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Central Dogma of Molecular Biology

Replication CDHA (genome) MH

Transcription l -

RNA (messenger)

Transiation l

Proteins (workhorses of cell)

Figure 1. The Central Dogma in its original form. i




GCCACATGTAGATAAT TGAAACTGGATCCTCATCCCTCGCCTTGTACAAAAATCAACTCCAGATGGATCTAAG
ATTTAAATCTAACACCT GAAACCATAAAAATTCTAGGAGATAACACTGGECAAAGCTATTCTAGACATTGECTT
AGGCAAAGAGT TCGTGACCAAGAACCCAAAAGCAAATGCAACAAAAACAAAAATAAATAGGT GCGACCTGATT
AAACT GAAAAGCCT CTGCACAGCAAAAGAAATAAT CAGCAGAGTAAACAGACAACCCACAGAATGAGAGAAAA
TATTTGCAAACCATGCATCTGATGACAAAGGACTAATAT CCAGAATCTACAAGGAACTCAAACAAATCAGCAA
GAAAAAAATAACCCCATCAAAAAGT GGGCAAAGGAATGAATAGACAATTCTCAAAATATACAAATGGCCAATA
AACATACGAAAAACTGT TCAACATCACTAATTATCAGGCGAAAT GCAAAT TAAAACCACAATGAGATGCCACCT
TACTCCTGCAAGAATGGCCATAATAAAAAAAAAT CAAAAAAGAATAAATGT TGGT GTGAATGTGGTGAAAAGA
GAACACT TTGACACT CCTGGT GGGAATGGAAACTAGTACAACCACT GTGGAAAACAGTACCGAGATTTCTTAA
AGAACTACAAGT AGAACTACCAT TTGATCCAGCAAT CCCACTACT GGGTATCTACCCAGAGGAAAAGAAGT CA
TTATTTGAAAAAGACACT TGTACATACATGI TTATAGCAGCACAATTTGCAAT TGCAAAGATATGGAACCAGT
CTAAATGCCCATCAACCAACAAATGGATAAAGAAAATATGGTATATATACACCATGGAACACTACTCAGCCAT
AAAAAGGAACAAAAT AAT GCCAACT CACAGAT CGGAGT TGGAGACCACTATTCTAAGT GAAATAACT CAGGAAT
GGAAAACCAAATATTGTATGI TCTCACTTATAAGT GGGAGCTAAGCTATGAGGACAAAAGGCATAAGAATTAT
ACTATGGACT TTGGEGCGACT CCEEEEAAAGEGT CGGAGGEGEEGAT GAGGGACAAAAGACT ACACAT TGGGT GCAG
TGTACACT GCTGAGGT GATGGEGTGCACCAAAATCTCAGAAATTACCACTAAAGAACT TATCCATGTAACTAAA
AACCACCTCTACCCAAATAATTTTGAAATAAAAAATAAAAATATT TTAAAAAGAACTCTTTAAAATAAATAAT
GAAAAGCACCAACAGACTTATGAACAGGCAATAGAAAAAAT GAGAAATAGAAAGGAATACAAATAAAAGTACA
GAAAAAAAATATGGCAAGT TATTCAACCAAACT GGTAAT TTGAAATCCAGAT TGAAATAATGCAAAAAAAAGG
CAATTTCTGGCACCATGGCAGACCAGGTACCTGGATGATCT GI TGCTGAAAACAACTGAAAATGCTGGT TAAA
ATATATTAACACAT TCTTGAATACAGT CATGGCCAAAGGAAGT CACATGACTAAGCCCACAGT CAAGGAGT GA
GAAAGTATTCTCTACCTACCATGAGGCCAGGGCAAGGGTGTGCACTTTTTTTTTTCTTCTGI TCATTGAATAC
AGTCACTGIGTATTTTACATACTTTCATTTAGTCTTATGACAATCCTATGAAACAAGTACTTTTAAAAAAATT
GAGATAACAGT TGCATACCGT GAAATTCATCCAT TTAAAGT GAGCAAT TCACAGGT GCAGCTAGCTCAGI CAG
CAGAGCATAAGACTCT TAAAGTGAACAATTCAGTIGCCTTTTTAGTATATTCACAGAGT TGT GCAACCATCACCA
CTATCTAATTGGTCTTAGI CTGI TTGGGECTGCCATAACAAAAT ACCACAAACT GGATAGCTCATAAACAACAG
GCATTTATTGCTCACAGT TCTAGAGGCT GGAAGT CCAAGATTAAGATGCCAGCAGAT TCTGTGI CTGCTGAGG
GCCTGITCCTCATAGAAGGT GCCCTCTTGCTGAAT TCT CACAT GGT GGAAGGGGGAAAACAAGCT TGCATTGC
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CRS4 Gene expression data
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of data:

pxn

p = #genes, n = #observations) Jcrs ——
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Inferring Gene Networks
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Experimental strategies

‘Observational data’

Repeated measurements of a given tissue/cell type
without experimental intervention

ALLOWS ONLY FOR INFERRING UNDIRECTED NETWORKS

‘Perturbation data’

Creating targeted perturbations and measuring
systems dynamic responses (steady states or
time-series)

ALLOWS FOR INFERRING DIRECTED NETWORKS
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Observational data
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Co-expression networks




cRs Partial correlation
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The correlation between T3 and T4 disappears
when conditioned on T2, because T2 is a causal
parent of both T3 and T4
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CRS4 Further reading

Vol. 20 no. 18 2004, pages 3565-3574
doi:10.1093/bicinformatics/bth445

3 Discovery of meaningful associations in genomic
;mg‘ data using partial correlation coefficients
|

Alberto de la Fuente*, Nan Bing*, Ina Hoeschele and Pedro Mendes

Virginia Polytechnic Institute and State University, Virginia Bioinformatics Institute,
1880 Pratt Drive, Blacksburg, Virginia, 24067 USA

Received on June 2, 2004; revised on July 15, 2004; accepted on July 24, 20(

Advance Access publication July 29, 2004 Online jouRl 15N 1885630 [ ‘ Al Fe |} ‘ il I | II I 1|

/w N /r D Crcncucs and Molecu];’trchscarch I
.t A & .

ABSTRACT about the underlying network top
Motivation: A major challenge of systems biclogy is to assnmed that biochemical netwo

infer biochemical interactions from large-scale observations, ected acyclic graphs (Friedman e Genome-‘Vide partial Correlation analysis Of
such as transcriptomics, proteomics and metabolomics. We However. cyclic network structur ESC heric hia co ho micrﬂarray da ta

propose to use a partial correlation analysis to construct are ubiquitous in biology and are :

approximate Undirected Dependency Graphs from such large- specific properties of living syste
scale biochemical data. This approach enables a distinc- should be independent of such as:
tion between direct and md]rect interactions of blochem]cal \Ve TOpose a method fo cons , .
e 1 M A ) e Al LA A5 D.ET. Veiga", FER. Vicente'", M. Grivet’, A. de Ia Fuente*

and A.T.R. Vasconcelos'

de la Fuente A, Bing N, Hoeschele | and Mendes P. Discovery of meaningful associations in genomic data
using partial correlation coefficients Bioinformatics, 2004, 20(18):3565-3574

Veiga, D.F., da Rocha Vicente, F.F.,, Grivet, M, de la Fuente, A., Ribeiro de Vasconcelos, A.T. (2007)
Genome-wide Partial Correlation Analysis of Escherichia coli Microarray Data. Genetics and Molecular
Research 6(4): 730-742



cCRS4 Correlation =/= Causation

IDEAS BECOME LIFE

T USED T THINK, THEN I TOOK A | | SOUNDS LKE THE Global Average Temperature Vs. Number of Pirates
CORRELATION MPUED STATISTICS CLASS. cm'ss HELPED.
CAUSATION. Now I DON'T. WELL, MH‘fBE 5

2 X

k 5 ~ f/’:mt

3 r:!.i’___.—“'l'osb

g i

- = 190

g 143 P

& — i
J—:: 13.5

35000 45000 20000 15000 5000 400 17
Number of Pirates ( Approximate)
WWW. VT ZANAZLOTE




A ICRS 4 Perturbation data

IDEAS BECOME LIFE

o Steady state perturbation data

Wild type —

Over-expression Gene 1
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Perturbation analysis

— Steady state mRNA concentration/gene expression
levels

» Wild-type

»Systematic single gene knockdowns or over-
expression

»Heterozygous knockout
»Expression from plasmid
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Measure gene-expression in unperturbed (WT) state

Perturb each gene and measure gene-expression responses

X, —X,—X, X, — X
\ \ Perturb X,
Xs X, X,
\\ P Perturb X,

(over-express,
knock-down)

All perturbed
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Distinguish direct from indirect edges:
Algebraic relation between the deviation matrix X (perturbed levels —
wild type levels) and the network matrix (encoding the network A of
direct interactions)

X, — X, — X,




Linear modeling approach

" | =5 =Y a Ax +AG
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m TRENDS in Genetics Vol.18 No.8 August 2002
- -
Linking the genes:
g g L] experir

[3-9],=

THE CHALLENGES OF SYSTEMS BIOLOGY inferring quantitative :liSiElel

Then, &

gene networks from

Inferring Gene Networks: Dream level.T

or Nightmare? microarray data

transcr

would ¢
Part 2: Challenges 4 and 5 Alberto de la Fuente, Paul Brazhnik and Pedro Mendes ~ appiic

Alan Scheinine, Wieslawa I. Mentzen, Giorgio Fotia,

Enrico Pieroni, Fabio Maggio, Gianmaria Mancosu, Trends Genet. 2002 AUg,18(8) :395-8
and Alberto de la Fuente

CRS4 Bioinformatica, Pula, Italy

We describe several algorithms with winning performance in the Dialogue for Reverse
Engineering Assessments and Methods (DREAM?2) Reverse Engineering Competition
2007. After the gold standards for the challenges were released, the performance of the
algorithms could be thoroughly evaluated under different parameters or alternative
ways of solving systems of equations. For the analysis of Challenge 4, the “In-silico™

Scheinine, A., Mentzen, W., Pieroni E., Fotia, G., Maggio, F., Mancosu, G. and de la
Fuente, A. (2009) Inferring Gene Networks: Dream or nightmare? Part 2: Challenges 4
and 5. Annals of the New York Academy of Sciences 1158: 287301



Perturbation analysis

— Steady state mRNA concentration/gene expression
levels

» Wild-type
»Systematic single gene knock-outs
»Complete removal of genes



Perturbation analysis

« Weight estimation for edge-|: changein the
MRNA IevelxiJ of geng afterknockout of gene

e /-SCOre:
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Transitive reduction

o The edge weight measures the total causal effect of
a gene on another gene: direct or mediated?

o The initial network can have many feed-forward
loops

o Not essential for reachability

« We want to rank them lower than “essential” edges



Transitive reduction

o Algorithm:

1) Fix a threshold for weights and determine a network

2) Delete feed-forward edges between strongly connected
components of the network

3) Increase the weight of remaining edges in W

W

Result:
Essential edges (solid) are ranked higher than
feed-forward edges (dashed)



A BCRS Further reading

IDEAS BECOME LIFE

e )
OPEN & ACCESS Freely available online @ PLoS one

From Knockouts to Networks: Establishing Direct Cause-
Effect Relationships through Graph Analysis

Andrea Pinna, Nicola Soranzo, Alberto de la Fuente*

Center for Advanced Studies, Research and Development (CRS4) Bioinformatica, Pula, Italy

Abstract

Background: Reverse-engineering gene networks from expression profiles is a difficult problem for which a multitude of
techniques have been developed over the last decade. The yearly organized DREAM challenges allow for a fair evaluation
and unbiased comparison of these methods.

Results: We propose an inference algorithm that combines confidence matrices, computed as the standard scores from
single-gene knockout data, with the down-ranking of feed-forward edges. Substantial improvements on the predictions can
be obtained after the execution of this second step.

Conclusions: Our algorithm was awarded the best overall performance at the DREAM4 In Silico 100-gene network sub-
challenge, proving to be effective in inferring medium-size gene regulatory networks. This success demonstrates once again
the decisive importance of gene expression data obtained after systematic gene perturbations and highlights the
usefulness of graph analysis to increase the reliability of inference.

Citatinn: Pinna 8 Sarmnra M da la Fianta 8 (2010 Eram Knackante ta Mathaarke: Ferahlichina Niract Cancafffart Balatinnchine thrannh Granh Anahcic 21 AS

Pinna, A., Soranzo, N. and de la Fuente, A. (2010) From Knockouts to Networks:
Establishing Direct Cause-Effect Relationships through Graph Analysis, PLoS ONE 5(10),
12912 (DREAMA4 Special Collection)
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Figure 7 from: GeneNetWeaver: In silico benchmark generation and performance profiling of
network inference methods. Schaffter T, Marbach D, Floreano D. Bioinformatics (2011) 27 (16):
2263-2270.
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Jansen, R.C., and Nap, J.P. (2001) Trends Genet. 17 , 388-391
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Gene Network inference requires many perturbations
Experimental perturbations are difficult and costly

Use of naturally occurring genetic variations (pert urbations)

vy, =b, +b1yjn +szchI +&,

irt

x = genotype data (e.g. SNPs)
y = gene expression ‘phenotypes’
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Copyright @ 2008 by the Genetics Society of America
DOL: 101554 /genetics. 107080069

Gene Network Inference via Structural Equation Modeling in Genetical
Genomics Experiments

Bing Liu,* "2 Alberto de la Fuente*' and Ina Hoeschele*:*

*Department of Stanstics, Virginia Polytechnic Institute and State Untversity, Blacksburg, Virginia 24061, TVi?"gmm Biownformatics Institute,
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0477 and YeRS4 Bioinformatica,
Parco Scientifico e Tecnologico, POLARIS, 09010 Pula (CA), ftaly

Manuscript received August 6, 2007
Accepted for publication January 7, 2008

ABRSTRACT

Our goal is gene network inference in genetical gencmics or systems genetics experiments. For species
where sequence infermaticn is available, we first perform expression quantitative trait locus (eQTL)
mapping by jointly utlizing cts-, cs—rans, and zransregulation. After using local structural medels to
identify regulator—target pairs for each eQJTL, we construct an encompassing directed network {(EDN) by
assembling all retained regulator—target relationships. The EDN has nodes corresponding te expressed
genes and eQTL and directed edges from eQTL to ¢isregulated target genes, from ¢isregulated genes to
cis—transtegulated target genes, from transregulator genes to target genes, and from zranseQTL to target
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algorithms work?




Algorithm evaluation
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benchmarks

& Gold-standard Expression
Test conditions synthetic gene circuit profiles
e A e T
, A B d
OVerexpression s s = /// —_
Knockout —— E D —_—
Compare
and
validate ‘/‘"":‘*\ I Network
A) B—(C) = inference
/ algorithm
® ©
Predicted network

A yeast synthetic network for in vivo assessment of reverse-engineering and modeling
approaches. Cantone |, Marucci L, lorio F, Ricci MA, Belcastro V, Bansal M, Santini S, di Bernardo
M, di Bernardo D, Cosma MP. Cell. 2009 Apr 3;137(1):172-81. Epub 2009 Mar 26.
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In silico algorithm evaluation

B Synthetic gene expression data g
Steady state and time series o

Simulation
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E Double-blind
performance assessment

D

A In silico gene networks

C Network inference
method

D Predicted networks
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Algorithm evaluation

1.0

0.8

Precision
o
[#3]

o
»~

0.2

Q%.

Precision-Recall example: AUC=0.82

‘ — Precision-Recall curve

0 0.2 0.4 0.6 0.8
Recall

1.0

actual class

(expectation)

tp fp
(true positive) (false positive)
predicted class Correct result Unexpected result
(ocbservation) fn tn
(false negative) (true negative)
Missing result Correct absence of result

.. i
Precision = _p
tp+ fp
Recall = t—p
tp+ fn
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e DREAM2, best performer in:
— Synthetic Five-Gene Network Inference
— DREAM2 In Silico Network Challenge

B ——
The Hﬂ*'#@-{&l@ Project presents to

Team ALF

composed of Alberto de la Fusnte, Andrea Pinna and Nicola Soranzo

a certificate of Best Performance in the DREAM4 chalienge:

Prediction of in-silico Networks of Size 100

e DREAM4, best performer in:
— DREAMA4 In Silico Network Challenge
e Size 100 subchallenge

S 3 Ty W oy oo T AT
Fepst o Pl TR
[R] :
The EFEHAHM Project presents to

Team ALF

* DREAMS5, honorary mention in: R —
— Network inference challenge o

November 2010

* DREAMG: top 3 RNA-seq challenge
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Add nodes for

(Mendes et al.,

2003)

Generate
network
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FIGURE 3

Cis-effect: a polymorphism
in promotor region of gene
G, affects the basal
transcription rate.

Z, forallele ‘A’ > Z allele ‘a’.
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Gene action of
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Generate

Epigenomics
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Network dynamics

Trans-effect: a polymorphism '
in coding region of gene G,

affects the strength of the

effect on its targets.

Z, for allele ‘B’ > Z, allele ‘b’.

g-Vg-]'[ 1+ A4,

keR, K gk Z

Reason: Many algorithms
have been (and even more
will be) proposed for Gene
Network Inference: need

for unbiased evaluation

SysGenSIM has been used to
generate a challenge in
DREAMS, STAT-SEQ
COST, Springer book

Currently in MATLAB, but we
want to reprogram in Python

e
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Network dynamics

— Gene Metwork, — Phenotype Parameters
Metwoaork Topology Metwarlk Size Sign Assignment Sign Pratbakility Phenotype Modes

EIPO Modular - | 1000 Mode-vise - | 0.5 10
Ayerage Mode Degree Modules Eewiring Protability Direct Causal Genes S e n
| 4 200 100 100 100 100 100 100 50 51 | o1 Mean | 10 stDev | 2

Path of Custom Metwark Direct Reactive Genes

— Genotype Parameters — Qutput Files Download at:

Marker Positions Cene Positions Mapping Function EIL Type W Genatype Matrix
Cenerate v| at Markers v| Haldane v| Selfing v| B GCene Expression Matrix
Chromasaomes Markers per Chromosome Dristances (ch) W FPhenotype Matrix
5 Mean 200 StDew 10 Mean | 5 StDay | 1 W GCenetic Map
Cis-Effect % Genotyping Error % Z Lower Bound Z Upper Bound W Edge List
25 5 0.5 0.8 _| Pajek Netwark File
Path of Custom Genetic Map | Module List
| Browse Genetic Mg _| Topological Properties
_| Genotype Information
— Kinetic and Moise Parameters W simulation Summany

Marme of Parameter Distribution Farameter #1 Farameter #2

— Qutput Figures

Basal Transcription Rate Constant b/ | 1 | _| Mode Degree Distributions
Interaction Strength Constant hd | 1 | _| Parameter Distributions

_| Gene Expression Distribution
Cooperativity Coefficient Gamma - | 1 | 167 ] Heritability Distribution

1 | _| Gene Correlation Distributions

Basal Degradation Rate Constant -
— Experiment Settings

Transcription Biological Wariance Gaussian - | 1 | 0.1 Population Size Experirments

Degradation Biological Wariance Gaussian h | 1 | o1 | 00 | 10
Expression Measurement Moise GCaussian - | 1 | 0.1 Run SysGensit




A OCRS

IDEAS BECOME LIFE

SysGenSIM

Vol 27 no. 17 2011, 2459-2462
APPLICATIONS NOTE ™ ‘ivo.osabivinormatcsivirior

Systems biology

Advance Access publication July &6, 2011

Simulating systems genetics data with SysGenSIM

Andrea Pinna', Nicola Soranzo’, Ina Hoeschele?-® and Alberto de la Fuente!-*

'CRS4 Bioinformatica, 09010 Pula (CA), Haly, 2IZZhapaartrrrE:m of Statistics, Virginia Polytechnic Institute and State
University, Blacksburg, VA 24061 and Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State

University, Blacksburg, VA 24061-0477, USA
Associate Editor: Mariin Bishop

ABSTRACT

Summary: SysGensIiM is a software package to simulate Systems
Genetics (SG) experiments in model organisms, for the purposa of
evaluating and comparing statistical and computational methods
and their implementations for analyses of SG data [e.g. methods
for expression quantitative trait loci (£QTL) mapping and network
inference]. SysGenSIM allows the user to select a variety of network
topologies, genetic and kinetic parameters to simulate SG data

known that the etraits of groups of genes share common regulators
{DNA variants), which are more easily identified when associated
with a group of ctraits rather than with individual etraits. Several
approaches to associating DINA variants with groups of etrails have
recently been proposed (e.g. Chun and Keles, 2000: Lee et al., 2009,
2006; Parkhomenko ef al. 2007; Waaijenborg ef al., 2008; Zhang
el al., 2010),

A major goal of SG studies is W reconstruct a causal network

o]




Ao ICRS IMPROVER

COMMENTARY

Verification of systems biology research

In the age of collaborative competition T ===
Pablo Meyer!, Leonidas G Alexopoulos?, Thomas Bonk?®, Andrea Califano*, Carolyn R Cho®, é ;—'_ =- ? -= ®

Alberto de la Fuente®, David de Graaf’, Alexander ] Hartemink®, Julia Hoeng3, Nikolai V Ivanov?,
Heinz Koeppl®, Rune Linding!?, Daniel Marbach!!, Raquel Norel!, Manuel C Peitsch?, J Jeremy Rice!,
Ajay Royyuru!, Frank Schacherer!'2, Joerg Sprengel'?, Katrin Stolle?, Dennis Vitkup? & Gustavo Stolovitzky'

Collaborative competitions in which communities of researchers compete to solve challenges may facilitate more
rigorous scrutiny of scientific results.

jhts reserved.
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Diagnostic Signature Challenge
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The goal of the diagnostic signature challenge is to
assess and verify computational approaches that classify
clinical samples based on transcriotomics data.

Psoriasis Sub-Challenge

peonash

The challenge is to develop a classifier that differentiates
healthy skin from that with psoriatic lesions.

The classifier will be built by using publicly available gene
expression data with their psoriasis-related clinical
information (e.g. label). The classifier will be tested on an
unpublished independent high quality dataset.

Lung Cancer Sub-Challenge

WS,

The challenge is to classify lung cancer subtypes
[Adenocarcinoma (AC) and Sguamous Cell Carcinoma
(SCC)] and their respective stages (| & Il) based on
franscriptomics data from tumor samples.

The classifier will be built by using publicly available gene
expression data with the respective histo-pathological
information. The classifier will be tested on an independent
high quality dataset.

Chronic Obstructive Pulmonary

Disease Sub-Challenge

COPD
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The challenge is to develop a classifier that differentiates
COPD vs control basad on the airway transcriptome from

clinical samples.

The classifier will be built by using publicly available
gene expression data with clinical information. The
classifier will be tested on an independent unpublished

high quality dataset.

Multiple Sclerosis Sub-Challenge
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The challenge is to develop a classifier that differentiates

clinical samples in two ways:

» control vs. multiple sclerosis

* relapsing vs remitting multiple sclerosis
based on transcriptome measured in Perip
Mononuclear Cells (PEMC).

The classifier will be built by using publicly av:
expression data with clinical information. The ¢
be tested on two independent unpublished
datasets.
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= Website Launch
* Challenge Open
= Registration Open

= Scoring Complete
= Ranking Available

= Announce Best
Performing Team

= Submission Deadline for
Predictions and Write-ups

= Challenge Closed

= SBV Symposium

= Award Top Performing
Teams

= Share Results &
Experiences




Overview of the

presentation

¢ |Introduction to Gene networks
e Gene network inference

e Evaluation of gene network inference
algorithms

¢ Differential networking in disease
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Group 1 (healthy tissue, Group 2 (tumor tissue,
treated with medicine, not treated with medicine,
tumor stage X, etc.) tumor stage Y, etc.)



CRS4 ‘Differential expression’

IDEAS BECOME LIFE

treatment
group
[ =E]




A OCRS ‘Differential networking’

IDEAS BECOME LIFE




A OCRS ‘Differential networking’
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From ‘differential expression’ to
‘differential networking’ -
identification of dysfunctional
regulatory networks in diseases

Alberto de la Fuente

CRS4 Bioinformatica, Polaris Edificio 3, Localita Piscina Manna, 09010 Pula (CA), Italy
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Understanding diseases requires identifying the di text essentially take this app;ruach to differential coexpression. Testing
ences between healthy and affected tissues. C
expression data have revolutionized the study of
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Expression Correlation Correlation
Matrix Matrix Vector

Healthy regulatory system Sick regulatory system
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NCBI RefSeq
(32735 mRNAS)

NCBI Gene

|

mirBase 18

(43448 genes)

GenExpReg

(1921 mature miRNAs)

FANTOM4 EdgeExpressDB
+ Transmir 1.2
(46602 TF regulations)

(669760 miRNA regulations)

TargetScanHuman 6.1
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AUPRC for knockout of 10 microRNAs
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Lung cancer miRNAs?

Bhattacharjee,A. et al. (2001) Classification of human lung carcinomas by
MRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc.
Natl Acad. Sci., 98, 13790-13795.

Family name Seed N. of target QN. of target |P-value for [Notes

miR-1293 GGGUGGU 73 23 0.0022

miR-28/28-3p ACUAGAU 77 19 0.0024jupregulated in serum copy number of lung cancer patients w.r.t. healthy [1]

miR-1244 AGUAGUU 147 53 0.0027

miR-1269 UGGACUG 77 21 0.0048

miR-1224/1224-5p |UGAGGAC 88 34 0.0050

miR-578 UuCcuuGguy 229 65 0.0052

miR-1305 UUUCAAC 414 106 0.0060

miR-433 UCAUGAU 207 63 0.0061
highly specific marker for squamous cell lung carcinoma [2] and non-small cell
lung cancer [3]; located in a region amplified in lung cancer; upregulated in

miR-205 CCUUCAU 288 92 0.0063]lung cancer tissues w.r.t. noncancerous lung tissues [4]

miR-1237 CCUUCUG 177 42 0.0082

miR-520a-5p/525-5p JUCCAGAG 296 79 0.0085

miR-582-3p AACUGGU 97 46 0.0086

miR-568 UGUAUAA 308 85 0.0087

miR-432 CUUGGAG 133 37 0.0090fmember of miR-127 cluster, which is downregulated in tumors [5]

miR-524-3p/525-3p |AAGGCGC 38 10 0.0091

miR-513c UCUCAAG 223 64 0.0094

miR-370 CCUGCUG 239 52 0.0096]downregulated after lung development [6]

[1] Chen, X., et al. - Cell Res. 18(10) pp. 997-1006 — 2008
[2] Lebanony, D., et al. - J. Clinical Oncology 27(12) — pp. 2030-2037 — 2009
[3] Markou, A., et al. — Clin. Chem. 54(10) — pp. 1696-1704 — 2008
[4] Yanaihara, N., et al. - Cancer Cell 9(3) — pp. 189-198 — 2006

[5] Saito, Y., et al. - Cancer Cell 9(6) — pp. 435-443 — 2006
[6] Williams, A. E., et al. - Dev. Dyn. 236(2) — pp. 572-580 — 2007
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Thank you for your
attention




