
Big Data processing with Hadoop

Luca Pireddu

CRS4—Distributed Computing Group

April 18, 2012

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 1 / 44



Outline

1 Motivation
Big Data
Parallelizing Big Data problems

2 MapReduce and Hadoop
MapReduce
Hadoop DFS
Cloud resources

3 Simplified Hadoop
Pydoop
Other high-level tools

4 Sample Hadoop use case: high throughput sequencing
HT sequencing at CRS4
Seal

5 Conclusion

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 2 / 44



Section

Motivation

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 3 / 44



Big Data

Data set sizes are growing. But why?

Incentive:
Larger sizes tend to improve the sensitivity of analyses

Ability:
More easily accessible sources of data

e.g., Internet, Twitter firehose
Technology enables more ambitious science

e.g., LHC, whole-genome sequencing
Cheaper and faster acquisition/tracking methods

e.g., cell phones, RFID tags, customer cards at the stores

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 4 / 44



Big Data

Data set sizes are growing. But why?

Incentive:
Larger sizes tend to improve the sensitivity of analyses

Ability:
More easily accessible sources of data

e.g., Internet, Twitter firehose
Technology enables more ambitious science

e.g., LHC, whole-genome sequencing
Cheaper and faster acquisition/tracking methods

e.g., cell phones, RFID tags, customer cards at the stores

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 4 / 44



Big Data computational challenges

Data sets can grow so big that it is difficult or impossible to handle
them with conventional methods

Too big to load into memory
Too big to store on your desktop workstation
Too long to compute with a single CPU
Too long to read from a single disk

Problems that require the analysis of such data sets have taken the name
of “Big Data” problems

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 5 / 44



Big Data parallelization

Many big data problems are loosely-coupled and are easily parallelized
They may require high I/O throughput as large quantities of data is
read/written
Do not require real-time communication between batch jobs
How should we parallelize them?

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 6 / 44



Poor man’s parallel processing

Poor man’s parallel processing
manual data splitting into batches
ad hoc scripting to automate, at least partially
queueing system to distribute jobs to multiple machines
shared storage to pass intermediate data sets

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 7 / 44



Poor man’s parallel processing

Presents many weaknesses
High effort, low code re-use
No robustness to equipment failure
Failures typically require human intervention to recover

raises operator effort and therefore operating costs
Usually less-than-desirable parallelism

Getting high-parallelism (especially more than per-file) can get
complicated

I/O done to/from shared storage
Limits scalability in number of nodes
Storage can become the bottleneck; alternatively, storage becomes very
expensive
High network use as data is typically read and written remotely
Raises infrastructure costs

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 8 / 44



Section

MapReduce and Hadoop

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 9 / 44



MapReduce

MapReduce
A programming model for large-scale distributed data processing
Aims to solve many of the issues just mentioned

Breaks algorithms into two steps:
1 Map: map a set of input key/value pairs to a set of intermediate

key/value pairs
2 Reduce: apply a function to all values associated to the same

intermediate key; emit output key/value pairs

Functions don’t have side effects; (k,v) pairs are the only input/output
Functions don’t share data structures

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 10 / 44



MapReduce Example – Word Count

Consider a program to calculate word frequency in a document.
The quick brown fox ate the lazy green fox.

Word Count
ate 1
brown 1
fox 2
green 1
lazy 1
quick 1
the 2

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 11 / 44



MapReduce Example – Word Count

A possible MapReduce algorithm:

Map
Input: part of text
For each word write a tuple (word, 1)

Reduce
Input: word w, list of 1’s emitted for w
Sum all 1’s into count

Write tuple (word, count)

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 12 / 44



MapReduce Example – Word Count

The quick brown fox ate the lazy green fox.

Here’s some pseudo code for a MapReduce word counting algorithm:

Map

map(key , value):
foreach word in value:

emit(word , 1)

Reduce

reduce(key , value_list ):
int wordcount = 0
foreach count in value_list:

wordcount += count
emit(key , wordcount)

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 13 / 44



MapReduce Example – Word Count

the quick brown fox ate the lazy green fox

Mapper Map

the, 1
quick, 1
brown, 1

fox, 1
green, 1fox, 1

ate, 1

lazy, 1
the, 1

Mapper Mapper

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 14 / 44



MapReduce Example – Word Count

the quick brown fox ate the lazy green fox

Mapper Map

Reducer ReduceReducer

Shuffle &
Sort

the, 1

quick, 1

brown, 1

fox, 1

ate, 1

lazy, 1fox, 1

green, 1

quick, 1
brown, 1

fox, 2
ate, 1

the, 2
lazy, 1

green, 1

the, 1

Mapper Mapper

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 15 / 44



MapReduce

The lack of side effects and shared data structures is the key.
No multi-threaded programming
No synchronization, locks, mutexes, deadlocks, etc.
No shared data implies no central bottleneck.
Failed functions can be retried—their output only being committed
upon successful completion.

MapReduce allows you to put much of the parallel programming into a
reusable framework, outside of the application.

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 16 / 44



Hadoop MapReduce

The MapReduce model needs an implementation
Hadoop is arguably the most popular open-source MapReduce
implementation
Born out of Yahoo! Currently used by many very large operations

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 17 / 44



Hadoop DFS

A MapReduce framework goes hand-in-hand with a distributed file system
Multiplying the number of nodes poses challenges

multiplied network traffic
multiplied disk accesses
multiplied failure rates

Hadoop provides the Hadoop Distributed File System (HDFS)
Stores blocks of the data on each node.

Move computation to the data and decentralize data access
Uses the disks on each node

Aggregate I/O throughput scales with the number of nodes
Replicates data on multiple nodes

Resistance to node failure

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 18 / 44



Hadoop DFS

A MapReduce framework goes hand-in-hand with a distributed file system
Multiplying the number of nodes poses challenges

multiplied network traffic
multiplied disk accesses
multiplied failure rates

Hadoop provides the Hadoop Distributed File System (HDFS)
Stores blocks of the data on each node.

Move computation to the data and decentralize data access
Uses the disks on each node

Aggregate I/O throughput scales with the number of nodes
Replicates data on multiple nodes

Resistance to node failure

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 18 / 44



Hadoop DFS: Architecture

Components

Image courtesy of Maneesh Varshney

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 19 / 44



Hadoop DFS: Architecture

Files split into large blocks (e.g., 64 MB)
Namenode maintains file system metadata

Directory structure
File names
The ids of the blocks that compose the files
The locations of those blocks
The list of data nodes

Datanode stores, serves and deletes blocks

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 20 / 44



Hadoop DFS: Architecture

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 21 / 44



Cloud resources

So, you have a big data problem
You’ve written the next great MapReduce application
You need a few hundred machines to run it. . . now what?

Rent them!

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 22 / 44



Cloud resources

So, you have a big data problem
You’ve written the next great MapReduce application
You need a few hundred machines to run it. . . now what?

Rent them!

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 22 / 44



IaaS

Lately there’s been a growth of Infrastructure as a Service (IaaS)
Rent infrastructure from companies that specialize in providing and
maintaining them

e.g., Amazon Web Services (AWS), IBM
You can rent as many nodes as you need for as long as you need

even as little as one hour
pay as you go
elastic

Makes sense in many cases
peaky loads or temporary requirements—i.e., low average use
need to quickly grow capacity
don’t want to create an HPC group within the company

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 23 / 44



How popular is IaaS?

In April 2011 Amazon suffered a major service outage

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 24 / 44



Section

Simplified Hadoop

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 25 / 44



Scripting with Hadoop

At CRS4 we’ve written a Python API for Hadoop called Pydoop
Allows one to access most of Hadoop’s features with the simplicity of
Python
Lets you bridge Hadoop and C code
Lets you script!!

Pydoop script to turn text to lower case in Hadoop

def mapper(k,value , writer ):
writer.emit("", value.lower ())

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 26 / 44



Scripting with Hadoop

simple text-processing jobs reduced to two Python functions in a
module
makes it easy to solve simple problems
makes it feasible to write simple (even throw-away) parallel programs

Pydoop wordcount script

def mapper(k, text , writer ):
for word in text.split ():

writer.emit(word , 1)

def reducer(word , count , writer ):
writer.emit(word , sum(map(int , count )))

Then run it with:
pydoop_script wordcount.py hdfs_input hdfs_output

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 27 / 44



Pydoop available on entu/oghe

If you’re interested, Pydoop is available on entu/oghe
Use the python installation on els5
At the next release we’ll ask our kind administrators to install it
centrally

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 28 / 44



Other high-level tools

Other high-level Hadoop-based tools exist as well. E.g.,
Pig
Hive
Cascading
Cascalog
Scalding
Scrunch
Spark

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 29 / 44



Section

Sample Hadoop use case: high throughput sequencing

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 30 / 44



HT Sequencing

Genomics data growth
Trend in sequencing technologies:

Lower costs
Increasing speed
Higher resolution

Sequencing rate is growing exponentially
Processing capacity is not

We are here

Time

Processing capacity
Sequencing capacity

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 31 / 44



HT Sequencing at CRS4

CRS4 Sequencing and Genotyping Platform
Currently the largest sequencing center in Italy
Created to enable a number of studies on the Sardinian population

Equipment: 4 HiSeq2000 and 2 GAIIx Illuminas
Capacity: about 7000 Gbases/month

As its sequencing capacity grew, the operation faced scalability problems in
its processing pipeline.

Used “traditional” programs (some multi-threaded, not distributed)
Data shared exclusively through Lustre volume
Based on the “poor man’s parallelism”, with the consequential
shortcomings

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 32 / 44



Seal

To solve those problems we began working on Seal

Seal is:
a suite of distributed tools for processing HT sequencing data
based on a proven technology: the Hadoop MapReduce framework
used in production at the CRS4 Sequencing Center
Released under GPLv3 license
Web site: http://biodoop-seal.sf.net

Key goals
Scalable In cluster size

In data size
Robust Resilient to node failure and transient cluster problems

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 33 / 44

http://biodoop-seal.sf.net


Seal

To solve those problems we began working on Seal

Seal is:
a suite of distributed tools for processing HT sequencing data
based on a proven technology: the Hadoop MapReduce framework
used in production at the CRS4 Sequencing Center
Released under GPLv3 license
Web site: http://biodoop-seal.sf.net

Key goals
Scalable In cluster size

In data size
Robust Resilient to node failure and transient cluster problems

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 33 / 44

http://biodoop-seal.sf.net


Seal: Features

Currently featured tools
Seal currently has tools to perform distributed:

read demultiplexing (Demux)
read alignment (Seqal)
sorting of read alignments (ReadSort)
compute base quality statistics (RecabTable).

These tools are implemented as MapReduce programs that run on
Hadoop

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 34 / 44



Seal: Features

Important features:
distributed
scalable
robust
open source

Part of these benefits are a direct consequence of Seal being based on
Hadoop
Others are thanks to implementation details

algorithm design
shared (read-only) memory
etc.

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 35 / 44



Evaluation

Important criteria
throughput per node
efficiency of the distribution mechanism
scalability w.r.t. nodes and data size

Evaluation steps:
1 Establish a single-node baseline throughput measure
2 Compare throughput/node of baseline, old CSGP workflow and Seal

equivalent
3 Compare wall-clock runtimes
4 Evaluate scalability characteristics

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 36 / 44



Baseline

Baseline
Reflects what can be easily achieved on a workstation with no
programming effort.

Use multi-threaded programs where available
8-disk GPFS volume used for storage

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 37 / 44



Data sets

Baseline input data sets

Dataset No. tiles No. pairs Size (GB)
Dataset B3 10 3.6 · 107 15.7

Realistic data sets
Dataset No. lanes No. pairs Size (GB)
Dataset MR1 1 1.2 · 108 51
Dataset MR3 3 3.3 · 108 147
Dataset MR8 8 9.2 · 108 406

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 38 / 44



Throughput per Node

baseline old seal: n 16 seal: n 32 seal: n 64 seal: n 96

re
ad

 p
ai

rs
 / 

se
c 

/ n
od

e

0
20

0
40

0
60

0
80

0
10

00
12

00

Baseline: B3 dataset
Old CSGP: MR3 (16
nodes)
Seal: MR3

Nodes used efficiently (mainly because of improved parallelism)
The overhead payed by Seal for distributing the work is minimal

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 39 / 44



Runtime

Scenario No. nodes Runtime (h)
Old CSGP 16 29.1
Seal 16 5.4
Seal 32 2.7
Seal 64 1.4
Seal 96 0.9

Table: Wall clock times, Dataset MR3.

Significant speed-up over old workflow on same number of nodes (16)
Evident linear scalability

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 40 / 44



Scalability

MR1

MR3

MR8

Ideal system would produce a flat line
1-lane case starves at more than 16 nodes

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 41 / 44



Publications

Related publications:
S. Leo and G. Zanetti. Pydoop: a Python MapReduce and HDFS API
for Hadoop. In Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, pages 819–825, 2010.
L. Pireddu, S. Leo, and G. Zanetti. MapReducing a genomic
sequencing workflow. In Proceedings of the 20th ACM International
Symposium on High Performance Distributed Computing, pages
67–74, June 2011.
Pireddu,L., Leo,S. and Zanetti,G. (2011). SEAL: a Distributed Short
Read Mapping and Duplicate Removal Tool. Bioinformatics.
Various posters. . .

In addition, we’ve been invited to the SeqAhead Next Generation
Sequencing Data Analysis Network.

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 42 / 44



Section

Conclusion

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 43 / 44



Conclusion

MapReduce
Is often a good solution for Big Data problems that present loosely
coupled parallelism
Especially true for I/O-bound problems
Simplifies development of parallel programs

Especially true when using Pydoop

Successfully used in Seal and many companies
The robustness added of the system is essential for automation
Automation is very important for scaling sample throughput and
maximizing the R.O.I. in any large-scale operation.

Questions?

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 44 / 44



Conclusion

MapReduce
Is often a good solution for Big Data problems that present loosely
coupled parallelism
Especially true for I/O-bound problems
Simplifies development of parallel programs

Especially true when using Pydoop

Successfully used in Seal and many companies
The robustness added of the system is essential for automation
Automation is very important for scaling sample throughput and
maximizing the R.O.I. in any large-scale operation.

Questions?

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012 44 / 44


	Motivation
	Big Data
	Parallelizing Big Data problems

	MapReduce and Hadoop
	MapReduce
	Hadoop DFS
	Cloud resources

	Simplified Hadoop
	Pydoop
	Other high-level tools

	Sample Hadoop use case: high throughput sequencing
	HT sequencing at CRS4
	Seal

	Conclusion

