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Abstract

This paper presents an attempt to develop a comprehensive representation
of two components incompressible Newtonian flows. The primary target is to
have insight on how to improve the CFD simulations of free-surface flows so
as to deal with very high density ratios. First, the Navier-Stokes equations
of a fluid with two immiscible components is derived from the single com-
ponent equations. In this case, the surface tension does not come from the
equations and must be added externally. Second we shortly review the Cahn-
Hilliard and Allen-Cahn equations describing a phase separation process, and
the phenomenological relation with surface-tension phenomena.

Third, we build phase momentum equations which are consistent with the
classical Navier-Stokes equations, but this time for miscible fluids. The con-
cept of energy conservation applied separately to the phases is systematically
used to build the phase momentum forces, with a particular regard to the
surface tension. Fourth, by use of a dynamical equilibrium assumption and a
specific splitting of the energies and their derived force, we retrieve the basic
properties of the phase transport equations. The method is extended to the
surface tension and to the baro-diffusion. The relation between the phase
forces and diffusion fluxes is clarified. Finally, a complete and consistent set
of equations is provided and discussed.
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1 Introduction

This work has been performed in the framework of the European Union
THINS 1 project. We report hereafter the first paragraph of the project
description.

“For the long-term development of nuclear power, innovative nuclear sys-
tems such as Gen-IV reactors and transmutation systems need to be devel-
oped for meeting future energy challenges. Thermal-hydraulics is recognized
as a key scientific subject in the development of innovative reactor systems.
This project is devoted to important cross-cutting thermal-hydraulic issues
encountered in various innovative nuclear systems, such as advanced reac-
tor core thermal-hydraulics, single phase mixed convection and turbulence,
specific multiphase flow, and code coupling and qualification.”

Our part in the project deals with free-surface flows CFD simulations with
commercial software, here Starccm+ from CD-Adapco. With this software, it
is now possible to perform meaningful simulations in the VOF formulation. It
is in continuous improvement so it is useful to follow the progress and have a
clear idea of the possible applications. There are however some fundamental
limitations that we would like to eliminate, at least try to.

In effect, playing with the software, it turns out that it is almost impossible
(at least for the author) to stabilize a CFD simulation of a two-phase flow with
a ratio of density decisively larger than the usual water-air density ratio at
1 Bar. We need however to deal with heavy liquid metal flows in contact
with gas at atmospheric, or even much lower, pressure. Another encountered
defect is that when a free-surface is subject to the combined effect of shear
and oscillation, then it begins to non-physically diffuse . This effect has been
encountered while trying to simulate a tentative design of a windowless target
for MYRRHA2. In this design, a liquid Lead-Bismuth Eutectic LBE presents
a free-surface towards an upper almost vacuum. It is therefore completely
non-physical to interpret phase mixing in this context as bubble inclusions.
The issue was readily solved by adding a surface sink of the light phase at
the interface. The almost vacuum was simulated as an incompressible fluid
with density about 10, to comply with the density ratio constraint. While
the windowless MYRRHA target option has been discarded, we still have to
model LBE flows, however, in contact with a cover gas at ambient pressure.
In effect, LBE serves as primary coolant of MYRRHA. The density ratio
then becomes an issue because in the future we would like to be able to

1Thermal-hydraulics of Innovative Nuclear Systems, Funded under 7th FWP, project ref.
249337

2www.iaea.org/inisnkm/nkm/ws/d2/r1655.html
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understand the combined dynamic of the LBE/cover gas flow, comprehensive
of possible pollutants diffusion. A correct description of the gas will become
more critical and so will be the density ratio issue. To be able to follow
the diffusion of pollutants across the free-surface, we also definitively need to
have a sharpening algorithm which is fully conservative. In this context, we
also observed that where the free-surface is stagnant (heavy liquid side) then
a relatively large parasite un-physical flow fields develops at the light phase
side, and this independently of any applied surface tension.

The idea behind this work is that the density ratio issue, the parasite flow
and the surface smearing are different aspects of the same problem. It is very
common, to explain free-surface smearing, to invoke errors from the discreti-
sation, from the convection or the temporal numerical schemes. The result is
that the surface smearing is contrasted with numerical schemes adaptation.
Our feeling is that the core of the problems may also lie inside the set of solved
equations. We therefore want to derive a set of equations whose numerical
resolution should naturally give a sharp interface when it is due. For this, we
must understand more deeply how the Navier-Stokes equations are derived
and why gases mix but liquids often do not. This work is rather theoretical
in nature and is propaedeutic to a future numerical implementation.

The paper is organized as follows. We derive the most rigorously as we
can the unclosed equations of a flow composed of two immiscible fluids. This
derivation in some sense generalizes and simplifies the first part of the deriva-
tion performed by Zhang and Prosperetti [1] in their fundamental paper in
1993. This derivation allows us to introduce the notations and some of the
issues. It is based on the use of generalized functions which are relatively
touchy to manipulate.

Second, we present and shortly discuss the Cahn-Hilliard and Allen-Cahn
equations which were built to represent the separation process of two partially
miscible fluids and are based on a potential energy argument. We also discuss
the usual form given to the surface tension, with a particular emphasis on
the usefulness of the conservative form making apparent a possible potential
energy origin.

Third, we postulate a momentum equation of a single component fluid,
having a constant density but not necessarily occupying all the local volume,
introducing the concept of intrinsic volume fraction, that is a volume frac-
tion having sense before any averaging process. This methodology is widely
discussed and used in Drew and Passman [2]. The postulated equation is
constrained to revert to the normal equation for the single component flow
upon summation on the different phases. We discuss the constraints on the
different terms of the postulated equation. Special attention is given to the
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momentum exchange term.
Fourth, we put in evidence how the energy concept, first encountered for

the Cahn-Hilliard equation, can be made apparent in the terms on the mo-
mentum equation. In the traditional approach (see Jacqmin [11]), the forces
are derived from the potential energies by consideration on the entire system.
We restrict this approach to the phases taken separately. The forces are thus
derived on a phase basis. As there is no more ambiguity on the velocity field
to be used, the forces can be derived in exact math.

Fifth, we arrive to the point. We relate the forces to the difference between
the phase velocities through a dynamic equilibrium assumption. The equilib-
rium assumption is confronted positively with some known features: classical
diffusion, gravity and baro-diffusion.

Sixth, the surface tension in considered in this extended framework. We
propose an energy defining the surface tension, how it is split between the
phases and what is the consequence on the phase transport equations. The
choice operated allows to keep the classical Landau [7] term unchanged.

Seventh, we resume the whole picture in the form of a set of proposed
equations. And, finally we make a short discussion.

2 System of equations for two immiscible

fluids

We consider the case of two immiscible fluids A and B occupying different
complementary parts of a shared common domain Ω. The volume occupied
by the fluid A (resp. B)is characterized by the unit value of its support
function ”a” (resp. ”b”). We will also use the subscript ”a” (resp. ”b”) for all
and any physical quantity related to fluid A (resp. B). Stating that ”a” and
”b” are support functions means that they can take only the discrete values
0 and 1. The property that together the two fluids occupy all the available
volume is mathematically stated as:

a+ b = 1 in Ω, (1)

The property that the two fluids are immiscible is mathematically stated as:

ab = 0 in Ω, (2)

The volume occupied by each phase is driven by the evolution of its boundary

∂ta+ uΓa · ∇a = 0 in Ω, (3)

∂tb+ uΓb
· ∇b = 0. in Ω, (4)
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where uΓa is the velocity of the boundary of phase A.
We restrict our analysis to cases in which mass exchange can occur only

through an existing interface. For example, a bubble of phase A cannot spon-
taneously appear in the bulk of phase B from nothing. It can however collapse
and disappear if care is taken for the dependence of mass exchange with sur-
face curvature. The interface velocity has two components, one is the fluid
velocity, the other is related to the local mass transfer rate ṁab = −ṁba

between the phases of respective densities ρa and ρb.

∂ta+ (ua −
ṁab

ρa
na) · ∇a = 0 in Ω, (5)

∂tb+ (ub −
ṁba

ρb
nb) · ∇b = 0. in Ω, (6)

where na (resp. nb) is a regular vector field whose trace on the surface ΓA
(resp. ΓB) coincide with the surface normal oriented towards the interior of
A (resp. B). This convention is opposite to the usual one but allows to have
formally na and ∇a oriented in the same direction. It also allows to represent
∇a as n|∇a|.

From equation (1) one has that

∂t(a+ b) = 0 in Ω, (7)

∇(a+ b) = 0 in Ω (8)

One should also get easily convinced that na · ∇a = nb · ∇b so that

ṁabna · ∇a+ ṁbanb · ∇b = 0, (9)

but in general, in presence of mass transfer between fluids of different density,
none of ua, ub and uΓa coincide on the interface. Moreover, uΓa and uΓb

must
have only the normal component coinciding on the interface.

Each fluid is supposed to follow the behavior dictated by the Navier-stokes
equations. That is:

∂t(ρaua) +∇ · (ρauaua) +∇Pa +∇ · τa = ρag + Fa in Ωa(t) (10)

∂t(ρbub) +∇ · (ρbubub) +∇Pb +∇ · τb = ρbg + Fb in Ωb(t) (11)

where Pa is the phase A pressure, τa the extra-stress tensor, g the gravity
acceleration and Fa the resultant of the internal forces, usually null for ho-
mogeneous phases, so it will be omitted hereafter. We do not forget the
mass conservation equations, degenerating for constant phase density in the
divergence free constraints:

∂tρa +∇ · (ρaua) = 0 in Ωa(t) (12)

∂tρb +∇ · (ρbub) = 0 in Ωb(t) (13)
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The problem is that the velocities ua and ub (but also the densities ρa and ρb)
have no physical meaning respectively in domain Ωb and Ωa. But, because we
want to write formulas valid in all the domain considered, we must extend ua
and ub to the whole domain. The extension can be arbitrary but we want to be
authorized to use the standard derivation rules like ∇·(aua) = ua ·∇a+a∇·ua
taking into account that a is a discontinuous function. For this reason, we
choose to consider regular extensions of ua and ub, preserving at least their
continuity and the continuity of their divergence. Similarly, ρa and ρb are
extended possibly by a constant value all over the domain. Note that we can
not extend the divergence free property of ua and ub to the entire domain
when the interface has closed contours because of the the authorized mass
exchange. Nevertheless, by continuity, if ua and ub are divergence-free in their
respective domains, they are also divergence free on the interface. We could
be however faced with mathematical inconsistency in pathological cases with
discrete change in the topology on the interface, such as the disappearance of
a bubble or droplet.

The variables can be interpreted either on a phase basis or on a global
basis. The relation between them can be made by use of the ”a” and ”b”
variable. The global variables can therefore be expressed in terms of the
phase variables as follows.

ρ = aρa + bρb (14)

P = aPa + bPb (15)

u = aua + bub (16)

ρu = aρaua + bρbub (17)

ρuu = aρauaua + bρbubub (18)

These equations simply state that the density is the phase A density when a =
1 and is the phase B density when a = 0, and so on for pressure, momentum
and ρuu. Specifically, u is really the velocity associated to ρ.

These definitions lead to additional properties that can prove useful for
the derivation of the unclosed terms. For example:

ρa = aρa (19)

ρua = aρaua (20)

a = a2 (21)

Moreover, all properties should remain true inverting ”a” and ”b”.
The domain of the single phase Navier-Stokes equations can be extended
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to all Ω simply by multiplying by the respective support functions.

a∂t(ρaua) + a∇ · (ρauaua) + a∇Pa + a∇ · τa = aρag in Ω (22)

b∂t(ρbub) + b∇ · (ρbubub) + b∇Pb + b∇ · τb = bρbg in Ω (23)

and

a∂tρa + a∇ · (ρaua) = 0 in Ω (24)

b∂tρb + b∇ · (ρbub) = 0 in Ω (25)

Turning back to the volume equations (5) and (6), multiplying by the
respective density, we obtain the single phase density equations. It comes:

ρa∂ta+ ρaua · ∇a = ṁabna · ∇a (26)

ρb∂tb+ ρbub · ∇b = ṁbanb · ∇b (27)

Summing the volume conservation equations and the mass conservation
equations extended to the entire domain, we get the conservative form of the
volume fraction equations:

∂t(ρaa) +∇ · (aρaua) = ṁabna · ∇a (28)

∂t(ρbb) +∇ · (bρbub) = ṁbanb · ∇b (29)

Summing these two equations, we recognize the global mass conservation term.
That is:

∂tρ+∇ · (ρu) = 0, (30)

which is quite comforting.
To simplify the notation, we define the phase source term as:

Ṡ = ṁabna · ∇a (31)

Therefore:

∂t(ρaa) +∇ · (aρaua) = Ṡ (32)

∂t(ρbb) +∇ · (bρbub) = −Ṡ (33)

The term Ṡ is here a scalar distribution with support on the interface.
However equations 32 and 33 are valid even for variable distributions of the
volume fractions. We introduce the notation: δ1ρ = 1

ρb −
1
ρa . Summing the

original volume equations, we get a new time independent equation:

(ua − ub) · ∇a = δ
1
ρ
Ṡ, (34)
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equivalent to

∇ · u− [a∇ · ua + b∇ · ub] = δ
1
ρ
Ṡ, (35)

or,using the incompressibility of each separated flow, if applicable:

∇ · u = δ
1
ρ
Ṡ. (36)

Note that for the first time, we have broken the symmetry of representation.
Operating in a similar way, we will show how the global momentum equa-

tion can be retrieved from the momentum equation of both phases. Now, we
incorporate the multipliers under the differential operators in equations 10,11
to get:

∂t(aρaua) +∇ · (aρauaua) +∇(aPa) +∇ · (aτa) = aρag

+(ρaua)∂ta+ (ρauaua) · ∇a+ Pa∇a+ τa · ∇a (37)

∂t(bρbub) +∇ · (bρbubub) +∇(bPb) +∇ · (bτb) = bρbg

+(ρbub)∂tb+ (ρbubub) · ∇b+ Pb∇b+ τb · ∇b (38)

or, substituting with the progress and regress variable equations multiplied
respectively by ua and ub:

∂t(aρaua) +∇ · (aρauaua) +∇(aPa) +∇ · (aτa) = aρag +

ua · Ṡ + Pa∇a+ τa · ∇a (39)

∂t(bρbub) +∇ · (bρbubub) +∇(bPb) +∇ · (bτb) = bρbg

−ub · Ṡ + Pb∇b+ τb · ∇b (40)

Direct averaging of these equations may lead to the Eulerian two-phase flow
approach. Summing these two equations, we recognize on the left hand side
the momentum equation for the global variables:

∂t(ρu) +∇ · (ρuu) +∇P + ∇ · τ = ρg + (ua − ub) · Ṡ
+ (Pa − Pb)∇c+ (τa − τb) · ∇c (41)

that is:

∂t(ρu) +∇ · (ρuu) +∇P +∇ · τ = ρg + F (42)

and

F = (ua − ub) · Ṡ + (Pa − Pb)∇a+ (τa − τb) · ∇a. (43)

It means that the interpretation of a two-phases reactive flow as a unique flow
leads to the appearance of a force term in the momentum equation localized on
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the interface. We will show that this force vanishes if we make the necessary
hypothesis that the impulse and τ are continuous across the interface, in a
reference frame linked to the interface. If we assume that τ is continuous
across the frontier then the former equation simplifies to:

F = (ua − ub) · Ṡ + (Pa − Pb)∇a. (44)

To keep invariance properties, we can assume that the tangential velocity is
continuous across the interface. Therefore, using equation 34:

(ua − ub) = δ
1
ρ
mab · na (45)

so that

(ua − ub) · Ṡ = δ
1
ρ
ṁ2
ab · ∇a (46)

The pressure drop can be estimated considering that the total impulse is
conserved through the interface in a reference frame linked to the interface.
Considering that the interface velocity is ua − ṁab

ρa · na, or equivalently ub −
ṁba
ρb · nb we have:

Pa + ρa[ua − (ua −
ṁab

ρa
· na)]2 = Pb + ρb[ub − (ub −

ṁba

ρb
· nb)]2 (47)

Pa − Pb = ρa[
ṁab

ρa
]2 − ρb[

ṁba

ρb
]2 (48)

leading to:

Pa − Pb = ṁ2
abδ

1
ρ

(49)

Combining this result with 46, then F = 0, that is:

∂t(ρu) +∇ · (ρuu) +∇P +∇ · τ = ρg. (50)

In presence of a surface tension σ when at least one of the phases is liquid,
the pressure difference is incremented by σ(∇·na) and F = −σ(∇·na)∇a+ <

na,∇a > ∇Sσ, where ∇S is the surface gradient. It should be noted that
the surface tension does not appear in the single phase equations but only
in the global one, defining an interface condition. It is also normal that
the surface tension could not be completely directly derived from the single
phase equations because the mere existence and the intensity of the surface
tension is independent from the physical quantities present in the single phase
equations. In other words, given the physical properties necessary to write
their respective Navier-stokes equations, we can decide independently if they
will be miscible or immiscible.
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From both momentum equations and the impulse equation, we have de-
rived only one global equation. So, it seems that we have lost some informa-
tion. For immiscible fluids, this is not the case. In effect, velocity and pressure
of each phase is perfectly known from the global velocity and pressure and
from the volume fraction equation. This is no more the case when the phases
are allowed to mix because the values given by the global equation cannot
anymore easily be specialized to the separate phases.

3 On surface tension and immiscibility

We start with some empirical qualitative consideration. Surface tension is an
intrinsic property of a medium pair. It appears only when at least one of
the media is a liquid. Surface tension is also defined for a solid. It is used
to determine the angle formed by two immiscible fluids on a wall. It is also
strongly linked with the concept of wettability. Here, we want to deal only
with two immiscible fluids. So, at least one of them is liquid, because gases are
always miscible. What is strange at first glance is that liquids can continuously
change to gas on a temperature/pressure diagram if they ”travel” around the
triple point. So, there is a continuous transformation of most, if not all, fluid
pairs from immiscibility characterized by a positive surface tension coefficient
to miscibility characterized by a positive diffusion coefficient. The problem
is that the surface tension is present in the momentum equation while the
diffusion coefficient is in the mass fraction equation. But both should be
representative of the same physico-chemical property. We would like to find
a unified representation of the phenomena, at least for simple cases.

3.1 Cahn-Hilliard equation

One tentative to represent the behaviour of two immiscible fluids has led to
the famous Cahn-Hilliard equation. The Cahn-Hilliard equation describes the
evolution of a conserved concentration field during phase separation 3. One
of its simplest isotropic version is given below:

∂tc = α∆[(1− 2c)c(1− c)]− β∆2c. (51)

where α and β are positive parameters and c has the same meaning of our
”a” or ”b”. The equation comes from an energy whose density is e = α

2 c
2(1−

c)2 + β
2 |∇c|

2 and its fastest minimization in the L2 norm. The first term
in the RHS is a second order contracting term, while the second one is a
fourth order diffusing term. Given a representative length λ, of the region

3http://www.ctcms.nist.gov/ wcraig/variational/node9.html
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of intermediary values of c (i.e. the diffuse interface length), the first RHS
term scales like λ−2 will the second one like λ−4. Therefore for large λ, the
contracting term dominates while for small λ the diffusing term dominates.
That is, a wide interface will tend to contract while a thin one will tend to
dilate. The equilibrium is obtained when λ2 is order β/α.

For our initial concern, the derivation of a naturally contracting system
of equation, such that the interface length is no more than one or two com-
putational cells, the fourth order equation is out of range. In effect, the
discretisation of a fourth order operator requires (in 1D) to take information
up to a distance of two cells in both direction (for usual finite volumes). This
is incompatible with the maximum two-cells interface objective. It is also not
possible to just set β = 0 because the strength of the contracting term would
result unbounded for arbitrary small discretisation.

However, the idea that phase separation, for which surface tension is the
final residual trace, must be based on energy considerations is very attractive.

3.2 Allen-Cahn equation

The technical burden associated with the Cahn-Hilliard equation fourth order
term has been widely recognized, see for example Yang et al.[3]. The result
is that many authors have chosen to represent the same physical phenomena
with a simpler (lower order) equation, the Allen-Cahn equation, derived for
the same reason. Its simplest form is:

∂tc = −α(1− 2c)c(1− c) + β∆c (52)

this time, the diffusive term is the classical Laplacian operator, scaling like
λ−2 while the contracting term is scalar and scales like λ0 with the equilibrium
still obtained when λ2 is order β/α.

The equation arises from the fastest minimization of the previous energy,
however with regard to a different norm. This equation is much more conve-
nient and has also been studied and simulated in a huge number of papers.
While the order of the equation is convenient, it is straightforward to see that
the equation is non-conservative. This defect has been recognized and has
generally been corrected by use of a non local Lagrange multiplier:

∂tc = −α(1− 2c)c(1− c) + β∆c+ ε(t). (53)

Unfortunately, this solution is completely unfit for multi-purpose CFD
codes. In effect, the Lagrange multiplier is simply redistributing mass (a small
quantity everywhere) slightly dirtying all the spatial field, just to comply with
the overall mass preservation. In the CFD context, people usually consider
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the local mass preservation as a ”non negotiable” property. By the way, only
the scalar term is not conservative and it would be very convenient to find out
a similar one (with regards to the scaling in λ) which would be conservative.

Both equations are constructed on the same scheme. Evolution of the
concentration arises from the balance of two contributions, a linear higher
order diffusive one impeding the degeneracy due to a non-linear lower order
contracting one. In the Cahn-Hilliard equation, one cannot just set β = 0
because only a Laplacian with a ”negative” diffusivity is left, and a phase
separation leads to an unbounded energy of the surface. This feature is not
true setting the coefficient β to zero in the Allen-Cahn equation. In this case,
the concentration simply decays to zero or one depending whether the initial
value is greater or lower that one half. We can also see that in this case,
most of the physico-chemical process tentatively modelled is lost. However,
we think that this loss of physical meaning is simply caused by the absence of
local mass conservation. So, we will try to derive a conservative term, however
scaling with a power of λ more than minus one for small λ, so that its integral
effect will vanish in the limit of a discontinuous interface.

3.3 Representation of the surface tension

The classical representation of the surface tension is, as already written:

F = −σ(∇ · na)∇a+ |∇a|∇Sσ (54)

with σ the surface tension coefficient, ∇S = (δij − ninj)∂j is the surface
gradient and |∇a| is a clear notation abuse that we will use hereinafter for
< ∇a, na >. The formula above is valid only if the condition ∇n2 = 0 holds
on the interface. That is, if the field n coinciding with the unit normal on
the interface is prolonged to a unit field out of the interface, at least at the
first order (the slope of the normal module must be zero on the interface).
Otherwise, the term ∇ · na has to be changed to ∇S · na.

The form of the surface tension is rather specific. It cannot be put under
gradient form, but it may be represented, as found out by several authors
[4, 5] under a divergential form, as follows:

F = ∇ · T (55)

T = σ|∇a|(δij − ninj). (56)

Using the identity matrix I, we have:

T = G(I − nn) (57)

G = σ|∇a| (58)
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This formula outlines the natural potential G constitutive of the surface ten-
sion.

A point which is worth remarking is that whatever monotonous derivable
function Φ of ”a” such that |Φ(1) − Φ(0)| = 1 can be used for the definition
of F instead of ”a”.

For example, taking Φ = ρ2

ρ2a−ρ2b
, we have ∇Φ = 2ρ

ρa+ρb
∇a and

T = ρ
2σ

ρa + ρb
|∇a|(δij − ninj), (59)

that is a potential part plus a convective transport with velocity modulus
V =

√
2σ

ρa+ρb
|∇a|, if we manage to give some meaning to this velocity for

arbitrary small interface.
This choice of Φ, making the density appear has already been made in

the reference work of Brackbill and al. [6]. They noticed that doing this,
the interface width was better conserved. However, one would expect less
discretisation error by considering directly ∇Φ and not its expansion. This
leads in turn to consider the square of the density as a fundamental parameter
which is a rather unusual choice.

3.4 Derivation of the surface tension from energy
consideration

The derivation of the classical form of the surface tension is given in Landau
[7]. Here we derive it again on an energy argument.

Let us postulate a “free” energy G to be globally minimized by the flow
in the form:

G =
∫

Ω
σ|∇a| (60)

We want to know how is evolving G in time if the material A is displaced by
a velocity field “v”(vanishing on the domain boundary). Being a conserved
quantity, the volume fraction time evolution is locally given by:

∂ta+∇ · (av) = 0. (61)

The surface tension coefficient σ is not likely to be a conserved quantity,
but is a local property of the volume fraction, for example depending mainly
on temperature. In a first approximation, we consider that σ is convected by
the flow:

∂tσ + v · ∇σ = 0. (62)
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The generalized force aimed at minimizing the potential G is given by F =
−∇G according to the formula:

dtGv =< ∇G, v >L2(Ω) (63)

with the scalar product on the right hand side classically defined in our case
as:

< f, g >L2(Ω)=
∫

Ω
fg. (64)

We just have therefore to evaluate, dtGv and represent it, if feasible, under
the form < −F, v >L2(Ω).

The domain of evaluation Ω does not change in time and we can write:

dtGv =
∫

Ω
∂t(σ|∇a|) (65)

=
∫

Ω
σ∂t|∇a|+ |∇a|∂tσ (66)

Only the term ∂t|∇a| may not be considered trivial so we evaluate it sepa-
rately, using the derivation chain rule:

∂t|∇a| = ∂t < ∇a,∇a >
1
2 (67)

= < ∇a,∇a >
−1
2 < ∇a, ∂t∇a > (68)

= n · ∇∂ta (69)

= −n∇[∇ · av] (70)

so that

dtGv = −
∫

Ω
σn∇[∇ · av] + |∇a|v · ∇σ

=
∫

Ω
∇ · (σn)(v · ∇a+ a∇ · v)− |∇a|v · ∇σ

= < ∇ · (σn)∇a− |∇a|∇σ, v >L2(Ω) +
∫

Ω
(∇ · σn)a∇ · v

= < σ∇ · n∇a− |∇a|∇Sσ, v >L2(Ω) +
∫

Ω
(∇ · σn)a∇ · v. (71)

and the classical formulation is retrieved on the condition that a∇·v = 0. This
means that we force the velocity field to be divergence free everywhere the
volume fraction is non zero. Typically this allows a bubbly flow in which the
bubbles can shrink under pressure. The condition is quite reasonable when
phase A is liquid, and the surface tension is therefore considered a property
of the phase A.

Because the condition that a∇ · v = 0 is a priori not satisfied with fluids
allowed to present some partial mixing, some additional work must be done to
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extend properly the expression of surface tension. Managing in this context
to preserve the expression of the surface tension and its link with an energy
functional would be greatly appreciated. To reach this objective, we will need
first to extend all the former construction of the Navier-stokes equation to
mixing phases.

4 System of equations for two miscible flu-

ids

In the first part of this document, we have derived the global Navier-stokes
equations for density and momentum from the single phases equations in the
limiting case of two immiscible phases. While the derivation can be made
quite rigorous, the surface tension cannot be derived in this way but comes as
an external consideration. To be naturally inserted in the final equation, the
surface tension should be in some way included in the single phase equations.
Looking at the Cahn-Hilliard and Allen-Cahn equations, we have seen that the
surface tension can be interpreted as the terminal state of a phase separation
process. However, these equations do not allow the phase separation to arrive
at completion, having a small but non null asymptotic interface width. And
unfortunately, degenerating the equations for zero asymptotic width leads
to loss of physical meaning. What remains crucial in this approach is the
energetic consideration: the interface sharpens and reduces because doing this
the fluid minimizes its energy. In the global momentum equation, this energy
consideration should naturally appear as minus the generalized gradient of
this energy.

By setting the energy to be precisely G =
∫

Ω σ|∇a|, we have retrieved the
classical form of the surface tension, under the condition that no active mixing
or phase separation is allowed. This is a start, as it gives an asymptotic limit
to be respected. The problem lies in a good general mathematical definition of
the local measure of an interface. Taking it to be |∇a| is extremely convenient,
except for one small defect: smearing a regular (flat) interface do not increase
(and do not decrease, fortunately) the energy G. Smearing is neutral with
regard to the energy, so that minimizing the energy does not affect interface
smearing. As in absence of surface tension, thermal agitation induces phase
mixing, surface tension should be responsible for suppressing this effect. The
free energy G must be such that it decisively operates to counteract interface
smearing.

By postulating single phase equations in which mixing is allowed, we could
insert the additional energy term which would be active where mixing is ef-
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fective. This is what we do now. We postulate a general form of the single
phases momentum equations and try to eliminate the unknown terms by con-
siderations on the overall momentum equation.

We should note that this idea of postulating the single phase equation is
not new and has already been developed by several authors, see for example
Boyer [8]. Differences between the postulated equations are normally small
but existing. They depend widely on the specific scope of the research.

4.1 Momentum equation

Here we consider two gaseous phases correctly described at the molecular level
with a rigid sphere model.

When considering separately the momentum equation of a single phase in
a mixture, the main change is that the integral collision term in the Boltzmann
equation and the related Enskog theory does not cancel any more and results
in a term of exchange with the other phase, see [9]. This leads to postulate
the single phase equations in the form:

∂t(aρaua) +∇ · (aρauaua) +∇ · Pa −∇ · aµΠu = Iab + aρag + Fa (72)

∂t(bρbub) +∇ · (bρbubub) +∇ · Pb −∇ · bµΠu = Iba + bρbg + Fb (73)

with the momentum exchange term I satisfying Iab + Iba = 0.
One tends to postulate a phase pressure term (isotropic part) in the form

a∇P rather than ∇aP . The difference P∇a can be put in the yet undecided
force Fa, the sum of the differences being zero. The same argument can be
used for the extra-stress term.

With this foreword in mind, we now discuss the pressure terms. We have
used the single phase pressure tensors Pa and Pb which are connected with
the quadratic deviation from some “mean” velocity. This mean velocity could
be the single phase mean velocity or the mixture mean velocity. The tensor
representation changes accordingly.

Pua = aρa(u′a − ua)(u′a − ua) (74)

Pua = aρa(u′a − u+ u− ua)(u′a − u+ u− ua) (75)

Pua = aρa[(u′a − u)(u′a − u) + (u− ua)(u− ua)− u(u− ua)− (u− ua)u]

Pua = Pa,u + aρa(uaua − uu) (76)

and similarly

Pub
= Pb,u + bρb(ubub − uu) (77)

where Pa,u and Pb,u are partial pressure tensors referred to the mean mass
weighted velocity u defined by:

u = aρaua + bρbub. (78)
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This means that the partial pressure tensors are potentially unitary in at most
one referential system.

Summing the partial pressures, we have:

Pua + Pub
= Pa,u + Pb,u + aρauaua + bρbubub − ρuu (79)

and according to the formula

ρuu = aρauaua + bρbubub −
abρaρb
ρ

(ub − ua)(ub − ua) (80)

we have

Pua + Pub
= Pa,u + Pb,u +

abρaρb
ρ

(ub − ua)(ub − ua) (81)

This means that the sum of the partial pressures does change if they refer to
their own local velocities or to mass averaged one.

Defining F = Fa +Fb, the sum of the non gravity forces acting separately
on the single phases, we now can sum the two phase momentum equations to
get:

∂t(ρu) + ∇ · (ρuu) +∇ · [Pa + Pb +
abρaρb
ρ

(ub − ua)(ub − ua)]

= ∇ · µΠu+ ρg + F. (82)

We are thus induced to choose Pa = Pa,u and Pb = Pb,u, so that the equation
simplifies to:

∂t(ρu) + ∇ · (ρuu) +∇ · [Pua + Pub
] = ∇ · µΠu+ ρg + F. (83)

It is therefore very tempting that even for simple cases without surface
tension, the pressure tensors of the single phases are unitary only in their own
natural referential, at least if we want the postulated equations to hold.

To get back to the usual momentum equation, we can relate the partial
pressure tensors to the mean mass weighted velocity and choose it unitary in
this referential. If we take:

Pa = aPI − aρa(uaua − uu) (84)

Pb = bPI − bρb(uaub − uu) (85)

then

Pa + Pb = PI − 1
ρ
abρaρb(ub − ua)(ub − ua) (86)

Pua + Pub
= PI (87)

and we retrieve the usual momentum equation in its original form.

∂t(ρu) +∇ · (ρuu) +∇P +∇ · µΠu = ρg + F. (88)
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The problem with this choice of partial pressures is that the single phase
momentum equation revert a totally unsatisfactory shape. In effect, the con-
vective transport of the phase velocity simply disappears:

∂t(aρaua) +∇ · (aρauu) +∇ · aP −∇ · aµΠu = Iab + aρag + Fa (89)

This illustrate the devastating influence of the hypothesis made on the pres-
sure and its splitting among the phases.

On the other hand, if the phase pressure are unitary in their own sys-
tem of reference, the momentum equation inherit of the additional term:
∇ · abρaρb

ρ (ub − ua)(ub − ua), that we would prefer to avoid. Things get even
worse if we test a referential linked to the apparent velocity v = aua + bub.

We thus make a step back and reconsider the postulated phase momentum
equations. Looking at a quite general representation of the conservation equa-
tions, for a property Xa of phase A, we can observe a conservation equation
of the form:

∂t(ρaXa) +∇ · (ρauXa) +∇ · Φa = Sa + Ia (90)

• ∇ · ρauXa is the ”approximate” convective flux (main flux),

• ∇ · Φa is a corrective flux (deviation),

• Sa is the source of ρaXa (there may be more than one),

• Ia is a term of exchange with the other phase.

In this representation, the flux is split into two parts, an approximate first
one, the convective flux, and a correction. The correction is subject to intense
modelling. We must stress the fact that the main flux is driven by the mass
fraction velocity and not by the phase velocity.

Application to the phase momentum leads to:

∂taρaua +∇ · aρauua +∇ · a([P + P0]I + τ) = aρag + F ′a + Ia (91)

∂tbρbub +∇ · bρbuub +∇ · b([P + P0]I + τ) = bρbg + F ′b + Ib, (92)

where g is the gravity acceleration, P0 is the spatially constant time dependant
part of the pressure, Id the identity matrix, while F ′a and F ′b contribute to
diffusion or phase separation and surface tension effects.

Summing the two phase momentum equations gives back the classical mo-
mentum NSE under the conditions:

• Ia + Ib = 0, as we expect from exchange terms

• F ′a + F ′b = F .
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To simplify the representation, we split the corrective flux term:

∇ · a([P + P0]I + τ) = a∇P + (P + P0)∇a+ τ∇a+ a∇ · τ. (93)

We can recognize the pressure force in the first term. The second and
third terms are related to gradient diffusion and are therefore coupled with
F ′a. Taking Fa = F ′a − (P + P0)∇a − τ∇a, we have our almost final phase
momentum equations:

∂taρaua +∇ · aρauua + a∇P + a∇ · τ = aρag + Fa + Ia (94)

∂tbρbub +∇ · bρbuub + b∇P + b∇ · τ = bρbg + Fb + Ib, (95)

with

• Ia + Ib = 0,

• Fa + Fb = F .

With this approach, we consider the pressure gradient as a projection of
the momentum equation on the field of admissible functions. More precisely,
the pressure term is here to ensure that the equation of state is satisfied. For
incompressible flows, the equation of states reverts to the condition that the
volume velocity v = aua + bub is divergence free. That is:

∇ · v = 0. (96)

With this interpretation, the coincidence of the pressure with the ther-
modynamic pressure is likely to be lost. There is however a priori a large
spectrum of possibility on how to split the projection between the two phase
momentum equations. Here, we have the correction applied to the momentum
equation proportionally to the volume fraction. In this representation, all the
terms depending on the concentration gradient are embedded in Fa and Fb,
including the term P∇a. This is one of the simplest non trivial form leading
to the classical Navier-Stokes equation by direct summation.

∂t(ρu) +∇ · (ρuu) +∇P +∇ · τ = ρg + F. (97)

where F = Fa + Fb is left for the surface tension and any other force.
There is clearly some arbitrariness in the representation. We have cho-

sen the conservative version of the equations with the mass averaged main
transport velocity. With either the non-conservative form or with a main
transport by the apparent velocity v, we however do not manage to get back
the standard form of NSE. Some parasite term always appear.



CRS4 21

4.2 Inter-phase momentum transfer

In the single phase momentum equation, there is an exchange term repre-
senting the resistance provoked by the mere presence of the other phase. A
very crude estimation of this force can be done in this way. We suppose that
the force is related to the frequency of elastic collisions between particles of
different species moving at their mean velocity. The momentum exchanged is
proportional to the momentum relatively to the center of mass of the particle
pair uc = ρaua+ρbub

ρa+ρb
, that is, proportional to ρa(ua − u− c) = ρaρb(ua−ub)

ρa+ρb
. All

other things being equal, the frequency of collision should be proportional to
the number density of particle (i.e. to the volume fraction) of one phase when
this number is very small. The simplest way to get this property is to get
the frequency of collision proportional to the product of the volume fractions.
Finally, the exchange term of phase A is expected to have the form:

Iab = Rab(ub − ua). (98)

This form is not original and is effectively used for example in Boyer [8]. The
term R is a characteristic of the hydraulic resistance of the mixture. Generally
speaking, R could be a tensor, but for an isotropic medium, me expect R to
be a scalar. It is a priori essentially independent of the volume fraction, but
it can be made dependent on the volume fraction gradient. We can foresee
the coefficient R in the form:

R = R0(1 + |L∇H(a)|2) (99)

where L is a characteristic length likely to be related to the interface width
of multi-phase flow exhibiting some surface tension. For small concentration
gradient, such an R is constant at the first order and we are consistent with the
assumption made by Landau to derive the corrective flux. The monotonous
normalized function H is not necessarily related to the the one used for the
surface tension. It is considered only for the scope of generality but we should
consider only the identity function. The power two in the gradient is for
convenience. When combined with a contracting term proportional to the
first power of the volume fraction gradient, the asymptotic solution will be a
wide-less interface reached in infinite time at exponentially decaying velocity.

Last but not least, the coefficient R of the resistance force could be made
anisotropic so as to be larger in the direction n than in direction −n to take
into account a saturation effect making the concentration bounded between
zero and one. For infinite gradients, the resistance to further contraction
should also become infinite. We can take:

R = R0(1 + 0.5(1+ < n, nu > |L∇a|2). (100)
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We should not need however to go to such precise behaviour for our current
purpose.

In turn, R0 is also the ratio between a density and a time. For consistency,
the density is the center of mass density ρab = ρaρb

ρa+ρb
. The time is related to

the characteristic time scale of the phenomena.

R0 =
1
τ

ρaρb
ρa + ρb

(101)

The time scale thus depends on the phenomena to be controlled. For a con-
trol at the molecular level, the time scale should be related to the collision
frequency. For a control at the turbulence scale level, the time scale should
be related to the turbulence time scale. For a control of numerics, it should
be related to the computational time step and the CFL.

4.3 Volume fraction equation

The volume fraction equations, when written in conservative form, remain
valid for non discrete configurations:

∂t(ρaa) +∇ · (aρaua) = Ṡ (102)

∂t(ρbb) +∇ · (bρbub) = −Ṡ (103)

What we have to do is to relate each phase velocity to the global velocity and
to the phase velocity difference:

ua = u− bρb
ρ

(ub − ua) (104)

ub = u+
aρa
ρ

(ub − ua) (105)

so that

∂t(ρaa) +∇ · (aρau)−∇ · [abρaρb
ρ

(ub − ua)] = Ṡ (106)

∂t(ρbb) +∇ · (bρbu) +∇ · [abρaρb
ρ

(ub − ua)] = −Ṡ (107)

if the drift velocity ub− ua is oriented along the concentration gradient. then
the equation is diffusive while if it is oriented opposite to the concentration
gradient, then the equation is contracting.

From now on, we suppose the phase densities constant. Dividing equations
(106) and (107) by their respective density and summing, we get the velocity
divergence. What we have to do is to relate each phase velocity to the global
velocity and to the phase velocity difference:

∇ · u = ∇ · [(ρb − ρa)
ab
ρ

(ub − ua] + δ
1
ρ
Ṡ (108)
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and in absence of source term, the velocity v defined by:

v = u− (ρb − ρa)
ab
ρ

(ub − ua) (109)

is divergence-free.
Rewriting in this case the volume fraction equation in term of v, we get:

∂ta+∇ · (av)−∇ · [ab(ub − ua)] = 0, (110)

∂tb+∇ · (bv)−∇ · [ab(ua − ub)] = 0. (111)

Thus, phase A is convected by the velocity ua = v − b(ub − ua) and phase B
by the velocity ub = v − a(ua − ub), such that v = aua + bub is in fact the
divergence-free volume based velocity. This last formulation is adapted for
algorithms which consider the volume fraction, such as the VOF algorithm in
Starccm+.

It has to be noted that the correction flux ab(ub − ua) is proportional to
the phase momentum exchange term. This feature will be critically used in
the further derivations.

5 Energy consideration

In this section, we try to relate forces and fluxes to energies. By observing
the known energies and fluxes, we would like to find rules to be applied to
the surface tension. The methodology used here is apparently very common
and is based on the conservation of the energy of a system. As explained in
Jacqmin [11], if the total energy is conserved, then the change in kinetic energy
is minus the change in potential energy. In turn, the rate of change of the
kinetic energy is equal, according to Newton’s law, to the integral of product
velocity times force. Using the arbitrariness of the velocity field, we can thus
determine the force derived from a potential energy. There is a hidden flaw in
this reasoning when the system is composed of two species of different specific
volume. In effect, for a given force, the acceleration of particles of different
weight is the same only when the force is proportional to the weight, which,
with the exception of gravity, is not true in general.

The concept can however be applied to a sub-system composed of similar
particles, that is, reduced to only one phase (of constant specific volume in
our framework). By specializing the concept to a phase basis, we remove the
ambiguity on which is the relevant velocity field to be used. Moreover, for
potential energies depending only on the volume fraction, we can derive the
corresponding force in exact math.

We start with the most common flux, the diffusion flux.
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5.1 Derivation of standard diffusion from energy
consideration

Let us consider the classical case of two gases in thermal and pressure equi-
librium in separate volumes. Upon connecting the two volumes, both gas
will mix until a constant volume fraction is reached everywhere for both gas.
The pressure and temperature are conserved, so the gas total energy in un-
changed, but the entropy of the system has increased. However, discernible
macroscopic movement has been performed by each phase considered sep-
arately. How movement can appear without energy change? What is the
energy that the single phase is trying to minimize?

We have to consider the change of internal energy with the concentration.
In [7], the chemical potential depends on the concentration with a logarithmic
law. In the case of a mixture of perfect gases, the chemical energy Ga of phase
A revert the form of a thermal energy:

Ga =
∫

(nkT )a ln a (112)

where (only) here n is the volumetric number of molecules, k, the Boltzmann
constant and T the temperature. Here, (nkT ) is considered constant. We can
infer the force derived from this energy:

dtGa(ua) =
∫

Ω
(nkT )∂ta ln a = (nkT )

∫
Ω

(ln a+ 1)∂ta (113)

= −(nkT )
∫

Ω
(ln a+ 1)∇ · aua = (nkT )

∫
Ω
∇[(ln a+ 1)]aua

= <
(nkT )
a
∇a, aua >L2 (114)

and accordingly, the corresponding force in the momentum equation of phase
A should be:

Fa = −(nkT )∇a. (115)

The corresponding force in the momentum equation of phase B, in turn, should
be

Fb = −(nkT )∇b (116)

such that their sum cancels in the overall momentum equation. In the case of
non perfect gases, the expression of the relevant part of the chemical potential
is likely to change and if the forces do not sum anymore to zero, then their
resultant should be added to global momentum equation. For gases, the
forces tend to push the phases in the direction of smaller concentration and
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are therefore strongly related to inter-diffusion. The important point here is
to note that the diffusive flux according to Fick’s law is proportional to Fa.
This kind of relation will be clarified later.

For arbitrary small volume fraction, the specific volumetric chemical en-
ergy density becomes (slowly) infinite. However, an arbitrary small smooth
(continuous) volume fraction has clearly lost meaning when, say, there is less
than one molecule in the physical system under study. If surface tension arises
from a bounded specific volumetric energy density for low volume fraction,
then it will never totally cancel the diffusion effect. This is consistent with
the concept of strictly positive (but eventually very small) vapour pressure.
For numerical completely immiscible fluids, the force arising from the thermal
part of the chemical potential should be however completely ignored.

5.2 Gravitational potential

To comfort ourselves with the methodology, we apply it to the gravitational
potential Eg =

∫
ρgz. We consider that the potential gravitational is (obvi-

ously) split among the phases according to the scheme:

Eg = Ega + Egb (117)

Ega =
∫
aρagz (118)

Egb =
∫
bρbgz. (119)

Then, direct calculation gives:

dtEga =
∫
∂taρagz =< aρagnz, ua >L2 (120)

dtEgb =
∫
∂tbρbgz =< bρbgnz, ub >L2 (121)

dtEg =
∫
∂tρgz =< ρgnz, u >L2 . (122)

leading to the forces:

Fga = −aρagnz (123)

Fgb = −bρbgnz (124)

Fg = −ρgnz. (125)

having the conservative properties:

Fga + Fgb = F (126)

and

Fgaua + Fgbub = Fu (127)
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consistent with the usual gravitational force in the momentum equation.
As is written in thermodynamics books [7, 9], gravity does not cause dif-

fusion by itself. One may object that many mixtures of different density tend
to segregate under common experimental conditions. However, we do not ex-
pect such segregation to occur under free fall condition. The segregation is
not directly due to gravity but rather to the induced pressure gradient.

We have seen before that the forces derived from the chemical poten-
tials have diffusion effects and cancel each other by summation in the global
momentum equation. As now we are confronted with an energy leading to
perfectly summing forces and corresponding to no diffusion effects, we may
wonder whether this dichotomy is general or not.

5.3 Pressure shift

While surface tension importance is noteworthy at millimetre range and greater
at smaller scale, pressure gradient is also noteworthy at millimetre range but
is greater at higher scale. Typically, the greater the droplet or bubble size,
the greater its terminal velocity under a gravity induced pressure gradient.
While in the millimetre range, a bubble or droplet under gravity pressure gra-
dient is almost spherical, indicating a dominant surface tension effect, in the
centimetre range, bubbles and droplets tend to deform and eventually break.
As we are interested in free-surface flows with a resolved scale of a few mil-
limetres, we should take into consideration both surface tension and pressure
differential effects. What we want to obtain is the spontaneous separation of
a flow at rest with an initial homogeneous intermediary volume fraction. The
shift direction of the heavy phase should be in the resolved pressure gradient
direction. The shift direction of the light phase should be opposite to the
resolved pressure gradient direction. There are so many ways two fluids can
inter-penetrate at a given macroscopic scale that it is unrealistic to hope solv-
ing the drift velocity issue consistently with all of these ways. In effect, the
microscopic distribution of the two phases has normally a very large impact
on the drift velocity. For example, a light phase volumetric density of 0.001 in
a 1mm cubic cell can be resolved with one unique spherical bubble about 0.1
mm in linear size, with one thousand bubbles size 0.01 mm, with mixing at
molecular level or with a cylindrical tube 1mm long and 0.03mm large. The
position of the structures needs not to be evenly distributed. In each case,
the drift velocity is quite different.

In our case, the main cause of mixing is numerical diffusion, not physical
in nature, and we can just decide the internal structure of the mixing if it
can help for building counter-measures. We will build our pressure shift on a
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mixing structure similar to the molecular mixing, but not constrained by the
molecular scales.

In all two phase flow models the pressure gradient appears as a∇P in the
phase A momentum equation and as b∇P in the phase B momentum equa-
tion, so that the two terms consistently sum to ∇P in the global momentum
equation.

If we suppose that these pressure gradient forces are derived from two
energies Ea and Eb then their variations are:

dtEa = < a∇P, ua >L2=< −P,∇ · aua >L2 (128)

dtEb = < b∇P, ub >L2=< −P,∇ · bub >L2 (129)

The corresponding energies are Ea = aP and Eb = bP but with the time
dependency of the pressure ignored. In the incompressible framework, it is
known that the pressure is defined only up to a constant. This constant is
constant only in space but not necessarily in time. Let us call P0(t) this
function of time and choose:

Ea = a(P + P0(t)) (130)

then a straightforward calculation gives:

dtEa = < a∇P, ua >L2 +∂tP0(t)
∫

Ω
a+

∫
Ω
a∂tP. (131)

Writing Va =
∫

Ω a (which is for our concern time invariant), by choosing P0(t)
to be precisely:

P0(t) =
−1
Va

∫ t

(
∫

Ω
a∂tP ), (132)

then we have exactly:

dtEa = < a∇P, ua >L2 (133)

and the pressure gradient term is made to derive directly from a time depen-
dent potential.

The pressure gradient forces do not behave neither as the gravity (summing
perfectly) nor as the thermal agitation force (summing to zero). We can
however try to split each phase force in two parts: one behaving like gravity
and the other one behaving like a momentum exchange. This is the argument
of the following part.
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6 Dynamic equilibrium assumption

We have seen that when an energy is involved in a two phase flow, it is
important to understand how we can split this energy between the two phases.
The force derived on the global flow will heavily depend on this splitting. We
have already encountered two particular cases: the gravity potential and the
thermal part of the chemical potential. The gravity potential works ideally
in the sense that the potential of the mixture is associated to a force which
is the sum of the forces associated the phase potentials. On the contrary,
the chemical potential (considered before) is such that the sum of the forces
applied to the single phases cancels identically.

When a generic force F is present in the mixture momentum equation, it is
always possible to split the force among the phase momentum equations such
that the phase forces behave like gravity. We just have to do the splitting:

Fa =
aρa
ρ
F (134)

Fb =
bρb
ρ
F, (135)

such that

Fa + Fb = F (136)

Faua + Fbub = Fu. (137)

On the other hand, we do not know if the splitting is correct because we can
add to the phase forces whatever pair of opposite forces.

Now, from the viewpoint of the phases, given a pair of forces related by
some physical meaning, we can wonder which part of the force pair behaves
like gravity and which part sums to identically vanish. It turns out that the
splitting can be done generically and is quite easy to perform. In effect, taking
profit of the former splitting, we just have to invert the system:

Fa =
aρa
ρ
F + F0 (138)

Fb =
bρb
ρ
F − F0 (139)

giving

F = Fa + Fb (140)

F0 =
bρb
ρ
Fa −

aρa
ρ
Fb. (141)

As a typical example, we have the pressure based force for the phases Fa =
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−a∇P and Fb = −b∇P . We find:

F = −∇P (142)

F0 = −ab(ρb − ρa)
ρ

∇P. (143)

Note that F would have been the same taking Fa = −∇aP and Fb = −∇bP .
The splitting performed here is now interpreted in the following way. The

summing part of the force can work to move the whole mixture while the work
of the cancelling part is lost against friction with the other phase. Consequence
of this interpretation is that we do not need to know the cancelling part of
the forces to build the mixture momentum equation. A second and the most
important consequence of this interpretation is that the cancelling part of the
forces is strongly related to the rate of exchange of momentum with the other
phase.

Our modelling assumption is that the cancelling part of the forces is prop-
erly in dynamical equilibrium with the rate of exchange of momentum with
the other phase. That is:

F0 = Ib. (144)

As we model the momentum exchange with a term proportional to the
velocity difference, the velocity difference is known up to this coefficient of
proportionality. As the corrective flux is also proportional to the velocity
difference, it is also defined up to the same coefficient of proportionality.

To check the validity of this interpretation, we can inquire whether we
can retrieve some known results. First, we retrieve that gravity by itself does
not induce diffusion. Second, the concentration diffusion directly follows from
the term −P∇a foreseen inside the force Fa for perfect gases (P = −(nkT ).
Third, the baro-diffusion, following from the a∇P part of the phase pressure
term operates only in presence of a density difference.

These three results seem consistent with the derivations given in [7]. Con-
versely, the last two results confirm the presence of ∇aP as phase A pressure
term for perfect gases. Once reduced, the phase equations could look like:

∂taρaua +∇ · aρauua +
aρa
ρ
∇ · [PI + τ ] = aρag +

aρa
ρ
F, (145)

∂tbρbub +∇ · bρbuub +
bρb
ρ
∇ · [PI + τ ] = bρbg +

bρb
ρ
F, (146)

where F stands for any additional force which should appear in the global
momentum equation, letting room to the coming surface tension. We have
also applied the hypothesis that the partial pressure tensor is unitary in the
mass weighted velocity reference frame.
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The dynamic equilibrium condition reads:

Rab(ub − ua) =
ab(ρb − ρa)

ρ
∇P − F0 (147)

leading directly to the expression of the diffusive fluxes.

6.1 Extension to other internal phenomena

In the previous subsection, we have seen that the classical diffusion can be
reinterpreted as a force derived from an energy and acting separately on each
phase and whose sum identically cancels so as to give no contribution to the
overall momentum equation.

It could be interesting to investigate which are the energies whose derived
force applied separately on each phase have their sum cancel identically in the
overall momentum equation. In this approach, we postulate that the overall
momentum equation can be built (as we have just done) by summing the
single phase momentum equations. Moreover, we would not need to know the
exact form of the single phases momentum equations, but only the expression
of the forces acting in it.

Let an energy Ea of phase A be the volume integral of an energy density
ea depending only algebraically on the volume fraction a, and not on its
derivative.

Ea =
∫
e(a). (148)

We use the representation:

∂tEa = < −Fa, ua >L2 (149)

and the transport equation of phase A:

∂tρaa = −∇ · ρaaua. (150)

As we restrict our analysis to cases in which the phase densities are constant,
the later equation reduces to:

∂ta = −∇ · aua. (151)

The domain of integration being fixed, we can easily compute the time evo-
lution of the energy Ea:

∂tEa =
∫
∂te(a) =

∫
e′(a)∂ta (152)

= −
∫
e′(a)∇ · aua =< a∇e′(a), ua >L2 (153)

∂tEa = < ae′′(a)∇a, ua >L2 . (154)
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Leading to:

Fa = afa = −ae′′(a)∇a. (155)

The force Fa should appear in the phase A momentum equation, that is the
equation giving ∂taρaua, the global momentum equation being constructed
by summing this term for both phases. The reduced force fa would be the
term appearing in an hypothetical evolution equation for ∂tρaua.

Now, we suppose that phase B has an energy Eb which can be represented
by the same energy density e, however applied to phase B:

Eb =
∫
e(b). (156)

repeating the former derivation, we get:

Fb = bfb = −be′′(b)∇b = be′′(b)∇a. (157)

We want to know how we can choose the energy density e such that Fa +
Fb = 0. We have:

Fa + Fb = afa + bfb = [be′′(b)− ae′′(a)]∇a. (158)

That is, unless we discard the perfectly mixed case which is not of our current
interest, we must solve:

be′′(b)− ae′′(a) = 0. (159)

Clearly, the solutions of this equation form a vectorial space containing the
affine functions, as e(x) = αx + β is a trivial solution. Another, maybe
complete, set of solution is obtained by solving:

e′′(a) = bg(ab) (160)

for whatever algebraic function g.
Taking g(ab) = g0

ab we get, up to an affine function:

e(a) = g0a ln a (161)

and we retrieve the energy at the origin of the classical diffusion.
Scanning g functions for potentially interesting candidates, we find g(ab) =

g0, giving by fixing the integration constants:

e(a)′′ = g0b = g0(1− a) (162)

e(a)′ = g0(
−a2

2
+ a− 1

3
) (163)

e(a) =
−g0

6
(a3 − 3a2 + 2a) =

−g0

6
a(1− a)(2− a) (164)

e(a) =
−g0

6
ab(1 + b) (165)
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and

Fa = g0ab∇a. (166)

We shall see that this force is an excellent candidate for a contracting term.
By the way, other candidates can be tested, but we could not find any other
one leading to simple expressions.

6.2 Extension of the derivation of the surface ten-
sion from energy consideration

We have now in hands the necessary tools required to extend the derivation of
the surface tension for two constant density fluids which can inter-penetrate.

Let us postulate a free energy G to be globally minimized by the flow in
the form:

G =
∫

Ω
σ|∇H(a)| (167)

where now for simplicity, the surface tension coefficient is considered constant
and H is a normalised monotonous (increasing) scalar function with (positive)
derivative h. We recall the volume fraction equation:

∂ta+∇ · (aua) = 0 (168)

The velocity used in the momentum equation is u and we would like to apply
the representation:

dtG =< −F, u >L2(Ω) (169)

with the scalar product on the right hand side classically defined in our case
as:

< f, g >L2(Ω)=
∫

Ω
fg. (170)

We just have therefore to evaluate, dtGu and represent it, if feasible, under
the form < −F, u >L2(Ω). This representation arises from the conservation of
the total energy when the kinetic energy is Ec =

∫
Ω
ρ
2u

2. Unfortunately, in
presence of two phases, the total kinetic energy is rather:

Ec =
∫

Ω

aρa
2
u2
a +

bρb
2
u2
b =

∫
Ω

ρ

2
u2 − abρaρb

2ρ
(ua − ub)2 (171)

and the two expressions differ when the phase velocities are not equal. How-
ever, the representation is correct if applied on a single phase basis.
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The domain of evaluation Ω does not change in time and we can write:

dtG =
∫

Ω
∂t(σ|∇H(a)|) (172)

=
∫

Ω
σn∇∂tH(a)

dtG = −
∫

Ω
σn∇[h∇ · aua] (173)

= − < a∇[h∇ · σn], ua >L2 (174)

= < b∇[h∇ · σn], ub >L2 . (175)

depending on to which velocity the force must be set in duality with, we
obtain:

Fa = a∇[h∇ · σn] (176)

if the energy has to be considered a property of phase A and

Fb = −b∇[h∇ · σn] (177)

if the energy has to be considered a property of phase B.
We can proceed with the derivation for further insight

dtG = −
∫

Ω
σn∇[h∇ · av + ab(ua − ub)] (178)

=
∫

Ω
(h∇ · σn)(v · ∇a+∇ · ab(ua − ub))

= < ∇ · (σn)∇H(a), v >L2(Ω) + < h∇ · (σn),∇ · ab(ua − ub) >L2(Ω)

dtGu = < ∇ · (σn)∇H(a), v >L2(Ω) (179)

− < ∇h∇ · (σn), ab(ua − ub) >L2(Ω)

We retrieve the classical surface tension under the condition that the shift
velocity ua − ub is null, however in duality with the volume fraction velocity.
We are thus here in perfect agreement with the surface tension defined by
Landau, under the condition (required in the development of Landau) that
the phases are completely separated, and thus u and v are equal.

We are apparently in a very favourable situation in which the initial target
form can be reached. It is not very intuitive to arrive to the right form, but
once found, it is straightforward to derive it directly. We start with the
decomposition:

ρu = aρaua + bρbub (180)

= (ρa − ρb)aua + aρbua + bρbua (181)

= (ρa − ρb)aua + ρbv. (182)
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Remembering that v is divergence free, we have directly:

∇ · aua = ∇ · ρu

ρa − ρb
(183)

and making the substitution in equation 173, it comes after integration by
parts:

dtGu = < − ρ

ρa − ρb
∇[h(∇ · σn), u >L2(Ω) . (184)

or to make the classical force appear:

dtG = < ∇ · (σn)∇H(a), u >L2(Ω) (185)

− < ∇[(∇ · σn)
ρh

ρa − ρb
], u >L2(Ω) .

The force related to the duality with the mass weighted velocity is therefore:

F =
ρ

ρa − ρb
∇[h∇ · σn] (186)

Note that this derivation does not apply when both densities are equal.
This is because we have deeply used the fact that density and volume fractions
have collinear gradients.

If we consider that the energy density g = σ|∇H(a)| is split among the
two phases according to the scheme:

g = ga + gb (187)

ga =
ρa

ρa − ρb
(188)

gb = − ρb
ρa − ρb

, (189)

and naming Fa.Fb and F the forces related to the pairs (ga, ua), (gb, ub) and
(g, u), then we retrieve the expected additive properties:

Fa + Fb = F (190)

and

Faua + Fbub = Fu. (191)

The force thus obtained is not very different from the classical one. In
effect, part integration gives:

F = ∇[
ρ

ρa − ρb
∇ · σn] (192)

− ∇ · [σn]∇a.

The first RHS term could be absorbed in the pressure gradient. The second
RHS term coincides with the classical surface tension force. The derivation of
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the force is correct, but the physical principal on which it is based is slightly
wrong, leading to the degeneracy of the first RHS term when the densities are
arbitrarily close.

As we want to extend the surface tension consistently to cases in which
the interface width is non zero due to the discretisation of the equations,
we would definitively prefer to keep the classical term F = −σ∇ · n∇H(a)
without any change. This cannot be achieved by a simple global weighting of
the phase forces already defined. It can nevertheless be achieved using a less
trivial splitting of the energy between the phases. In effect, taking:

Ea =
∫
σ|b∇a| (193)

Eb =
∫
σ|a∇b| (194)

we still have Ea +Eb =
∫
σ|∇a|, but in this case the (normalized) forces are:

Fa = ∇[ab∇ · n]− b∇ · n∇a (195)

Fb = −∇[ab∇ · n]− a∇ · n∇a. (196)

As the forces do not perfectly sum, we can expect diffusion-like induced phe-
nomena for the phases. We shortly comment on this feature.

We want to extend the energy concept for cases in which two phases can
merge. However, we want that the two phases tend to separate. This is
not realized with the energy G =

∫
Ω σ|∇a| as can be seen from two specific

cases. First, if the phases are (vertically) stratified, the energy is invariant
with the stratification width. Second, for the situation in which the phase A
is restricted to a single sphere, for a given total volume of phase A, the energy
decreases with the enlarging of the sphere and a related lowering of the volume
fraction (supposed constant but no more unit) in the sphere. Taking S the
surface of the spheres, we have: G1 = σS1 and Ga = aSa = a1/3S1 ≤ S1.

This means that this energy favours the dissolution of droplets or bubbles.
In fact, the lowest energy is reached for a uniform mixing of the phases.

Now, we look at F0 the cancelling part of phase A force:

F0 =
bρb
ρ
Fa −

aρa
ρ
Fb (197)

=
ab

ρ
∇(ρ∇ · n) (198)

= ab∇(∇ · n) +
ab(ρa − ρb)

ρ
(∇ · n)∇a (199)

F0 = ab∇(∇ · n)− ab(ρa − ρb)F
ρ

(200)
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For spherical bubbles or droplets, ∇(∇·n) is oriented in direction of −n. The
first RHS term in equation (199), which is the only one present in case of
constant density, induces a diffusive behaviour. This term is consistent with
the previous comment. In more complex configuration, the force seems to work
at the regularization of the curvature, but the interpretation is neither easy
nor simple to justify. The second RHS term is similar to the corresponding
pressure force with −F instead of ∇P . It cancels the pressure drift effect
for the part relative to the pressure change across the interface. It states
that there is no pressure drift if the pressure gradient is due to a curvature
induced surface tension. This effect seems to make sense, at least for CFD
applications.

The original surface tension term has been retrieved using a symmetrical
splitting of the energy between the two phases. In the case of a liquid/ low
density gas interface, this splitting seems rather un-physical as we understand
the surface tension as a property almost exclusively of the liquid phase. In
this case, writing:

Fa = a∇[h∇ · n] = (∇ · n)∇(ah−H) + ah∇(∇ · n), (201)

we must have h = 0 when b = 0, otherwise the resulting force is diffused and
depends on the prolongation of ∇.n all over the domain even in the regions
where the product ab is identically zero. Thus, taking h proportional to b

remains an interesting choice. Another advantage is the following: when the
interface width is small in confront with the curvature radius, if the volume
fraction gradient is constant across the interface, then the force is proportional
to the heavy phase volume fraction and thus almost proportional to the den-
sity. We believe that this property reduces the stiffness of the equation if we
require the volume fraction to be the smoother field, by opposition to the
mass fraction more adequate for diffusive phenomena.

Up to the quite fastidious parasite diffusion effects, we would have found
out a good energy term from which to derive the surface tension. Once again,
to complete the current development we will have to settle and refine a few
concepts.

6.3 Extension of the notion of surface density

To solve the issue of the diffusing effect arising from the current energy density
used to describe the surface tension, we must refine the concept of interface
density. While for completely separated media, it is correctly defined by
|∇a|, for slightly inter-penetrating media, the definition cannot be trivially
extended. Considering a planar interface, we must give an interface definition
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such that the diffuse interface is larger than a wide-less one. One way is to
weight the interface density with a positive function, W , characteristic of the
diffuse region. The simplest function is the density product ab. It has also the
nice property that it leads to a potential not modifying the global momentum
equation. There is however arbitrariness in this choice. For dimensional
homogeneity, we must also introduce a length L, such that our definition of
the surface density s becomes: s = |∇a|+W (abL ). Fundamentally, W (x) = x2

is used in the Cahn-Hilliard and Allen-Cahn equations. But here we use
W (x) = x.

When we were suggesting E =
∫
σ|∇a| as the energy responsible for sur-

face tension, we were in fact thinking at the integral of the surface density
E =

∫
σs. The idea is straightforwardly extended to the extended notion of

surface by looking at the effects of the extra term.
We have already made the splitting allowing to have the phase forces

summing to zero.

Ea =
∫
σ
ab(1 + b)

3L
(202)

Eb =
∫
σ
ab(1 + a)

3L
(203)

and

Fa =
2σ
L
ab∇a (204)

Fb = −2σ
L
ab∇a. (205)

An interpretation of ea = σ ab(1+b)
3L can be the following. First ea is pro-

portional to the particle number density, itself proportional to the volume
fraction. The energy for each particle is then proportional to b(1 + b). The
first b in this expression is to state that the augmented energy is roughly
proportional to the lack of neighbours of the same phase A. The term 1 + b

takes into account that the probability of a lacking neighbour to be a closest
neighbour (associated with an higher energy) increases with the proportion of
lacking neighbours. In other words, the local clustering of the particles drops
with the volume fraction.

By comparison with the diffusive force arising from the main surface energy
term, we can see that the combined effect is diffusive when |∇(∇ · n)| ≥ 2|∇a|

L

and contracting otherwise.
Here again, the symmetrisation of the energy is very doubtful and difficult

to justify for the gaseous light phase. Taking:

E = Ea =
∫
σ
ab

L
(206)
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we have

F = Fa =
σ

L
∇a2. (207)

The same result would have been obtained using E = Ea =
∫
− σ
La

2, more
easy to interpret as the sum of all binary connections between fluid molecules.
This force creates a jump of pressure across the interface (independently of its
curvature) equal to σ

L . This jump of pressure can be related to the internal
pressure of the fluid which is normally filtered by the Navier-Stokes equa-
tions. The symmetrized splitting is thus to be interpreted as such a filtering.
How much this interpretation can be extended to the symmetrisation of the
previous term is left undecided.

6.4 Relation between potentials

A relatively general expression for the potential energy E at the source of the
Cahn-Hilliard and Allen-Cahn equation rewritten with our notation is:

E =
∫
α2

2
|∇G(a)|2 +

β2

2
f2(ab) (208)

with α, β, two strictly positive coefficients, G a normalized function and g its
derivative. Very often in literature, f and G are considered identity.

The question arises as whether there is a relation between this energy and
the surface tension energy:

E′ =
∫
σ|∇H(a)| (209)

where here again H is a normalized function.
The answer lies in the elementary relation x2 + y2 ≥ 2xy indicating that

locally we have everywhere:

α2

2
|∇G(a)|2 +

β2

2
f(ab)2 ≥ αβfg|∇a|. (210)

At the cost of having an extrinsic normalization of f such that fg∇a =
∇H, setting σ = αβ, we have: E ≥ E′. Moreover, we have E = E′ if
the Cahn-Hilliard energy density is everywhere minimum. And when it is
minimum, both terms under the integral are equal, giving: |∇G|f = β

α from
which the shape of the locally stable solution can be calculated.

When looking at the Cahn-Hilliard potential, we can see that the force
derived from the scalar part has an integral across the interface which is
independent of the interface curvature. The curvature dependent part of the
force comes therefore exclusively from the gradient part of the potential and
scales like λ2α2, where λ is the width of the interface. A consequence is
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that the curvature effects due to the force derived from the Cahn-Hilliard
potential can be very different from the surface tension effect, mainly when
the resolved scale (i.e. in a CFD simulation) is much larger than the local
equilibrium length scale λeq = α

β , which is in the nanometre range except for
fluid near the critical point [10].

We could modify the parameters α and β in such a manner that their
product is conserved but the equilibrium scale is much larger. If the modified
equilibrium scale becomes resolved, then the surface tension should also be
correctly resolved. Remark that in this case, the equilibrium shape of the
interface must also be reasonably captured, requiring the resolved scale to
be about one order less than the equilibrium scale. We would prefer not to
have to resolve the interface shape and we would better have as objective an
interface with only one or at most two cells or control values.

On the other hand, the force derived from the surface tension energy E′ is
almost insensitive to the resolved scale, as long as it is somewhat larger than
the local curvature.

When a potential density must be expressed with a term containing the
gradient of the volume fraction, then it automatically produces a force whose
integral across the interface depends on the curvature. On the contrary, a po-
tential depending only on the volume fraction gives rise to a force whose inte-
gral across the interface in independent of the curvature. Moreover, we have
derived a family of such potentials which identically cancels when summed
for the global momentum equation. These potentials are therefore perfectly
suited for contracting purpose.

Our strategy to represent the surface tension effects has been to use the
asymptotic potential E′ =

∫
σ|∇H(a)| related to the classical surface tension

force, and to augment it with a pair of mutually neutralizing phase potential
for correction of unwanted diffusion effects.

The relation given here between the surface tension coefficient and the
Cahn-Hilliard potential is not original and can be found in very similar terms
in [10] (eq 3.13 pp.56). The relation between the surface tension and the
degenerated potential can be found in Jacqmin 1999 [11].

6.5 Relation with the Cahn-Hilliard equation

The Cahn-Hilliard potential under examination is:

E =
σ

2

∫
Ω
δ|∇a|2 + δ−1a2b2 (211)

and we take both densities equal.
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Supposing that the potential is a property of phase A (i.e. E = Ea), we
have straightforwardly:

Fa = σa∇[δ∆a− δ−1ab(b− a)] (212)

F0 = σab∇[δ∆a− δ−1ab(b− a)] (213)

thus the Cahn-Hilliard equation with a parameter dependent mobility is re-
trieved. Or, in alternative, we get back the constant mobility equation by
modelling the resistance coefficient R in the momentum exchange term as
proportional to the product ab. Such modelling assumption is however in-
compatible with a reasonable baro-diffusion. In both cases, we had not to
suppose a negligible apparent velocity v.

The non gradient part of the force Fa appearing in the global momentum
equation is proportional to −∆a∇a in clear correspondence with the surface
tension.

7 Consequences for the numerical treat-

ment of surface tension

The phase momentum equations were postulated mainly thinking to a perfect
gas made of two species. To account for more general fluids, we have let the
possibility to include some other arbitrary force. The application we have in
mind concern an Heavy Liquid Metal (HLM), basically, Lead or Lead-Bismuth
Eutectic (LBE) in contact with a low pressure gas. For some application,
pressure is atmospheric, for some other application, pressure can be much
less. We want to create a two-phase fluid model with some precise features.

• Both phases are incompressible

• When in diffuse form, each phase preserves its own density

• No phase diffuses spontaneously in the other

• When in diffuse form, the phases tend to spontaneously separate

These characteristic are required for CFD applications. The first one allows
to use the general incompressible background. The second one expresses that
when the phases mix, they mix as if they were gaseous phases. The third and
fourth properties together state that the phases tend to be totally immiscible:
under separated initial conditions, in exact mathematics, the fluid should
stay separated for all time. This fluid is very much like the one used by [7]
to derive the surface tension. It is not a Cahn-Hilliard fluid with a smooth
transition between one phase and the other. However, the fluid will not evolve
in a perfect mathematical world, but rather in an imperfect numerical (CFD)
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world, more precisely in a Finite Volume (FV) CFD world without surface
tracking mesh. In this world, the phases cannot evolve in space without
suffering at least temporary broadening of their interface. Basically, during
the filling of a new control volume, the phases are mixed in this control volume.
Even at rest, the interface between the phases is technically (almost surely)
wide at least one control volume. A more tricky situation arises when a fluid
interface is driven (in one interface plane direction) from a coarse mesh region
into a finer mesh region. In this case, the one broad cell large diffuse interface
is convected in an interface region of several smaller cells. From these examples
and others, one can infer that there are intrinsic sources of numerical diffusion
of the interface, and that the numerical fluid is not in the configuration of a
really immiscible fluid as required by the derivation of [7]. The distance to the
ideal configuration and also the minimum distance to this ideal configuration
evolve in time together with the flow. What we want to do is to incorporate a
physical mechanism such that the evolving minimum distance is an attractor
of the flow.

For us, the minimum distance is an interface one cell wide. It is unrealistic
to try to define an articulated interface shape only one cell wide. Therefore,
the objective shape will be the simplest one in this context: piece-wise linear.
We want to base our additional force on an energy concept. As we have seen,
to capture the surface tension effect almost independently of the interface
width, we must rely on an energy density term of the form:

eσ = σ|∇H(a)| = σh(a)|∇a|. (214)

according to equation 210, and following discussion, we must have fand g

proportional to have the piecewise linear profile as reference. The simplest
solution is therefore to take, once performed the normalization:

f = χab (215)

h(a) = 1. (216)

with χab the characteristic support function of the product ab (and also
limε→0(ab)ε).

All curvature effects are supposed to be embedded in this energy density.
The algebraic term in the Cahn-Hilliard potential is still needed to contract
the interface width, with the difference that now the diffusive effects arise
from the reduction of the available functional space due to the discretisation.
We arrive to the following form of the global energy functional:

Eρ =
∫
eσ + ec =

∫
σ|∇a|+ σ

L
ab (217)
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The length parameter L arises in a term dedicated to the control of discreti-
sation effects, so it is likely that it will be defined according to parameters of
the discretisation.

Now, we consider the nature of the two terms to understand how they
should be split between the phases. The curvature effects are quite nicely
described by the Landau expression. It is therefore very convenient to keep the
same description for the extended configuration. Regarding the contracting
term, it is an (anti-)diffusive term. We would like to treat it as an anti-diffusive
force for each phase cancelling under summation in the global momentum
equation. Its sole global effect is to generate drift fluxes. With both features
available, we would have a global momentum equation perfectly unaltered.
Thus, we choose:

eσa = beσ (218)

eσb = aeσ (219)

with the corresponding contracting forces:

Fσa = σ[∇(ab∇ · n)− b(∇ · n)∇a] (220)

Fσb = σ[−∇(ab∇ · n)− a(∇ · n)∇a]. (221)

such that the surface tension in the global momentum equation is:

Fσ = −σ(∇ · n)∇a (222)

and the drift force for the phase transport equation is:

Fσ0 = σab∇(∇ · n)− σab(ρa − ρb)F
ρ

(223)

Regarding the contracting part, we have:

eca =
σ

3L
ab(1 + b) (224)

ecb =
σ

3L
ab(1 + a) (225)

with the corresponding contracting forces:

Fca =
2σ
L
ab∇a (226)

Fcb = −2σ
L
ab∇a. (227)

from which the contracting drift fluxes are directly calculated taking F0 = Fca

in equation (147).
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8 Final system of equation

We resume the proposed set of equations.
Phase momentum equation:

∂t(aρaua) +∇ · (aρauua) + a∇P − a∇ · τ = Iab + aρag + Fa (228)

∂t(bρbub) +∇ · (bρbuub) + b∇P − b∇ · τ = Iba + bρbg + Fb (229)

with

Fa = Fσa + Fca (230)

= σa∇(b∇ · n) +
2σ
L
ab∇a (231)

Fb = Fσb + Fcb (232)

= −σb∇(a∇ · n)− 2σ
L
ab∇a (233)

Iab = −Iba = Rab(ub − ua) (234)

R = R0(1 + |δ∇a|2) (235)

Global momentum equation:

∂t(ρu) +∇ · (ρuu) +∇P +∇ · τ = ρg + F. (236)

with

F = Fa + Fb = −σ(∇ · n)∇a (237)

Volume fraction equations:

∂ta+∇ · (av)−∇ · [ab(ub − ua)] = 0, (238)

∂tb+∇ · (bv)−∇ · [ab(ua − ub)] = 0. (239)

in terms of the divergence free volume fraction velocity v and

∂t(ρaa) +∇ · (aρau)−∇ · [abρaρb
ρ

(ub − ua)] = 0 (240)

∂t(ρbb) +∇ · (bρbu) +∇ · [abρaρb
ρ

(ub − ua)] = 0. (241)

in terms of the mass fraction velocity u used in the momentum equation, both
velocities being related through the equation:

u− v = (ρb − ρa)
ab
ρ

(ub − ua) (242)

Dynamical equilibrium assumption:

Iab =
bρb
ρ

(a∇P − Fa)−
aρa
ρ

(b∇P − Fb) (243)

= ab
(ρb − ρa)

ρ
(∇P − F )− abσ∇(∇ · n)− ab2σ

L
∇a. (244)
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The equilibrium equation can be factorized by the product ab and reduces
to:

ub − ua =
1
R

[
(ρb − ρa)

ρ
(∇P − F )− σ∇(∇ · n)− 2σ

L
∇a]. (245)

If one does not want to bother with extremely fine characteristics of the surface
tension derived diffusing effects, the corresponding fourth order term can be
simply removed, leading to:

ub − ua =
1
R

[
(ρb − ρa)

ρ
(∇P − F )− 2σ

L
∇a]. (246)

Insertion of the equilibrium assumption in the phase momentum equation
gives:

∂t(aρaua) +∇ · (aρauua) +
aρa
ρ

(∇P +∇ · τ) =
aρa
ρ

(ρg + F ) (247)

∂t(bρbub) +∇ · (bρbuub) +
bρb
ρ

(∇P +∇ · τ) =
bρb
ρ

(ρg + F ). (248)

These equations can be factorized by their respective densities to give to
phase velocity equations:

∂t(aua) +∇ · (auua) +
a

ρ
(∇P +∇ · τ) =

a

ρ
(ρg + F ) (249)

∂t(bub) +∇ · (buub) +
b

ρ
(∇P +∇ · τ) =

b

ρ
(ρg + F ). (250)

Summation of these later gives the volume fraction equation:

∂t(v) +∇ · (uv) +
1
ρ

(∇P +∇ · τ) = g +
F

ρ
. (251)

The only equation independent of time that we are able to construct to
solve the pressure is by taking the divergence of this last equation. It is of the
form:

∇ · ∇P
ρ

= F . (252)

The constraint to be respected by u is given by the divergence of equa-
tion (242) taking into account the dynamical equilibrium assumption and the
equation of state ∇ · v = 0.

9 Discussion

The initial objective of this work was to understand how two-phase flows with
a generally identifiable free-surface interface could be consistently described.
The hope was that with a clear representation of the phenomenology, we could
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have insight on how to improve the quality of their numerical simulation and
reach always higher density ratios.

When constructing the global momentum equation from the phase mo-
mentum equations, there is always a temptation to resolve inconsistencies by
stating that the global equation is not completely valid for two phase flows.
How much this assumption is true is left as an open question. Here, we have
taken an alternative approach for which the global momentum equation is un-
touchable, including the surface tension as derived in Landau [7]. The global
momentum equation is thus not altered. Terms are introduced in the volume
fraction equation to consistently take into account barometric and surface
tension effects. In the macroscopic flows of our interest, the barometric term
is likely to be almost everywhere largely dominant. Ironically, pressure ef-
fects were primarily derived to understand how to proceed with the surface
tension. In absolute mathematics, pressure diffusion, as already known and
derived in [7], is relevant in only very specific applications, because the resis-
tance coefficient is based on a molecular length scale. By analogy with the
turbulent diffusion, larger scale baro-diffusion is likely to appear in turbulent
flows has well as in flows discretised for CFD simulation, the corresponding
length scale being related either to the turbulent length scale or to the mesh
size. Baro-diffusion seems a very good candidate for the control of the free
surface integrity.

The surface tension arises from a potential which is a degenerate con-
figuration of a Cahn-Hilliard potential. We can use any of the potentials,
but the Cahn-Hilliard one requires a much finer discretisation to describe the
concentration evolution through the interface.

While it is not the primary objective of this work, we have developed a
formalism allowing to combine phase separation process with baro-diffusion.

In the Cahn-Hilliard framework, curvature effects and phase separation
effects are intimately merged. In our “augmented Landau” framework, each
effect is controlled by a specific dedicated term. Quite surprisingly, the part
of the potential responsible for the surface tension has a marginally diffu-
sive effects. It has an effect on both the momentum and the phase transport
equation. The effect on the phase transport equation can be likely neglected.
The part responsible for the phase separation has no effect on the momen-
tum equation but should not be forgotten for the phase transport equation.
Thus, we can empower the phase separation effect without modifying (or even
ignoring) the curvature effects.

For our applications, phase separation occurs essentially because of baro-
diffusion. In very specific applications such as free fall jets, the baro-diffusion
becomes totally ineffective. In this case, only the surface tension keeps the
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phases separated. So, it is controlled by the sole surface tension separation
term.

Most of the material presented here can hopefully be re-used in the frame-
work of turbulent applications. The turbulence energy ρκ appearing naturally
in the equation could have its treatment share some similitude with the treat-
ment of the pressure.

The extensive reference to various potential energies and their derived
forces proved to be extremely powerful, once we understood that it is essen-
tially restricted to the single phases. In this sense, gravity is rather tricky,
because it can be applied indifferently to the phases separately or to the en-
tire mixture. But it is a very specific case. Reverting to the classical Newton
law of acceleration (F = mγ), we can see that this law cannot be in general
extended by summation to ΣF = (Σm)γ unless the force is proportional to
the mass. We think that this is essentially the reason why it is in general
not justified to derive a force from a potential applying a displacement or a
velocity indiscriminately to all components of a multi-component flow.

We hope that the work performed here will be used to increase consistently
the range of CFD application dealing with high density ratio free surface flows.

Two particular features may result quite relevant. The first one is to take
into account that the numerical flow does not need be divergence free but has
a specified divergence which must be enforced at the projection step. The
second feature is the introduction of a generic baro-diffusion term working
at a natural separation of the phases. A strictly contracting term related to
the chemical potential is likely to be added only when the level of description
reaches the millimetre range.

10 Formula

The mass weighted u and volume weighted v velocities are related through
the formula:

ρ(u− v) = (ρb − ρa)ab(ub − ua) (253)

ρ = aρa + bρb. (254)

Some other formula relating the different velocities are these:

ua − u =
bρb(ua − ub)

ρ
(255)

ub − u =
aρa(ub − ua)

ρ
(256)

ua − v = b(ua − ub) (257)

ub − v = a(ub − ua). (258)
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The mass fraction defined by ρã = ρaa has its differential:

dã =
ρaρb
ρ2

da (259)

leading to the invariance property

da

ab
=
dã

ãb̃
(260)

such that the diffusion coefficient according to Fick’s law is equally easy to
interpret in terms of volume or mass fractions.
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