
Building the Web of Things with WS-BPEL and Visual Tags
Web of Things using Service-oriented Architecture standards

Antonio Pintus, Davide Carboni, Andrea Piras
ICT-Information Society

CRS4
Pula, Sardinia, Italy

e-mail: pintux@crs4.it, dcarboni@crs4.it, piras@crs4.it

Alessandro Giordano
Dip. di Ingegneria Elettrica ed Elettronica

Università degli Studi di Cagliari
Cagliari, Sardinia, Italy

e-mail: alegiordy@tiscali.it

Abstract— The Web of things is an emerging scenario in which
everyday objects are connected to the Internet and can answer
to HTTP queries with structured data. This paper presents a
system that allows users to build networks of everyday objects
using visual tags as proximity technology. The system backend
is based on Service-oriented Architecture languages and tools
for the runtime composition of “things” establishing
connections we call hyperpipes.

Keywords - Ubiquitous computing, Web services, Web of
Things, SOA

I. INTRODUCTION

The Web of things is an emerging scenario in which
every object is connected to a pervasive wireless/wired
network and can answer to a HTTP query with structured
data. Everyday surrounding objects like phones, domestic
appliances, advertisement billboards, musical instruments
become the nodes of the Web of things. Nevertheless, merely
putting real objects into the network is nothing without a
logic that creates a net value. One key is to compose objects
together [10] and to put the orchestration in the hands of the
final user. Simple mechanisms to connect “things” can foster
a huge number of unpredictable applications. Towards these
objectives, users, objects and networks are the ingredients to
build a Web of things in which users become seamlessly the
"programmers" [9]. The Web of things has the potential to
become the next killer application and it must seamlessly
emerge from existing Web infrastructure taking to the limits
all the Web related technologies and providing new use cases
that will improve the definition and the adoption of new
standards and protocols.

The Web is basically built on two metaphors: the
hypertext and the hyperlink. The former is just a digital
reification of human language in its written form, while the
second is a mechanism that non-digital forms of writing (like
writing on paper) could not provide. The two metaphors are
on the basis of the Web of pages while in a Service-oriented
Architectures (SOA) not only pages are linked together but
are also linked with information services. We want to extend
the pages and services interlink from digital objects to real
ones.

This paper, after an analysis of some related works and
an introductive classification of “things” based on their
capabilities, presents a “things” composition framework

called hyperpipes. Finally, a prototype and conclusions along
with indications for future work are provided.

II. RELATED WORKS

This work is located in the main stream of ubiquitous
computing, and more precisely in a subset of the “Internet of
Things” based on Web protocols instead of ad-hoc and
special purpose transport and application protocols.

We think that in the Web of things all kind of services
(WS-* and REST [5]) provided by objects must be
orchestrated together but for practical reasons in this work
we sketch a design solely based on Web services Description
Language (WSDL) and Simple Object Access Protocol
(SOAP) Web services. The use of SOA Web standards for
the Internet of things is not new: the SODA project [4] goes
toward the definition of an architecture where devices are
viewed as services in order to integrate a wide range of
physical devices into distributed IT enterprise systems. A
SOA approach for embedded networks is also persuaded by
other projects, such as SIRENA [8] and SOCRADES [13].
Our work distinguishes from the others above because we
experiment the direct generation of new process definitions
according to user selection and pointing of real objects in the
environment. We postulate that physical objects must expose
in a formal specification the set of operations they can
perform and the data they can exchange with a precise
contract in a way that they can be composed and orchestrated
using existing standard languages like the Web services
Business Process Execution Language (WS-BPEL) [1]. This
assumption makes the choice of SOAP and WSDL 1.1 of
practical use for our actual implementation. In principle, the
inclusion of RESTful services in orchestration is possible
with the support of WSDL 2.0 but in practice this standard
cannot be effectively adopted yet. In the meanwhile RESTful
services could be proxied by ad-hoc SOAP services and
orchestrated in WS-BPEL but in this work we do not address
this issue.

The proximity of users to objects is another fundamental
aspect that must be considered in pervasive computing. One
of the peculiar points of our work is that process definitions
for object pipelining are created by users on demand. In [11]
the authors use Bluetooth as option for providing
connectivity, and propose RFID technology to enhance the
Bluetooth connection establishment procedure.

357

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

Our approach to proximity is that after an object and in a
given situation and with a given mood a person can have the
idea to build something new. The subsequent action in our
scenario is to build a connection. If we imagine the world as
a giant sketch board we just want a way to draw a line from
an object to another and build something useful as result. In
[3] a similar interaction pattern is depicted but the system
architecture and the data formats are described at a general
level while in this work we focus on architectural aspects
with formal specification and adoption of SOA standards.
Simple but effective rules, applied to a multitude of objects
tend to form a complex system [7]. In our scenario millions
of real objects can simply be connected through hyperpipes
with natural gestures in the real environment without sitting
in front of a PC screen.

III. ASSUMPTIONS ON OBJECTS CAPABILITIES

One of the main assumptions in a Web of things is that
objects can communicate at HTTP level and above. This
assumption is a weak one because technical solutions to
achieve this result are already discussed and designed in
literature [2], [12], [14] and some projects are ongoing. Thus,
if the connectivity is lacking in the real world this is due to a
lack of infrastructure and not to a lack of know-how.

Nevertheless, it is useful to sort “things” according to the
level in the communication stack they can be connected:

• at the top of this sorting we have bare virtual goods
and services like Web sites, e-mail boxes and 3D
models, just to mention some. These objects can be
easily wrapped and then referenced in a HTTP
addressing space like resources (REST) or like
services (WSDL).

• At a second level we find appliances with a complete
HTTP stack like wireless printers or networked
screens.

• In a upper intermediate level we find objects that are
not equipped with a complete HTTP stack but can
still communicate at a TCP/IP or UDP/IP level. For
those objects is straightforward to build a HTTP
wrapper.

• In a lower intermediate level we find objects that
cannot communicate over IP networks, but still can
communicate with different protocols like ZigBee,
Bluetooth or X10. For those objects a proxy can be
deployed to present these objects in the HTTP
addressing space.

• Finally, there are bare physical objects. For those a
digital counterpart must be built and published
online. For example, a real book has a virtual
counterpart like a Web page in a online bookstore.

Let us consider any object (physical or digital) like a
process exposing a set of operations. We classify the
operations according to their ability to produce data
(sources), process data (processors), and consume data
(sinks). This classification is useful to distinguish between
sensors, actuators and processors. Operations are public, thus
their names are globally known.

IV. HYPERPIPE FRAMEWORK BASED ON SOA LANGUAGES

Considerable challenges are related to connecting a large
set of information sources and sinks together. When only
existing protocols and data formats are used, the
communicating parties must be matched based on the
descriptions describing their capabilities. To get a balance
among the generality of purposes and the need to implement
a system really able to work, we made some choices that
drive the design of our work. First, we choose to adopt
WSDL as the formalism to describe what an object is able to
provide. In this way, an object can be considered as a SOAP
Web service. Another issue is related to the type of
communications between objects and the definition or the
adoption of a suitable related protocol. In our design objects
are allowed to exchange data without strict type checking
(automatic type adaptation is a feature), and communication
may be either synchronous or asynchronous. Both these
interactions can be easily modeled and implemented using
WSDL and adopting SOAP over HTTP protocol for
messages exchange. Another type of logical connection to
include in the design is multimedia streaming between
objects. For instance, the user selects a MPEG camera source
and a wall screen as sink. Embedding multimedia streaming
in SOAP messages is not an efficient implementation, thus
another protocol should be used instead. In concrete, the
main assumption we have to make is that, in order to actively
play a role in a pipe, an object must be able to connect to the
network and to run a Web service stack. This general
capability can be accomplished basically in two ways: the
object itself is powerful enough to satisfy the previous
requirements or it has to be connected and “driven” by a
proxy computer, which satisfies the requirements. We
choose WS-BPEL for concrete representation of pipes. WS-
BPEL is an XML-based language born to define executable
business processes as orchestration of Web services. WS-
BPEL orchestrations expose a service interface described
using WSDL: in this way, from the point of view of a client,
WS-BPEL process is a Web service itself. Expressing pipes
using WS-BPEL brings two main benefits to our vision: first,
it is possible to associate a well-defined functional interface
to each pipe, in our case modeling that in order to expose
Video Cassette Recording (VCR)-like functionalities: start,
pause and stop, which are the public available operations for
a generic pipe control.

Three basic patterns of “in-Pipe” communication emerge:
a) synchronous, on an object A is invoked an operation

src, the result is adapted and then passed as argument to an
operation snk of an object B;

b) asynchronous, the pipe registers itself as a listener
for an event produced by an operation src on object A.
When the event is fired, the data attached to the event is
adapted and the sent to the sink.

c) streaming, an object B receives from an object A a
stream of data (for instance video mpeg from a camera to a
screen). Given that binary real time data encapsulation
inside SOAP messages is not an efficient implementation,
rather Real-time Transport Protocol (RTP) or equivalent

358

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

real time media transmission protocols should be used
instead, using the SOAP messaging only to initialize the
session for handshaking.

For the first two patterns, we created two different WS-
BPEL document templates, which define all the required
activities, message exchange and service orchestration for
the execution of each of them in a WS-BPEL engine. In
particular, pattern (a) is a typical Web service orchestration
scenario with a subsequent invocation of services; pattern (b)
basically is an orchestration in which the WS-BPEL
document describes an asynchronous invocation of a service
(the event producer) using a callback mechanism, which
invocation triggers an event causing a delivering of the event
to the other service (the event listener). The pattern (c) uses
WS-BPEL only for protocol negotiation and handshaking

Figure 1. BPMN-like notation for a synchronous pipe from a source to a

sink operation.

Figure 2. BPMN-like notation of an asynchronous pipe between a source
and a sink. The callback endpoint is invoked when data can be consumed.

between the two services, in this way, after these steps, the
objects can instantiate streaming sessions in an independent
way using the suitable chosen protocol. From a WS-BPEL
point of view the pattern (c) is equivalent to pattern (a) but
the data exchanged are Session Description Protocols (SDP)
instances and the work of establishing a streaming is
completely delegated to endpoints.

The difference between the (a) and the (b) template is
that in the second the data source asynchronously emits a
data and requires that a callback endpoint is registered in
order to consume data when data are ready. The different
design is depicted in Figs. 1 and 2 where a BPMN [15]-like
notation is used instead of showing the XML code, which
results too verbose to fit the limit of this article.

V. PROTOTYPE

The objective of our prototype is to show a living system
that allows users to select real objects in a room and to
compose them building a real time orchestration starting
from the user interaction.

2D barcodes systems like Datamatrix and QR are
attached with no cost to any object in order to “augment”
their features realizing a virtual connection with a one its
digital pair. Appropriate programs can recognize codes and
download linked information from the Internet. To
implement our point-click-and-compose interactive
paradigm, we adopt QR barcodes so the user can point an
object and retrieve what that object is able to perform. Given
the verbosity even of a simple WSDL document, we choose
to encode in the barcode only a URL to reference it. The user
points a smart phone against the barcode, then the phone
decodes the visual tag and asks an online server to parse the
WSDL document to obtain the list of operations. Selecting
two different actions from two different objects (or even
from the same object) a pipe can be constructed. The WS-
BPEL templates are filled with real endpoints, deployed on
the WS-BPEL engine and then activated. To implement a
prototype we needed some “things” to become endpoints of
pipes. Thus, we instrumented normal objects with some
SOAP messaging abilities deploying personal computers and
notebook to simulate sources and sinks.

VI. FUTURE WORKS AND CONCLUSION

Capabilities of objects are well expressed with WSDL
and translated into human readable lists of actions in the
phone user interface. The main advantage is the ability to
generate WS-BPEL at runtime and to create new executable
processes (the hyperpipes) with the point-select-and-
compose interaction.

The overall design results well conceived for the
transmission of “data as documents” between different
objects while data streaming is less supported by the Web
services stack and SOAP is only used for exchanging session
descriptions and that commuting to other protocols in the
communication stack. The choice to model objects like
opaque components able to perform operations poses some
issues in the seamless connection with other Web resources.
It is clumsy to make a pipe having as endpoint a Web page
or a RSS feed because even if these are digital objects, they

359

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

Figure 3. Selecting two different actions from two different objects (or

even from the same object) a pipe can be constructed.

Figure 4. Hyperpipes at runtime. Objects are instrumented by Web

services and Pipes are implemented as WS-BPEL processes created and
deployed at runtime. A mobile phone is used to point objects in the

environment and to retrieve the WSDL specification.

need to be wrapped by a WSDL interface and decorated with
a service implementation. The resource-oriented nature of
the Web is somehow in contrast with the procedure-oriented
architecture of Web services. Some authors [6] consider
RESTful the only choice for a Web of things architecture
and advocate some motivations related to the programmatic
complexity of Web services and according to their
experience, not well suited for end-user to create ad-hoc
applications. Among the motivations is that discovery of
Web services via Universal Description Discovery and
Integration (UDDI) is not suitable for sensors or devices
because the UDDI-based discovery has not context
information (e.g., where a sensor is placed). In our work the
problem of discovery is simply by-passed by the fact that

services are discovered by users when they are close to an
object using some proximity technology (the QR tags in our
work) and the programmatic complexity is totally hidden to
end-users by the automatic generation of WS-BPEL
executables. As mentioned before, we think that
orchestrations should include the largest set of element types,
both real and virtual, and represented by either stateful
processes (WS-*) or stateless resources (REST). One next
achievement is to build such a universal orchestration
starting from user interactions in the environment.

Regarding the user interaction we conclude that building
a pipe between two objects results as a straightforward task.
Composing multiple pipes with processor in cascade is
somehow less intuitive and requires the user to know how
the underlying process is created. The use of QR has
revealed to be a practical choice very easy to implement and
quite easy for users to manage. Nevertheless, the conclusions
on human interaction here reported are merely qualitative
and based on the experience of few test users. We plan to
make a more accurate usability evaluation in a future work.

REFERENCES
[1] OASIS Web Services Business Process Execution Language (WS-

BPEL) TC. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel. Last
accessed on 01-06-2010

[2] QuadraSpace. http://www.quadraspace.org/. Last accessed on 01-06-
2010

[3] Carboni, D. and Zanarini, P. Wireless wires: let the user build the
ubiquitous computer. Proceedings of the 6th international conference
on Mobile and ubiquitous multimedia, (2007), 169–175.

[4] Deugd, S.D., Carroll, R., Kelly, K., Millett, B., and Ricker, J. SODA:
Service Oriented Device Architecture. IEEE Pervasive Computing 5,
2006, 94-96, c3.

[5] Fielding, R.T. Architectural Styles and the Design of Network-based
Software Architectures. University of California, Irvine, 2000.

[6] Guinard, D., Trifa, V., Pham, T., and Liechti, O. Towards physical
mashups in the web of things. Proceedings of INSS, (2009).

[7] Holland, J.H. Emergence: from chaos to order. Addison-Wesley
Longman Publishing Co., Inc., 1998.

[8] Jammes, F. and Smit, H. Service-oriented paradigms in industrial
automation. IEEE Transactions on Industrial Informatics 1, 1 (2005),
62–70.

[9] Kindberg, T., Barton, J., Morgan, J., et al. People, places, things: web
presence for the real world. Mob. Netw. Appl. 7, 5 (2002), 365-376.

[10] Ragget, D. The Web of Things: Extending the Web into the Real
World. SOFSEM 2010: Theory and Practice of Computer Science.
Springer Berlin / Heidelberg, (2010), 96-107.

[11] Salminen, T., Hosio, S., and Riekki, J. Enhancing Bluetooth
Connectivity with RFID. Proceedings of the Fourth Annual IEEE
International Conference on Pervasive Computing and
Communications, IEEE Computer Society (2006), 36-41.

[12] Sommer, S., Scholz, A., Buckl, C., et al. Towards the Internet of
Things: Integration of Web Services and Field Level Devices. .

[13] de Souza, L.M., Spiess, P., Guinard, D., Kohler, M., Karnouskos, S.,
and Savio, D. Socrades: A web service based shop floor integration
infrastructure. Lecture Notes in Computer Science 4952, (2008), 50.

[14] Trifa, V., Wieland, S., Guinard, D., and Bohnert, T. Design and
implementation of a gateway for web-based interaction and
management of embedded devices. Submitted to DCOSS, (2009).

[15] White, S.A. Introduction to BPMN. IBM Cooperation, (2004), 2008–
029.

360

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

