
A REAL-TIME COARSE-TO-FINE MULTIVIEW CAPTURE SYSTEM FOR ALL-IN-FOCUS
RENDERING ON A LIGHT-FIELD DISPLAY

Fabio Marton, Enrico Gobbetti, Fabio Bettio, José Antonio Iglesias Guitián and Ruggero Pintus

CRS4 Visual Computing Group
http://www.crs4.it/vic/

ABSTRACT

We present an end-to-end system capable of real-time capturing and

displaying with full horizontal parallax high-quality 3D video con-

tents on a cluster-driven multiprojector light-field display. The cap-

ture component is an array of low-cost USB cameras connected to a

single PC. RawM-JPEG data coming from the software-synchronized

cameras are multicast over Gigabit Ethernet to the back-end nodes

of the rendering cluster, where they are decompressed and rendered.

For all-in-focus rendering, view-dependent depth is estimated on the

GPU using a customized multiview space-sweeping approach based

on fast Census-based area matching implemented in CUDA. Real-

time performance is demonstrated on a system with 18 VGA cam-

eras and 72 SVGA rendering projectors.

Index Terms— Multi-view capture and display, GPU, light field

rendering

1 INTRODUCTION

Our system aims at real-time capturing 3D scenes using an array of

cameras while simultaneously displaying them on a remote cluster-

driven multi-projector 3D display able to deliver 3D images featur-

ing continuous horizontal parallax to multiple naked-eye freely mov-

ing viewers in a room-sized workspace.

Many camera array systems (and fewer multi-projector 3D display

systems) have been presented in the past for acquiring and display-

ing 3D imagery, covering all the spectrum from pure image-based

representations to full geometric reconstruction. In this paper, we

describe a real-time system constructed around an on-the-fly coarse-

to-fine depth estimation method which synthesizes an all-in-focus

light-field representation on the display side by finding the optimal

depth value for each pixel of the 3D display. The rendering algo-

rithm is fully implemented on a GPU using GPGPU techniques.

2 RELATEDWORK

Our system extends and combines state-of-the-art results in a num-

ber of technological areas. In the following, we only discuss the

approaches most closely related to ours. We refer the reader to es-

tablished surveys (e.g., [1, 2]) for more details.

Multi-camera capture and display. A number of papers describ-

ing real-time 3D video or light-field capture and display have been

published in recent years, achieving significant advances. One of the

approaches consists in using a pure light field method, in which im-

ages captured by source cameras are regarded as sets of rays sampled

from the camera’s position, and images are rendered by re-sampling

from the database the rays which pass through the rendering view-

point (e.g., [3, 4, 5]). Little processing is required, and the quality

978-1-61284-162-5/11/$26.00 c© 2011 IEEE

of the rendered image is potentially very high in terms of photo-

realism, However, accordingly with plenoptic sampling theory [6],

the scene is adequately imaged only relatively close to the focal

plane if one needs to cover a wide field of view with not too-many

cameras, which makes pure light field systems not fully scalable.

Using geometric information, which for real-time systems must be

estimated on-the-fly, it is possible to create higher quality views with

less cameras. Since globally consistent models are hard to construct

within strict time budgets, real-time systems for general scenes are

based on view-dependent approximate depth reconstruction [7, 8,

9, 10]. These methods exhaustively evaluate depth hypotheses for

each pixel, which makes them prone to local minima during corre-

spondence search, and reduces their effective applicability to high

pixel count displays. In this work, we extend a coarse-to-fine stereo-

matching method [11] to real-time multiview depth estimation us-

ing a space-sweeping approach and a fast Census-based [12] area

matching, and integrate it in a rendering system for the peculiar

multi-projector 3D display imaging geometry. We also describe a

full end-to-end implementation achieving real-time performance us-

ing commodity components.

Rendering for multi-projector light field display. The display

hardware employed in this work has been developed by Holografika1

and is commercially available. Our image generation methods take

into account the display characteristics in terms of both geometry

and resolution of the reproduced light fields. In particular, we ex-

tend a multiple-center-of-projection technique [13, 14] with a depth

compression factor, and use the display geometry within the space-

sweeping step. We use the common sort-first parallel rendering ap-

proach, multicasting all images to rendering nodes for depth recon-

struction and light field sampling. The assignment between render-

ing processes and images is static, even though load balancing strate-

gies based on image partitioning could be implemented on top of our

framework (e.g., [15]).

3 SYSTEM OVERVIEW

Our system acquires a stream video as a sequence of images from

a camera array and reconstructs in real-time the 3D scene on a light

field display with full horizontal parallax. The display used in this

work filters through a holographics screen the light coming from

specially arranged array of projectors controlled by a PC cluster (see

Fig. 1). The projectors are densely arranged at a fixed constant dis-

tance from a curved (cylindrical section) screen. All of them project

their specific image onto the holographic screen to build up a light

field. Mirrors positioned at the side of the display reflect back onto

the screen the light beams that would otherwise be lost, thus creating

virtual projectors that increase the display field of view. The screen

has a holographically recorded, randomized surface relief structure

1www.holografika.com

Fig. 1: Overall system concept. A linear camera array is connected through USB 2.0 to a front-end PC which captures the 3D scene in M-JPEG format.

Each frame is packed and multicast to rendering PCs, which perform JPEG decoding, per-view depth estimation, and light field sampling to produce projector

images for the light field display.

able to provide controlled angular light divergence: horizontally, the

surface is sharply transmissive, to maintain a sub-degree separation

between views determined by the beam angular size Φ. Vertically,

the screen scatters widely, hence the projected image can be viewed

from essentially any height. With this approach, a display with only

horizontal parallax is obtained.

A master PC performs image acquisition in JPEG format from a lin-

ear camera array connected to a single capturing PC through USB

2.0. When using M-JPEG, up to 9 cameras at capturing 640 ×

480@15Hz can be connected to a single USB port. Cameras are

software synchronized, and all images of a single multiview frame

are assembled and distributed to light-field rendering clients through

a frame-based reliable UDP multicast protocol. Each rendering node

manages a small group of projectors, and at each frame decodes

JPEG images to a 3D RGB array directly on the GPU and produces

an all-in-focus 3D image by casting projector rays, estimating scene

depth along them with a coarse-to-fine multiview method, and re-

sampling the light field using a narrow aperture filter.

4 CALIBRATION

Our system assumes that both the input camera array and the display

projectors are calibrated in both intrinsic and extrinsic parameters.

The camera array is calibrated by first applying Tsai’s method [16]

using images of a checkerboard positioned at various location within

the camera workspace, and then globally refining all camera param-

eters with a bundle adjustment step [17].

For the 3D display, we derive geometric calibration data by suit-

ably modifying existing automated multi-projector calibration tech-

niques [18]. We build on the classic two-step approach in which

position and frustum of each projector are found through parametric

optimization of an idealized pinhole model and any remaining er-

ror is corrected using a post-rendering 2D image warp that “moves”

the pixels to the correct idealized position. For the first calibration

step, we assume that projector positions are known, and we find their

orientation and projection matrices using vision based techniques.

The whole calibration procedure is performed by covering the holo-

graphic surface with a standard white diffuser and photographing it

from inside. For each projector, we first project an asymmetric pat-

tern and analyze projected images to determine mirror positions (see

Fig. 2 left). If no mirror is detected, we associate a single viewport to

the projector; otherwise, we create a “virtual projector” on the other

side of the mirror and proceed with calibration by separately han-

dling the mirrored and direct view rendered in different viewports.

In this calibration step, a checkerboard pattern is projected onto the

screen (see Fig. 2 center and right). The full orientation and the per-

spective matrix are derived from the detected corners. The remain-

ing errors are then corrected using a cubic polynomial approximation

method for mapping undistorted to distorted coordinates.

Fig. 2: Light field display calibration. An asymmetric pattern detects a mir-

ror. Checkerboard patterns are then projected in the direct and mirror image

to calibrate the projector.

5 REAL-TIME ALL-IN-FOCUS RENDERING

In our cluster-parallel implementation, we run one separate multi-

threaded back-end rendering process per node, and connect each of

them to a coordinator process running on the front-end PC usingMPI

for commands and using multicast for image data. Each back-end

process controls a portion of the framebuffer and a separate render-

ing is performed for each projector view Each time a new multiview

frame (consisting in a block of JPEG-compressed images) arrives

on the multicast connection, all-in-focus rendering is performed on

each projector view at the same resolution of the input images.

First, we perform a pipelined CPU-GPU parallel decoding for the

set of images, interleaving the entropy decoding on the CPU using

libjpeg-turbo 2, with the dequantization, inverse-DCT, and YCbCr

to RGB conversion on the GPU by CUDA kernels. Decompressed

RGBA images are then stored into a 3D array, one image per slice.

All the remaining steps are fully performed on the GPU as a se-

quence of CUDA kernel invocations.

From the image blocks, we first produce a Gaussian RGBA pyramid

for each of the images, constructed with 2D separable convolution of

a filter of width 5 and factor-of-two sub-sampling. We then construct

a parallel pyramid containing descriptors for each pixel, which will

be used in the block matching steps. Each descriptor uses 32 bits,

with 24 bits devoted to the Census representation [19] of the 5x5

block centered at the pixel, and the remaining 8 bits used for a lu-

minance value (averaged on a 3x3 block). The Census stores a bit

set to one for each neighbor pixel with value higher than pixel value,

and zero otherwise. The descriptor allows us to rapidly estimate the

similarity between two blocks by weighting the Hamming distance

between Census representations, highly informative on textured ar-

eas or boundaries, with the absolute difference among the luminance

components, which takes care of differentiating flat areas of different

colors. Hamming distances are quickly computed in CUDA using

the intrinsic population count function popc.

2http://libjpeg-turbo.virtualgl.org

Through the auxiliary pyramids, we then perform depth estimation

using a coarse-to-fine approach, successively refining depth estimates

found at each pyramid level. The procedure works by following the

ray associated to each 3D display pixel, put it in correspondence with

the camera space using a customizable modeling transform. Follow-

ing [13, 14, 20], we apply a multiple-center-of-projection technique

for generating images with good stereo and motion parallax cues.

The technique is based on the approach of fixing the viewer’s height

and distance from the screen to those of a virtual observer in order

to cope with the horizontal parallax only design (see Fig. 3). We

assume that the screen is centered at the origin with the y axis in

the vertical direction, the x axis pointing to the right, and the z axis

pointing out of the screen. Given a virtual observer at V, the ray ori-

gin passing through a display screen point Q is then determined by

O = ((1−η)(Vx)+η(Ex+ Qx−Ex

Qz−Ez
(Vz−Ez)), Vy, Vz))whereE is

the position of the currently considered projector, and η is a interpo-

lation factor, which allows us to smoothly transition from standard

single view perspective rendering (with η = 0) to full horizontal

parallax rendering (with η = 1).

Fig. 3: Light field geometry: Left: horizontally, the screen is sharply trans-

missive and maintains separation between views. We smoothly transition

from standard single view perspective rendering (with h = 0) to full horizon-

tal parallax (with h = 1). Right: vertically, the screen scatters widely so the

projected image can be viewed from essentially any height.

For coarse to fine depth estimation, we analyze a space bounded by

two planes in camera coordinates, and use a function that remaps an

index t to a depth z in camera space such that there is decreasing

density moving from near plane zn to far plane zf : z = (1−t
Zn

+
t

Zf
)−1. At the first step, we initialize a buffer of unknown depths,

half the resolution of the coarsest pyramid level, to the index of the

center of the depth range. This depth map is up-sampled by a nearest

neighbor filter and then used as the initial guess for estimating the

depths at the next finer level of the pyramid using only a small fixed

number of steps (5 in this paper) and a search range that is half of

the whole depth range. This upsampling and estimation process is

repeated at successive finer levels, halving the search range at each

step but keeping the number of steps constant, until we get the depth

map at the finest level.

Depth estimation first independently chooses for each pixel the depth

that results in the best matching score among the 4 cameras nearest

to the ray. Using only 4 cameras improves scalability, as it makes

the matching process independent from the camera count, and re-

duces problems due to occlusions. The multiview matching score

is obtained by computing the intersection point between the display

ray and the current camera depth plane, reprojecting the point onto

the camera image plane, and averaging the pairwise matching scores

among descriptors centered at the reprojected pixel in each camera

image. The best depth and costs are then stored in a buffer, on

which a 3x3 median cost filter is applied in order to remove clear

outliers. Then, a separable 5x5 filter is applied to select the depth

with the best matching score in the neighborhood. This filtering

step, whose width matches that of the area-based descriptors, has

the effect of efficiently matching with non-centered windows near

occlusion boundaries, and to try out more depth hypotheses from the

coarser level depth map [11] (see Fig 4).

After the process is repeated for all pyramid levels, we obtain an

estimate of the depth at each pixel in the rendering viewport. A final

CUDA kernel then samples the light field from this depth using a

narrow aperture filter, which combines the colors of the 4 nearest

cameras with a narrow Gaussian weight. Such a filter allows us to

reproduce view-dependent effects such as reflections.

Fig. 4: Coarse to fine optimization. Dotted lines represent surface boundary.
Left: coarse level estimated depths. Center: refined depths with wrong es-

timation for red highlighted pixel. Right: corrected pixel depth considering

neighbors depths.

6 RESULTS

Our system has been implemented on Linux using NVIDIA CUDA 3.2.

The front-end node is a single Intel Core Quad CPU 2.83GHz Linux

PC that is connected through 2 USB hubs to a linear camera array

made of 18 cameras. Cameras are Logitech Portable Webcam C905

working at 640 × 480 @ 15 fps, equally spaced at about 9cm in-

tervals, and calibrated at sub-pixel precision. The captured scene

covers a wide field of view and depth (from 1 to 5m). Our 3D

display is capable of visualizing 35Mpixels by composing images

generated by 72 SVGA LED commodity projectors illuminating a

160 × 90cm holographic screen. The display provides continuous

horizontal parallax within a 50◦ horizontal field-of-view with 0.8◦

angular accuracy. The pixel size on the screen surface is 1.5mm. The

rendering back-end is currently running on an array of 18 Athlon64

3300+ Linux PCs equipped with two NVIDIA 8800GTS 640MB

(G80 GPU) graphics boards running in twin-view mode. Each back-

end PC has thus to generate 4×800×600 pixels using two OpenGL

graphics boards with CUDA capability 1.0 and based on an old G80

chip. Front-end and back-end nodes are connected through Gigabit

Ethernet. The original M-JPEG images are multicast to the render-

ing nodes on a single gigabit Ethernet channel with approximately

10% link utilization.

Fig. 5: Live capture. Two representative frames recorded using a hand-held

video camera freely moving in the camera and display workspace.

It is obviously impossible to fully convey the impression provided by

our end-to-end 3D system on paper or video. As a simple illustration

of our system’s current status and capabilities, we recorded the per-

formance using a hand-held video camera freely moving in the cam-

era and display workspace 3. Representative video frames are shown

in Fig. 5. Our method appears to reasonably synthesize novel views.

A very demanding situation is shown in Fig. 6 right. Although some

estimated depth values are incorrect in textureless regions and near

boundaries, the rendered colors mostly look visually correct. Small

3The video is available from http://vic.crs4.it/multimedia/

artifacts can be noticed at some depth boundaries, since our accel-

eration method based on precomputed pyramids trades quality with

speed over a full correlation approach, such as the one employed in

adaptive coarse-to-fine stereo [11], which is however hard to apply in

real-time to a multiview setting. Images are in all cases sharper than

with a pure light field approach with the same camera configuration

(see Fig. 6 left).

Fig. 6: All-in-focus performance. The light-field image (left) is blurry since

the camera spacing is insufficient to adequately sample the ray space. By es-

timating the depth (right), we can produce all-in-focus images. Even though

depth estimation may fail in textureless areas, the failures are not visible in

the color image.

Even though the rendering hardware is definitely not high end, the

application remained interactive with an average frame rate during

the recorded interaction sequence of 9fps. With the same settings,

but replacing the graphics boards with a recent medium end one

(NVIDIA GTX 460), the unmodified code is capable of reaching

the performance of 21fps, therefore exceeding capture performance

speed. As shown in Fig. 7, on 8800 GTS GPUs most of the time

is spent for data uploading and JPEG decompression, which empha-

sizes the performance of our all-in-focus renderer. An interesting

plan for future work is to exploit the availability of hardware ac-

celerated video codecs on recent graphics boards to reduce overall

bandwidth and improve performance.

Fig. 7: Kernel time plot. Kernel time distribution in a single frame. Time

also include memcopy operations, from host to device for JPEG decoding,

and from device to device for moving results to cudaArray for accessing them

with a texture sampler.

7 CONCLUSIONS

We have presented an end-to-end system capable of real-time cap-

turing and displaying with full horizontal parallax high-quality 3D

video contents on a cluster-driven multiprojector light-field display.

Our GPGPU implementation achieves interactive performance on

decompression and all-in-focus rendering on CUDA 1.0 graphics

boards, and its scalable performance is demonstrated for future gen-

eration boards. Our future plans include upgrading the implementa-

tion to work on a smaller cluster with recent generation boards, and

research on methods for non-linearly remapping the depth range of

the captured scene within the display workspace.

8 References

[1] A. Kubota, A. Smolic, M. Magnor, M. Tanimoto, T. Chen, and

C. Zhang, “Multiview imaging and 3DTV,” IEEE Signal Pro-

cessing Magazine, vol. 24, no. 6, pp. 10, 2007.

[2] A. Smolic, “3D video and free viewpoint video – from capture

to display,” Pattern Recognition, 2010, In press.

[3] W. Matusik and H. Pfister, “3D TV: a scalable system for real-

time acquisition, transmission, and autostereoscopic display of

dynamic scenes,” ACM Trans. Graph., vol. 23, no. 3, pp. 814–

824, 2004.

[4] R. Yang, X. Huang, S. Li, and C. Jaynes, “Toward the light

field display: Autostereoscopic rendering via a cluster of pro-

jectors,” IEEE Trans. Vis. Comput. Graph., vol. 14, pp. 84–96,

2008.

[5] T. Balogh and P. Kovács, “Real-time 3D light field transmis-

sion,” in SPIE, 2010, vol. 7724, p. 5.

[6] J.-X. Chai, X. Tong, S.-C. Chan, and H.-Y. Shum, “Plenoptic

sampling,” in Proc. SIGGRAPH, 2000, pp. 307–318.

[7] R. Yang, G. Welch, and G. Bishop, “Real-time consensus-

based scene reconstruction using commodity graphics hard-

ware,” in Proc. Pac. Graph., 2002, pp. 225–.

[8] Y. Kunita, M. Ueno, and K. Tanaka, “Layered probability

maps: basic framework and prototype system,” in Proc. VRST,

2006, pp. 181–188.

[9] Y. Taguchi, K. Takahashi, and T. Naemura, “Real-time all-in-

focus video-based rendering using a network camera array,” in

Proc. 3DPVT, 2008, pp. 241–244.

[10] Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “Tran-

sCAIP: A live 3D TV system using a camera array and an in-

tegral photography display with interactive control of viewing

parameters,” IEEE Trans. Vis. Comput. Graph., vol. 15, pp.

841–852, 2009.

[11] M. Sizintsev, S. Kuthirummaly, S. Samarasekeray, R. Kumary,

H. S. Sawhneyy, and A. Chaudhryy, “Gpu accelerated realtime

stereo for augmented reality,” in Proc. 3DPVT, 2010.

[12] M. Weber, M. Humenberger, and W. Kubinger, “A very fast

census-based stereo matching implementation on a graphics

processing unit,” in Proc. ICCV Workshops, 2009, pp. 786

–793.

[13] A. Jones, I. McDowall, H. Yamada, M. T. Bolas, and P. E.

Debevec, “Rendering for an interactive 360 degree light field

display,” ACM Trans. Graph, vol. 26, no. 3, pp. 40, 2007.

[14] M. Agus, E. Gobbetti, J. A. I. Guitián, F. Marton, and G. Pin-

tore, “GPU accelerated direct volume rendering on an inter-

active light field display,” Computer Graphics Forum, vol. 27,

no. 2, pp. 231–240, 2008.

[15] K. Niski and J. D. Cohen, “Tile-based level of detail for the

parallel age,” IEEE Trans. Vis. Comput. Graph., vol. 13, pp.

1352–1359, 2007.

[16] R. Tsai, “A versatile camera calibration technique for high-

accuracy 3D machine vision metrology using off-the-shelf TV

cameras and lenses,” IEEE Journal of robotics and Automa-

tion, vol. 3, no. 4, pp. 323–344, 1987.

[17] M. A. Lourakis and A. Argyros, “SBA: A Software Package

for Generic Sparse Bundle Adjustment,” ACM Trans. Math.

Software, vol. 36, no. 1, pp. 1–30, 2009.

[18] M. Brown, A. Majumder, and R. Yang, “Camera-based cali-

bration techniques for seamless multiprojector displays,” IEEE

Trans. Vis. Comput. Graph, vol. 11, no. 2, pp. 193–206, 2005.

[19] R. Zabih and J. Woodfill, “Non-parametric local transforms for

computing visual correspondence,” in Proc. ECCV, 1994, pp.

151–158.

[20] J. A. Iglesias Guitián, E. Gobbetti, and F. Marton, “View-

dependent exploration of massive volumetric models on large

scale light field displays,” The Visual Computer, vol. 26, no.

6–8, pp. 1037–1047, 2010.

