occupying all the local volume, introducing the concept of intrinsic volume

fraction, that is a volume fraction having sense before any averaging process.

This methodology is widely discussed and used in Drew and Passman [2].

The postulated equation is constrained to revert to the normal equation for

the single component flow and to the equation derived at the beginning of

the paper for immiscible two component flows. We discuss the constraints on

the different terms of the postulated equation. We show how the postulated

equation lead both to the appearance of an additional force in the overall

momentum equation and to a drift term in the single phase transport equation,

both terms being clearly related one to the other. We show that in the case of

immiscible fluids, the force can be interpreted as a generalized surface tension,

the drift term being related with the Cahn-Hilliard or Hallen Cahn equation.

Conversely, we show that for miscible fluids, the drift term correspond to

the classical diffusion while the force, being quadratic in the (already quite

small) diffusion coefficient can usually be neglected. These considerations

are possible thanks to the introduction of an initially not completely defined
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length parameter. The two previous interpretations of the additional terms

correspond to two different choices for the expression of this length.

2 System of equations for two immiscible

fluids

We consider the case of two immiscible fluids A and B occupying different

complementary parts of a shared common domain Ω. The volume occupied

by the fluid A (resp. B)is characterised by the unit value of its support

function ”a” (resp. ”b”). We will also use the subscript ”a” (resp. ”b”) for all

and any physical quantity related to fluid A (resp. B). Stating that ”a” and

”b” are support functions means that they can take only the discrete values

0 and 1. The property that together the two fluids occupy all the available

volume is mathematically stated as:

a + b = 1 in Ω, (1)

The property that the two fluids are immiscible is mathematically stated as:

ab = 0 in Ω, (2)

The volume occupied by each phase is driven by the evolution of its bound-

ary

∂ta + uΓa
· ∇a = 0 in Ω, (3)

∂tb + uΓb
· ∇b = 0. in Ω, (4)

where uΓa
is the velocity of the boundary of phase A.

We restrict our analysis to cases in which mass exchange can occur only

through an existing interface. For example, a bubble of phase A cannot spon-

taneously appear in the bulk of phase B from nothing. It can however collapse

and disappear if care is taken for the dependance of mass exchange with sur-

face curvature. The interface velocity has two components, one is the fluid

velocity, the other is related to the local mass transfer rate ṁab = −ṁba

between the phases of respective densities ρa and ρb.

∂ta + (ua −
ṁab

ρa

na) · ∇a = 0 in Ω, (5)

∂tb + (ub −
ṁba

ρb

nb) · ∇b = 0. in Ω, (6)

where na (resp. nb) is a regular vector field whose trace on the surface ΓA

(resp. ΓB) coincide with the surface normal oriented towards the interior of
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A (resp. B). This convention is opposite to the usual one but allows to have

formally na and ∇a oriented in the same direction.

From equation 1 one has that

∂t(a + b) = 0 in Ω, (7)

∇(a + b) = 0 in Ω (8)

One should also get easily convinced that na · ∇a = nb · ∇b so that

ṁabna · ∇a + ṁbanb · ∇b = 0, (9)

but in general, in presence of mass transfer between fluids of different density,

none of ua, ub and uΓa
coincide on the interface. Moreover, uΓa

and uΓb
must

have only the normal component conciding on the interface.

Each fluid is supposed to follow the behaviour dictated by the Navier-

stokes equations. That is:

∂t(ρaua) + ∇ · (ρauaua) + ∇Pa + ∇ · τa = ρag + Fa in Ωa(t) (10)

∂t(ρbub) + ∇ · (ρbubub) + ∇Pb + ∇ · τb = ρbg + Fb in Ωb(t) (11)

where Pa is the phase A pressure, τa the extra-stress tensor, g the gravity

acceleration and Fa the resultant of the internal forces, usually null for ho-

mogeneous phases, so it will be omitted hereafter. We do not forget the

mass conservation equations, degenerating for constant phase density in the

divergence free constraints:

∂tρa + ∇ · (ρaua) = 0 in Ωa(t) (12)

∂tρb∇ · (ρbub) = 0 in Ωb(t) (13)

The problem is that the velocities ua and ub (but also the densities ρa

and ρb) have no physical meaning respectively in domain Ωb and Ωa. But,

because we want to write formulas valid in all the domain considered, we must

extend ua and ub to the whole domain. The extension can be arbitrary but

we want to be authorised to use the standard derivation rules like ∇· (aua) =

ua ·∇a+a∇·ua taking into account that a is a discontinuous function. For this

reason, we choose to consider regular extensions of ua and ub, preserving at

least their continuity and the continuity of their divergence. Similarly, ρa and

ρb are extended possibly by a constant value all over the domain. Note that we

can not extend the divergence free property of ua and ub to the entire domain

when the interface has closed contours, but we will not need it. Nevertheless,

by continuity, if ua and ub are divergence-free in their respective domains,

they are also divergence free on the interface. We could be however faced

with mathematical inconsistency in pathological cases with discrete change
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in the topology on the interface, such as the disappearance of a bubble or

droplet.

The variables can be interpreted on a phase basis or on a global basis. The

relation between them can be made by use of the ”a” and ”b” variable. The

global variables can therefore be expressed in terms of the phase variables as

follows.

ρ = aρa + bρb (14)

P = aPa + bPb (15)

u = aua + bub (16)

ρu = aρaua + bρbub (17)

ρuu = aρauaua + bρbubub (18)

These equations simply state that the density is the phase A density when a =

1 and is the phase B density when a = 0, and so on for pressure, momentum

and ρuu. Specifically, u is really the velocity associated to ρ.

These definitions lead to additional properties that can prove useful for

the derivation of the unclosed terms. For example:

ρa = aρa (19)

ρua = aρaua (20)

a = a2 (21)

Moreover, all properties should remain true inverting ”a” and ”b”.

The domain of the single phase Navier-Stokes equations can be extented

to all Ω simply by multiplying by the respective support functions.

a∂t(ρaua) + a∇ · (ρauaua) + a∇Pa + a∇ · τa = aρag in Ω (22)

b∂t(ρbub) + b∇ · (ρbubub) + b∇Pb + b∇ · τb = bρbg in Ω (23)

and

a∂tρa + a∇ · (ρaua) = 0 in Ω (24)

b∂tρb + b∇ · (ρbub) = 0 in Ω (25)

Turning back to the volume equation 5,6, multiplying by the respective

density, we obtain the single phase density equations. It comes:

ρa∂ta + ρaua · ∇a = mabna · ∇a (26)

ρb∂tb + ρbub · ∇b = mbanb · ∇b (27)
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Summing the volume conservation equations and the mass conservation

equations extended to the entire domain, we get the conservative form of the

progress and regress variable equations:

∂t(ρaa) + ∇ · (aρaua) = ṁabna · ∇a (28)

∂t(ρbb) + ∇ · (bρbub) = ṁbanb · ∇b (29)

Summing these two equations, we recognize the global mass conservation term.

That is:

∂tρ + ∇ · (ρu) = 0, (30)

which is quite conforting.

To simplify the notation, we define the phase source term as:

Ṡ = ṁabna · ∇a (31)

Therefore:

∂t(ρaa) + ∇ · (aρaua) = Ṡ (32)

∂t(ρbb) + ∇ · (bρbub) = −Ṡ (33)

The term Ṡ is here a scalar distribution with support on the interface.

However equations 32 and 33 are valid even for variable distributions of the

volume fractions. We introduce the notation: δ1
ρ = 1

ρb
− 1

ρa
. Summing the

original volume equations, we get a new time independent equation:

(ua − ub) · ∇a = δ
1
ρ

Ṡ, (34)

equivalent to

∇ · u − [a∇ · ua + b∇ · ub] = δ
1
ρ

Ṡ, (35)

or,using the incompressibility of each separated flow, if applicable:

∇ · u = δ
1
ρ

Ṡ. (36)

Note that for the first time, we have broken the symmetry of representation.

Operating in a similar way, we will show how the global momentum equa-

tion can be retreived from the momentum equation of both phases. Now, we

incorporate the multipliers under the differential operators in equations 10,11

to get:

∂t(aρaua) + ∇ · (aρauaua) + ∇(aPa) + ∇ · (aτa) = aρag

+(ρaua)∂ta + (ρauaua) · ∇a + Pa∇a + τa · ∇a (37)

∂t(bρbub) + ∇ · (bρbubub) + ∇(bPb) + ∇ · (bτb) = bρbg

+(ρbub)∂tb + (ρbubub) · ∇b + Pb∇b + τb · ∇b (38)
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or, substituting with the progress and regress variable equations multiplied

respectively by ua and ub:

∂t(aρaua) + ∇ · (aρauabua) + ∇(aPa) + ∇ · (aτa) = aρag +

ua · Ṡ + Pa∇a + τa · ∇a (39)

∂t(bρbub) + ∇ · (bρbubub) + ∇(bPb) + ∇ · (bτb) = bρbg

−ub · Ṡ + Pb∇b + τb · ∇b (40)

Direct averaging of these equations may lead to the Eulerian two-phase flow

approach. Summing these two equations, we recognise on the left hand side

the momentum equation for the global variables:

∂t(ρu) + ∇ · (ρuu) + ∇P + ∇ · τ = ρg + (ua − ub) · Ṡ

+ (Pa − Pb)∇c + (τa − τb) · ∇c (41)

that is:

∂t(ρu) + ∇ · (ρuu) + ∇P + ∇ · τ = ρg + F (42)

and

F = (ua − ub) · Ṡ + (Pa − Pb)∇a + (τa − τb) · ∇a. (43)

It means that the interpretation of a two-phases reactive flow as a unique flow

leads to the appearance of a force term in the momentum equation localised on

the interface. We will show that this force vanishes if we make the necessary

hypothesis that the impulse and τ are continuous accross the interface, in a

reference frame linked to the interface. If we assume that τ is continuous

across the frontier then the former equation simplifies to:

F = (ua − ub) · Ṡ + (Pa − Pb)∇a. (44)

To keep invariance properties, we can assume that the tangential velocity is

continuous accross the interface. Therefore, using equation 34:

(ua − ub) = δ
1
ρ

mab · na (45)

so that

(ua − ub) · Ṡ = δ
1
ρ

ṁ2

ab · ∇a (46)

The pressure drop can be estimated considering that the total impulse is

conserved through the interface in a reference frame linked to the interface.

Considering that the interface velocity is ua −
ṁab
ρa

· na, or equivalently ub −

ṁba
ρb

· nb we have:
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Pa + ρa[ua − (ua −
ṁab

ρa

· na)]
2 = Pb + ρb[ub − (ub −

ṁba

ρb

· nb)]
2 (47)

Pa − Pb = ρa[
ṁab

ρa

]2 − ρb[
ṁba

ρb

]2 (48)

leading to:

Pa − Pb = ṁ2

abδ
1
ρ

(49)

Combining this result with 46, then F = 0, that is:

∂t(ρu) + ∇ · (ρuu) + ∇P + ∇ · τ = ρg. (50)

In presence of a surface tension σ when at least one of the phases is liquid,

the pressure difference is incremented by σ(∇·na) and F = −σ(∇·na)∇a+ <

na,∇a > ∇Sσ, where ∇S is the surface gradient. It should be noted that

the surface tension does not appear in the single phase equations but only

in the global one, defining an interface condition. It is also normal that

the surface tension could not be completely directly derived from the single

phase equations because the mere existence and the intensity of the surface

tension is independent from the physical quantities present in the single phase

equations. In other words, given the physical properties necessary to write

their respective Navier-stokes equations, on can decide independently if they

will be miscible or immiscible.

From both momentum equations, we have derived only one global equa-

tion. So, it seems that we have lost some information. The equation F =

−σ(∇ · na)∇a+ < na,∇a > ∇Sσ, as well as the impulse equation seem to

come from the postulate that the Navier-Stokes equation is still valid for two-

phase flows adding F on the RHS being the resultant of the internal forces,

which was considered a priori zero for the single phase flows. In the literature,

some attempt has been made to state a second equation, for example keeping

one of the single phase equations. The problem is that the additional equation

introduces a new variable, say ua, which requires an additional relationship.

Our approach will be not to derive but to postulate a second relationship

using the same set of variables, allowing to close it.

3 On surface tension and immiscibility

Surface tension is a an intrinsic property of a medium pair. It appears only

when at least one of the media is a liquid. Surface tension is also defined for a

solid. It is used to determine the angle formed by two immiscible fluids on a



CRS4 9

wall. It is also strongly linked with the concept of wettability. Here, we want to

deal only with two immiscible fluids. So, at least one of them is liquid, because

gases are always miscibles. What is strange at first glance is that liquids can

continuously change to gas on a temperature/pressure diagram if they ”travel”

around the triple point. So, there is a continuous transformation of most if

not all fluid pair from immiscibility characterized by a positive surface tension

coefficient to miscibility characterized by a positive diffusion coefficient. The

problem is that the surface tension is present in the momentum equation while

the diffusion coefficient is in the mass fraction equation. But both should be

representative of the same physico-chemical property. We would like to find

a uniformized representation of the phenomena, at least for simple cases.

3.1 Cahn-Hilliard equation

One tentative to represent the behaviour of two immiscible fluids has led to

the famous Cahn-Hilliard equation. The Cahn-Hilliard equation describes the

evolution of a conserved concentration field during phase separaton 1. One of

its simplest isotropic version is given below:

∂tc = α∆[(1 − 2c)c(1 − c)] − β∆2c. (51)

where α and β are positive parameters and c has the same meaning of our ”a”

or ”b”. The first term in the RHS is a second order contracting term, while

the second one is a fourth order diffusing term. Given a representative length

λ, of the region of intermediary values of c (i.e. the diffuse interface length),

the first RHS term scales like λ−2 will the second one like λ−4. Therefore for

large λ, the contracting term dominates while for small λ the diffusing term

dominates. That is, a wide interface will tend to contract while a thin one

will tend to dilate. The equilibrium is obtained when λ2 is order β/α.

For our initial concern, the derivation of a naturally contracting system

of equation, such that the interface length is no more than one or two com-

putational cells, the fourth order equation is out of range. In effect, the

discretisation of a fourth order operator requires (in 1D) at least five point

or informations up to two cells distant in both direction. This is incompat-

ible with the maximum two-cells interface objective. It is also not possible

to just set β = 0 because the strength of the contracting term would result

unbounded for arbitrary small discretization.

However, the idea that phase separation, for which surface tension is the

final residual trace, must be based on energy considerations is very attractive.

1http://www.ctcms.nist.gov/ wcraig/variational/node9.html
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3.2 Allen-Cahn equation

The technical burden associated with the Cahn-Hilliard equation fourth order

term has been recognized for long, see for example Yang et al.[3]. The result

is that many authors have chosen to represent the same physical phenomena

with a more simple equation, the Allen-Cahn equation, almost surely derived

for the same reason. Its simplest form is:

∂tc = −α(1 − 2c)c(1 − c) + β∆c (52)

this time, the diffusive term is the classical laplacian, scaling like λ−2 while

the contracting term is scalar and scales like λ0 with the equilibrium still

obtained when λ2 is order β/α.

This equation is much more convenient and has also been studied and

simulated in a huge number of papers. While the order of the equation is

convenient, it is straighforward to see that the equation is non-conservative.

This defect has been recognized and has generally been corrected by use of a

non local Lagrange multiplier:

∂tc = −α(1 − 2c)c(1 − c) + β∆c + ǫ(t). (53)

Unfortunately, this solution is completely unfit for multi-purpose CFD

codes. In effect, the Lagrange multiplier is simply redistributing mass (a

small quantity everywhere) slightly dirtying all the computational domain,

just to comply with the overall mass preservation, even if mass prevervation

is ”non negociable” in this context. By the way, only the scalar term is not

conservative and it would be very convenient to find out a similar one (with

regards to the scaling in λ) which would be conservative.

Both equations are constructed on the same scheme. Evolution of the

concentration arises from the balance of two contributions, a linear higher

order diffusive one impeding the degeneracy due to a non-linear lower order

contracting one. In the Cahn-Hilliard equation, one cannot just set β = 0

because only a Laplacian with a ”negative” diffusivity is left, and a phase

separation to an unbounded energy of the surface. This feature is not true

setting the coefficient β to zero in the Allen-Cahn equation. In this case, the

concentration simply decays to zero or one depending whether the initial value

is greater or lower that one half. We can also see that in this case, most of the

physico-chemical process tentatively modelled is lost. However, we think that

this loss of physical meaning is simply caused by the absence of local mass

conservation. So, we will try to derive a conservative term, however scaling

with a power of λ more than minus one so that its integral effect will vanish

in the limit of a discontinuous interface.
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3.3 representation of the surface tension

The classical representation of the surface tension σ is, as already written:

F = −σ(∇ · na)∇a+ < na,∇a > ∇Sσ (54)

with ∇S = (δij − ninj)∂j is the surface gradient. The formule above is valid

only if the condition ∇n2 = 0 holds on the interface. That is if field n

coinciding with with the unit normal on the interface is prolonged to a unit

field out of the interface, at least at the first order (slope of normal module

is zero on the interface). Otherwise, the term ∇ · na has to be changed to

∇S · na.

The form of the surface tension is rather unusual, considering that it orig-

inates from a Gibbs potential. While it cannot be put under gradient form,

it may be represented, as found out by several authors (find reference) under

a divergential form, as follows:

F = −∇ · T (55)

T = −σ < na,∇a > (δij − ninj). (56)

This last formula can be given in a much more symmetrical form, using

the identity matrix I:

T = G(I + nanb) (57)

G = −σ| < ∇a,∇b > |0.5 (58)

This formula may appear quite artificial but gives very interesting hints. First

of all, it outlines the natural potential G associated to the surface tension.

For the resolution of the momentum equation, the addition as it is of the

potential in the surface tension allows the pressure to be continuous across

a flat interface. This is a quite arbitrary choice, made almost surely for

comodity. However, one can make another choice and incorporate G in the

pressure. In this case, the surface tension becomes directly a tensorial product

of the ”natural” variables of the interface, na and ∇a, with σ being the overall

strength of the phenomena.

Considering one of the two components of the tensorial product, that is
∇a

|∇a|0.5 , we can have a look to what happens when the field ”a” is connecting

monotonically zero to one (in 1D) within a sharpening interval centred about

zero. We have the following functional space properties:

1. ∇a
|∇a|0.5 tend to zero in Lp for p ∈ [1, 2[

2. ∇a
|∇a|0.5 is bounded in L2 (in fact the L2 norme is constant)
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3. ∇a
|∇a|0.5 is unbounded in Lp for p > 2

4. [ ∇a
|∇a|0.5 ]2 is bounded in the dual space of W 1,1

0
and tends weekly to the

Dirac mesure.

These properties are very specific and at the limit, the term will diseappear

(in some sense) if present at the first power or will tend to the Dirac measure

if present at the second power. We will show that this property will allow

the surface tension to appear in the momentum equation and to disappear in

phase transport equation when we consider the limit case of a discontinuous

interface.

Another point which is worth noting is that whatever increasing derivable

function Φ of ”a” such that Φ(1) −Φ(0) = 1 can be used for the definition of

F instead of ”a”.

For example, taking Φ =
ρ2

ρ2

a − ρ2

b

, we have ∇Φ =
2ρ

ρa + ρb
and

T = −∇G −∇ · ρ
2σ

ρa + ρb

< na,∇a > (δij − ninj), (59)

that is a potential part plus a convective transport with velocity U =

√

2σ
ρa + ρb

< na,∇a >n

if we manage to give some meaning to the term under the square root.

This choice of Φ, making the density appear has already been made in

the reference work of Blackbill and al. [4]. They noticed that doing this, the

interface width was better conserved.

4 System of equations for two miscible flu-

ids

In the first part of this document, we have derived the global Navier-stokes

equations for density and momentum from the single phases equations in the

limiting case of two immiscible phases. While the derivation can be made

quite rigorous, the surface tension cannot be derived in this way but comes as

an external consideration. To be naturally included in the final equation, the

surface tension should be in some way included in the single phase equations.

Looking at the Cahn-Hilliard and Allen-Cahn equations, we have seen that the

surface tension can be interpreted as the terminal state of a phase separation

process. However, these equations do not allow the phase separation to arrive

at completion, having a small but non null asymptotic interface width. And

unfortunately, degenerating the equations for zero asymptotic width leads to

loss of physical meaning. What remains crucial in this approach is the ener-

getic consideration: surface sharpens because doing this the fluid minimizes
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its energy. In a momentum equation, this energy consideration should natu-

rally appear as minus the gradient of this energy. By looking at a symmetrical

form of the surface tension, we have obtained a good candidate for the form

of this additional energy term, at least in its degenerated configuration. This

is a start as it gives an asymptotic limit to be respected.

By postulating single phase equations in which mixing is allowed, we could

insert the additional energy term which would be acting where mixing is ef-

fective. This is what we do now. We postulate a general form of the single

phases momentum equations and try to eliminate the unknown terms by con-

siderations on the overall momentum equation.

4.1 momentum equation

Our first postulate is that equations 22 and 23 are still valid for any volume

fractions a and b and not only for unit support function.

∂t(aρaua) + ∇ · (aρauaua) + ∇(aPa) + ∇ · (aτa) = aρag

+(ρaua)∂ta + (ρauaua) · ∇a + Pa∇a + τa · ∇a (60)

∂t(bρbub) + ∇ · (bρbubub) + ∇(bPb) + ∇ · (bτb) = bρbg

+(ρbub)∂tb + (ρbubub) · ∇b + Pb∇b + τb · ∇b (61)

We interprete the equations for the single phases has follows:

∂t(aρaua) + ∇ · (aρauaua) + ∇(aPa) + ∇ · (aτa) = Iab + aρag (62)

∂t(bρbub) + ∇ · (bρbubub)∇(bPb) + ∇ · (bτb) = Iba + bρbg (63)

where Iab is the term of momentum exchange with the phase B.

The exchange term Iab can be split into several parts: exchange by pres-

sure, viscous effects or phase change. What is important is that the momen-

tum exchange terms are opposite:

Iab + Iba = 0 (64)

We make the very strong constructing hypothesis: ub − ua and na are

colinear and related through a dynamical equilibrium. That is:

ub − uu = Una (65)

with U a functional depending on ”a” but not explicitely on time. This

hypothesis is quite strong but is commonly used in the usual description of

diffusion phenomena. summing the two equations 62 and 63, we obtain:

∂t(ρu) + ∇ · (aρauabua + bρbubbub) + ∇P −∇ · (µΠu) − Rab = ρg

Here we have already used the following definitions:
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1. ρ = aρa + bρb,

2. u =
aρaua + bρbub

aρa + bρb
,

3. P = aPa + bPb,

4. µ = aµa + bµb.

Moreover, Rab is defined by the relation

Rab = ∇ · (µΠu − aµaΠua − bµbΠub). (66)

such that

Rab = ∇ · (aµaΠ
bρb(ua − ub)

ρ
− bµbΠ

aρa(ua − ub)
ρ

). (67)

This term is neglected hereinafter. This is because it seems to be the reflect

of a very simplified approximation of viscous effects rather than having a real

proper physical meaning.

Now, we use the “well known” formula:

ρuu = aρauaua + bρbubub −
abρaρb

ρ
(ub − ua)(ub − ua) (68)

and equation 65 to get:

∂t(ρu) + ∇ · (ρuu) + ∇P −∇ · (µΠu) = −∇ ·
abρaρb

ρ
U2nana

+ ρg (69)

Up to a pseudo-pressure term which can be included in the overall pressure,

we retrieve the immiscible two-phase Navier-Stokes momentum equation with

surface tension by choosing the following functional form:

U1 = ±

√

ρσ|∇a|
abρaρb

(70)

to obtain

∂t(ρu) + ∇ · (ρuu) + ∇P −∇ · (µΠu) = −∇ · (σ|∇a|nana) + ρg (71)

and

∂t(ρu) + ∇ · (ρuu) + ∇Q −∇ · (µΠu) = F + ρg (72)

F = ∇ · (σ|∇a|(δij − nana)) (73)

with Q = P + ∇(σ|∇a|).

The expression for U is rather complex. We can simplify it. Let Φ be

primitive of α
ρaρbab

ρ normaziled by the constant α such that Φ(1)−Φ(0) = 1.

Then let use Φ instead of ”a” in the definition of F . That is, we choose:

F2 =
√

ασ|∇φ|. (74)

Then F is retrieved by using the following alternative much simpler U

U2 = ±
√

ασ|∇a|. (75)
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4.2 volume fraction equation

The volume fraction equations, when written in conservative form, remain

valid for non discrete configurations:

∂t(ρaa) + ∇ · (aρaua) = Ṡ (76)

∂t(ρbb) + ∇ · (bρbub) = −Ṡ (77)

What we have to do is to relate each phase velocity to the global velocity and

to the phase velocity difference:

ua = u −
bρb

ρ
(ub − ua) (78)

ub = u +
aρa

ρ
(ub − ua) (79)

so that

∂t(ρaa) + ∇ · (aρau) −∇ · [
abρaρb

ρ
(ub − ua)] = Ṡ (80)

∂t(ρbb) + ∇ · (bρbu) + ∇ · [
abρaρb

ρ
(ub − ua)] = −Ṡ (81)

or

∂t(ρaa) + ∇ · (aρau) −∇ · [
abρaρb

ρ
Una] = Ṡ (82)

∂t(ρbb) + ∇ · (bρbu) + ∇ · [
abρaρb

ρ
Una] = −Ṡ. (83)

If U is positive then the equation is diffusive while if U is negative, then the

equation is contracting. Using the same choice as for the momentum equation

(equation 75)with minus sign:

∂t(ρaa) + ∇ · (aρau) + ∇ ·
abρaρb

ρ

√

ασ|∇a|na = Ṡ (84)

In this last equation, the second order term K = ∇ ·
abρaρb

ρ
√

ασ|∇a|na

has a clear anti-diffusive nature. It can be easily be seen that in the limit of

a discrete interface, it is bounded in the dual space of H1
0 and converges to

zero weakly in the dual space of W 1,∞
0

. The dual nature of the equation will

be subject to difficulties for discretisation.

We can also see that a simple expression for F leads to a complex one

for K. Maybe we can find U such that both F and K have simple forms.
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Moreover, the simplicity of the expressions depend whether one chooses the

volume fraction as in these derivations or the mass fraction used in diffusion

phenomena. When the volume fraction is used, an interesting form is obtained

by taking the function Φ as Φ =
ρ2

ρ2

a − ρ2

b

so that ∇Φ =
2ρ

ρa + ρb
∇a and

U =

√

1

2
( 1
ρa

+ 1
ρb

)ρσ
|∇a|
ab

. In this case, the surface tension is expressed in a

similar way to the convective transport (up to the usual pressure term), and

the density harmonic mean appears in the expression of the velocity difference.

4.3 Constant density non reactive components

From now on, we suppose the phase densities constant. Dividing equations

82,83 by their respective density, and summing, we get the velocity divergence:

what we have to do is relate each phase velocity to the global velocity and to

the phase velocity difference:

∇ · u = ∇ · [(ρa − ρb)
ab

ρ
Una] + δ

1
ρ

Ṡ (85)

and in absence of source term, the velocity u∗ defined by:

u∗ = u − (ρa − ρb)
ab

ρ
Una (86)

is divergence-free.

Rewritting in this case the volume fraction equation in term of u∗, we get:

∂ta + ∇ · (au∗) + ∇ · (abUna). (87)

This last formulation is adapted for algorithms which consider the volume

fraction, such as the VOF algorithm in Starccm+. It allows to choose U such

as to preserve a 1D profile and choose the global behaviour for arbitrary large

mixing layer. In effect, the only constraint given by the surface tension in the

limit case of a discrete interface is precisely the asymptotic behaviour of U .

In this case, U must be scaling as σ|∇a|0.5.

From the work published in [5], if we can put the contracting term in the

form:

abUna = −u0H(δ)F (a)na (88)

with u0 a constant characteristic speed when H(δ) is chosen in adimensional

form, δ−1 = f ′(a)|∇a| and F ′ = f , then equation 87 has a self-similar solution

whose profile is the inverse of the function f (so f must be monotonous) and

whose time evolution is controled by u0H(δ).
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For example, choosing F (a) = −ab
2

we have f ′ = 1 and λ−1 = |∇a|. We

have seen from the momentum equation that the scaling must be in H(λ) =

λ−0.5 = |∇a|0.5. Then the self-similar profile is the ramp function, and we

have in fact supposed U = −u0

2 |∇a|0.5.

This is the simplest solution for the volume fraction equation. In fact, there

is no need for a more regular profile, because it converges in finite time to the

discontinuous Heavyside function. Requiring to reach it in a very smooth way

does not make too much sense. For the momentum equation, it comes:

abρaρb

ρ
U2nana =

u2

0

4
abρaρb

ρ
|∇a|nana (89)

A lengthy calculation gives:

∫ a=1

a=0

ab

ρ
∇a =

ρaρb

(ρa − ρb)
2
[
1
2
(

1
ρa

+
1
ρb

) −
ln ρa − ln ρb

ρa − ρb

] (90)

allowing to match u0 to σ with the formula

σ =
u2

0

4
(ρaρb)

2

(ρa − ρb)
2
[
1
2
(

1
ρa

+
1
ρb

) −
ln ρa − ln ρb

ρa − ρb

]. (91)

Using the equation 87, and reinterpreting the contracting term in a trans-

port term of phase A, we can characterize the velocity of contraction as

Vc = u0

2 λ−0.5 (and in fact, in this case, u0 is not a velocity).

4.4 Diffusive asymptotic

As already said, we consider that diffusion and surface tension can be two

expressions of the same fundamental cause, the Gibbs energy. From the form

of the contracting term in equation 82, it is clear that when ∇G and ∇a are

in the same direction, the ”contracting” term becomes diffusive. Moreover, in

the limit of small concentration of one phase and small concentration gradient,

we should revert to something quite similar to the classical diffusion term with

constant coefficient. Thus we dispose of another asymptotic behaviour for the

determination of U . Care must be taken to make the difference between mass

and volume fractions. From [6], we have the reference diffusion equation:

∂taρa + ∇ · (aρau) −∇ · (ρDab∇
aρa

ρ
) = Ṡ. (92)

or in case of constant densities:

∂taρa + ∇ · (aρau) −∇ · (Dab

ρaρb

ρ
∇a) = Ṡ. (93)
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Equating equations 82and 93, it remains:

∇ ·
ρaρb

ρ
(Dab∇a − abUna) = 0. (94)

This leads to search for U with an asymptotic form in case of small gradi-

ent:

U = Dab

|∇a|
ab

. (95)

Reporting this value in the momentum equation , we obtain:

F = −∇ · D2

ab

ρaρb

ρ

|∇a|2

ab
nana. (96)

For a Gaussian profile, or its primitive, which are fundamental solutions of

the diffusion equation, it is easy to see that
|∇a|2

ab
is uniformly bounded for

a dispertion greater than any stricly positive constant. In this case, which is

always verified for diffusive phenomena after a short time laps, we can see that

F scales with D2

ab. As usually Dab is closely related with the viscosity, which

is already considered as a small parameter, we have that F basically scales

with the square of viscosity and should very often be neglected. However, its

effect is devastant if one wants to investigate the initial behaviour of mixing

phases initially separated. In this case, the term is critically unbounded and

funfamentally unsuited for arbitrary small times.

4.5 Matching the asymptotics

We already dispose of two asymptotic trends, one for a contractive behaviour,

the other for a diffusive behaviour. With the additional asumptions, both

asymptotics are valid for both behaviours, and we can try to match them in

a unique functional U . The two conditions that we need to fullfil are:

1. U behaves like U1 = (ασ|∇a|)0.5 when |∇a| is large

2. U behaves like U2 = Dab|∇a| when |∇a| is small.

this can be restated n terms of a characteristic lenght λ as

1. U behaves like (ασλ−1)0.5 when λ is small

2. U behaves like Dabλ
−1 when λ is large

Matching the asymptote can be done by defining abU in terms of λ and

decide for a suitable shape to define λ. The first step can be fulfilled in a

number of way, always requiring the introduction of a reference length λ0.

For example:

abU ∼
λ0

λ

1
√

1 + λ0

λ

(97)
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and also taking into account the constants:

abU =
Dab

λ

1
√

1 +
D2

ab

α2σ2λ

(98)

the characteristic length λ0 =
D2

ab

α2σ2
being obtained equating U1 and U2.

The problem is that the characteristic shape may be quite different for

sharp interfaces and for large diffusing interfaces. So, it may be wiser not to

look for a representation with an explicite reference shape. With the shape

condition relaxed, the two behaviours can be matched by making their har-

monic sum:

U =
U1U2

U1 + U2

(99)

or

U2 =
U2

1
U2

2

U2

1
+ U2

2

(100)

depending on whether we consider the phase equation or the momentum equa-

tion as more fundamental. And we can take:

U1 = ±Dab

|∇a|
ab

(101)

U2 = ±

√

ρσ|∇a|
abρaρb

(102)

4.6 Diffusion control

The diffusion caused by thermal agitation is a phenomena fundamentally dif-

ferent of the diffusion or contraction caused by a chemical potential. While

for two miscible liquids, we can suppose that mixing is mainly driven by this

chemical potential, the argument cannot stand for a gas and a liquid, or when

it is difficult to characterize a phase rather as a gas or a liquid. Therefore,

a term corresponding to the diffusion caused by thermal agitation should be

present in the phase equation. We will name improperly this term as thermal

diffusion. The classical diffusion term, with a scaling in λ−2 would dominate

the contraction term in λ−1.5for small values of λ and would forbid the cre-

ation of a sharp interface. That is why the diffusion term must be modified.

The classical diffusion term is known to be a good approximation of the dif-

fusion phenomena only for smooth enough diffusion fronts. For very sharp

fronts, the diffusion term should scale like λ−1. The same procedure used

to connect the asymptotics of the contraction term can be used to derive a
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diffusion term scaling like λ−1 for sharp fronts and like λ−2 for diffuse fronts.

For example, we can construct the modified diffusion term by taking:

U1 = Dab

|∇a|
ab

(103)

U2 = U0 (104)

where U0 is a constant.

Writing back the force term in the momentum equation corresponding

to this generalized diffusion term, it is easy to see that it tends to zero for

arbitrarily small interfaces.

By playing with the different asyptotic behaviour of both the chemical

contraction and the thermal diffusion separately for small and large charac-

teristic size, we can have a good chance to reproduce a variety of physical

phenomena. For example, we can state that the chemical potential decays

fast enough such that it cannot compensate for the thermal diffusion for large

characteristic length. In this case, on can expect a quite stable small volume

fraction of each phase in the other one. One should be also able to reproduce

complex phenomena related to the vapour pressure between a gas and a liq-

uid. This can be realized by taking the generalized diffusion term just given

from one side and a contraction term scaling λ−n with n greater than 2 for

large λ.

While there is a large choice for the expression of the velocity difference U ,

the contraction, diffusion and force terms are conveniently writen choosing U

asymptotically proportional to some power of
|∇a|
ab

, this power being at most

one half otherwise the corresponding force becomes of unbounded integrale.

5 Conclusion

We have derived a uniform representation of two-component fluids exhibiting

either a surface tension at their interface or a diffusive mixing behaviour. This

representation has also the potential to naturally represent dissolution and

vapor pressure phenomena. We interprete the surface tension as arising from

a defect of the quadratic transport term in the overall momentum equation.

The equations found out degenerate to the usual equations written for the

asymptotic behaviours but can be used when this asymptotic behaviour is

perturbed. This is particularly interesting for the simulation of immiscible

fluids in which the discetization introduces a continuous perturbation of the

asymptotic behaviour. This more general set of equation enforces the stability

and attractivity of the asymptotic behaviour, correcting naturally the errors

introduced by numerics.
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