Big Data processing with Hadoop

Luca Pireddu

CRS4—Distributed Computing Group

April 18, 2012

luca.pireddu@crs4.it (CRS4)

Big Data processing with Hadoop

April 18, 2012 1 / 44

э

Outline

Motivation

- Big Data
- Parallelizing Big Data problems

2 MapReduce and Hadoop

- MapReduce
- Hadoop DFS
- Cloud resources

3 Simplified Hadoop

- Pydoop
- Other high-level tools

4 Sample Hadoop use case: high throughput sequencing

- HT sequencing at CRS4
- Seal

5 Conclusion

Motivation

luca.pireddu@crs4.it (CRS4)

Big Data processing with Hadoop

3 / 44 April 18, 2012

3

Data set sizes are growing. But why?

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop

・ 伺 ト ・ ヨ ト ・ ヨ ト

3

Data set sizes are growing. But why?

Incentive:

- Larger sizes tend to improve the sensitivity of analyses Ability:
 - More easily accessible sources of data
 - e.g., Internet, Twitter firehose
 - Technology enables more ambitious science
 - e.g., LHC, whole-genome sequencing
 - Cheaper and faster acquisition/tracking methods
 - e.g., cell phones, RFID tags, customer cards at the stores

- Data sets can grow so big that it is difficult or impossible to handle them with conventional methods
 - Too big to load into memory
 - Too big to store on your desktop workstation
 - Too long to compute with a single CPU
 - Too long to read from a single disk

Problems that require the analysis of such data sets have taken the name of *"Big Data" problems*

- Many big data problems are loosely-coupled and are easily parallelized
- They may require high I/O throughput as large quantities of data is read/written
- Do not require real-time communication between batch jobs
- How should we parallelize them?

7 / 44

Poor man's parallel processing

- manual data splitting into batches
- ad hoc scripting to automate, at least partially
- queueing system to distribute jobs to multiple machines
- shared storage to pass intermediate data sets

Presents many weaknesses

- High effort, low code re-use
- No robustness to equipment failure
- Failures typically require human intervention to recover
 - raises operator effort and therefore operating costs
- Usually less-than-desirable parallelism
 - Getting high-parallelism (especially more than per-file) can get complicated
- I/O done to/from shared storage
 - Limits scalability in number of nodes
 - Storage can become the bottleneck; alternatively, storage becomes very expensive
 - High network use as data is typically read and written remotely
 - Raises infrastructure costs

MapReduce and Hadoop

luca.pireddu@crs4.it (CRS4)

Big Data processing with Hadoop

April 18, 2012 9 / 44

э

MapReduce

- A programming model for large-scale distributed data processing
- Aims to solve many of the issues just mentioned
- Breaks algorithms into two steps:
 - Map: map a set of input key/value pairs to a set of intermediate key/value pairs
 - *Reduce*: apply a function to all values associated to the same intermediate key; emit output key/value pairs
- Functions don't have side effects; (k,v) pairs are the only input/output
- Functions don't share data structures

Consider a program to calculate word frequency in a document. The quick brown fox ate the lazy green fox.

Word	Count
ate	1
brown	1
fox	2
green	1
lazy	1
quick	1
the	2

April 18, 2012

A possible MapReduce algorithm:

Map

- Input: part of text
- For each word write a tuple (word, 1)

Reduce

- Input: word w, list of 1's emitted for w
- Sum all 1's into count
- Write tuple (word, count)

luca.pireddu@crs4.it (CRS4)

・ 戸 ト ・ ヨ ト ・ ヨ ト

The quick brown fox ate the lazy green fox.

Here's some pseudo code for a MapReduce word counting algorithm:

Map

```
map(key, value):
   foreach word in value:
      emit(word, 1)
```

Reduce

```
reduce(key, value_list):
    int wordcount = 0
    foreach count in value_list:
        wordcount += count
    emit(key, wordcount)
```


luca.pireddu@crs4.it (CRS4)

Big Data processing with Hadoop

▲ ② > ▲ ③ > ▲ ④ >
April 18, 2012

14 / 44

э

luca.pireddu@crs4.it (CRS4)

April 18, 2012

< □ > < □ > < □ > < □ > < □ > < □ >

15 / 44

э

The lack of side effects and shared data structures is the key.

- No multi-threaded programming
- No synchronization, locks, mutexes, deadlocks, etc.
- No shared data implies no central bottleneck.
- Failed functions can be retried—their output only being committed upon successful completion.

MapReduce allows you to put much of the parallel programming into a reusable framework, outside of the application.

Hadoop MapReduce

- The MapReduce model needs an implementation
- Hadoop is arguably the most popular open-source MapReduce • implementation
- Born out of Yahoo! Currently used by many very large operations

A MapReduce framework goes hand-in-hand with a distributed file system

- Multiplying the number of nodes poses challenges
 - multiplied network traffic
 - multiplied disk accesses
 - multiplied failure rates

- A MapReduce framework goes hand-in-hand with a distributed file system
 - Multiplying the number of nodes poses challenges
 - multiplied network traffic
 - multiplied disk accesses
 - multiplied failure rates

Hadoop provides the Hadoop Distributed File System (HDFS)

- Stores blocks of the data on each node.
 - Move computation to the data and decentralize data access
- Uses the disks on each node
 - $\bullet\,$ Aggregate I/O throughput scales with the number of nodes
- Replicates data on multiple nodes
 - Resistance to node failure

Components

Image courtesy of Maneesh Varshney

3

19 / 44

イロト イポト イヨト イヨト

- Files split into large blocks (e.g., 64 MB)
- Namenode maintains file system metadata
 - Directory structure
 - File names
 - The ids of the blocks that compose the files
 - The locations of those blocks
 - The list of data nodes
- Datanode stores, serves and deletes blocks

イロト イポト イヨト イヨト

э

- So, you have a big data problem
- You've written the next great MapReduce application
- You need a few hundred machines to run it... now what?

22 / 44

- So, you have a big data problem
- You've written the next great MapReduce application
- You need a few hundred machines to run it... now what?

Rent them!

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop April 18, 2012

- Lately there's been a growth of Infrastructure as a Service (laaS)
- Rent infrastructure from companies that specialize in providing and maintaining them
 - e.g., Amazon Web Services (AWS), IBM
- You can rent as many nodes as you need for as long as you need
 - even as little as one hour
 - pay as you go
 - elastic
- Makes sense in many cases
 - peaky loads or temporary requirements—i.e., low average use
 - need to quickly grow capacity
 - don't want to create an HPC group within the company

April 18, 2012

How popular is IaaS?

In April 2011 Amazon suffered a major service outage

Big Data processing with Hadoop

Simplified Hadoop

luca.pireddu@crs4.it (CRS4)

Big Data processing with Hadoop

April 18, 2012

< 17 × <

 $\exists \rightarrow b$ 3

- At CRS4 we've written a Python API for Hadoop called Pydoop
- Allows one to access most of Hadoop's features with the simplicity of Python
- Lets you bridge Hadoop and C code
- Lets you script!!

Pydoop script to turn text to lower case in Hadoop

def mapper(k,value, writer):
 writer.emit("", value.lower())

・ 伊 ト ・ ヨ ト ・ ヨ ト …

- simple text-processing jobs reduced to two Python functions in a module
- makes it easy to solve simple problems
- makes it feasible to write simple (even throw-away) parallel programs

Pydoop wordcount script

```
def mapper(k, text, writer):
    for word in text.split():
        writer.emit(word, 1)

def reducer(word, count, writer):
    writer.emit(word, sum(map(int, count)))

    Then run it with:
        pydoop_script wordcount.py hdfs_input hdfs_output
```


- If you're interested, Pydoop is available on entu/oghe
- Use the python installation on els5
- At the next release we'll ask our kind administrators to install it centrally

Other high-level Hadoop-based tools exist as well. E.g.,

- Pig
- Hive
- Cascading
- Cascalog
- Scalding
- Scrunch
- Spark

Sample Hadoop use case: high throughput sequencing

luca.pireddu@crs4.it (CRS4)

Big Data processing with Hadoop

∃ → April 18, 2012

< 4 → <

э

Genomics data growth

- Trend in sequencing technologies:
 - Lower costs
 - Increasing speed
 - Higher resolution
- Sequencing rate is growing exponentially
- Processing capacity is not

April 18, 2012 31 / 44

CRS4 Sequencing and Genotyping Platform

- Currently the largest sequencing center in Italy
- Created to enable a number of studies on the Sardinian population

Equipment: 4 HiSeq2000 and 2 GAIIx Illuminas

Capacity: about 7000 Gbases/month

As its sequencing capacity grew, the operation faced scalability problems in its processing pipeline.

- Used "traditional" programs (some multi-threaded, not distributed)
- Data shared exclusively through Lustre volume
- Based on the "poor man's parallelism", with the consequential shortcomings

Image: A matrix

To solve those problems we began working on Seal

∃ →

< A > <

33 / 44

3

To solve those problems we began working on Seal

Seal is:

- $\bullet\,$ a suite of distributed tools for processing HT sequencing data
- based on a proven technology: the Hadoop MapReduce framework
- used in production at the CRS4 Sequencing Center
- Released under GPLv3 license
- Web site: http://biodoop-seal.sf.net

Key goals	
Scalable	In cluster sizeIn data size
Robust	• Resilient to node failure and transient cluster problems

Currently featured tools

Seal currently has tools to perform distributed:

- read demultiplexing (Demux)
- read alignment (Seqal)
- sorting of read alignments (ReadSort)
- compute base quality statistics (RecabTable).
- These tools are implemented as MapReduce programs that run on Hadoop

Important features:

- distributed
- scalable
- robust
- open source
- Part of these benefits are a direct consequence of Seal being based on Hadoop
- Others are thanks to implementation details
 - algorithm design
 - shared (read-only) memory
 - etc.

Important criteria

- throughput per node
- efficiency of the distribution mechanism
- scalability w.r.t. nodes and data size

Evaluation steps:

- Establish a single-node baseline throughput measure
- Compare throughput/node of baseline, old CSGP workflow and Seal equivalent
- Ompare wall-clock runtimes
- Evaluate scalability characteristics

Baseline

Reflects what can be easily achieved on a workstation with no programming effort.

- Use multi-threaded programs where available
- 8-disk GPFS volume used for storage

Baseline input data sets

Dataset	No. tiles	No. pairs	Size (GB)
Dataset B3	10	$3.6 \cdot 10^{7}$	15.7

Realistic data sets

Dataset	No. lanes	No. pairs	Size (GB)
Dataset MR1	1	$1.2 \cdot 10^{8}$	51
Dataset MR3	3	$3.3\cdot10^8$	147
Dataset MR8	8	$9.2\cdot 10^8$	406

イロト イポト イヨト イヨト

38 / 44

3

Throughput per Node

- Baseline: B3 dataset
- Old CSGP: MR3 (16 nodes)
- Seal: MR3

- Nodes used efficiently (mainly because of improved parallelism)
- The overhead payed by Seal for distributing the work is minimal

April 18, 2012

Scenario	No. nodes	Runtime (h)
Old CSGP	16	29.1
Seal	16	5.4
Seal	32	2.7
Seal	64	1.4
Seal	96	0.9

Table: Wall clock times, Dataset MR3.

- Significant speed-up over old workflow on same number of nodes (16)
- Evident linear scalability

Scalability

- Ideal system would produce a flat line
- 1-lane case starves at more than 16 nodes

luca.pireddu@crs4.it (CRS4)

April 18, 2012 41 / 44

Related publications:

- S. Leo and G. Zanetti. Pydoop: a Python MapReduce and HDFS API for Hadoop. In Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, pages 819–825, 2010.
- L. Pireddu, S. Leo, and G. Zanetti. MapReducing a genomic sequencing workflow. In Proceedings of the 20th ACM International Symposium on High Performance Distributed Computing, pages 67–74, June 2011.
- Pireddu,L., Leo,S. and Zanetti,G. (2011). SEAL: a Distributed Short Read Mapping and Duplicate Removal Tool. Bioinformatics.
- Various posters...

In addition, we've been invited to the SeqAhead Next Generation Sequencing Data Analysis Network.

April 18, 2012

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Conclusion

luca.pireddu@crs4.it (CRS4) Big Data processing with Hadoop

43 / 44 April 18, 2012

3

イロト イヨト イヨト イヨト

MapReduce

- Is often a good solution for Big Data problems that present loosely coupled parallelism
- Especially true for I/O-bound problems
- Simplifies development of parallel programs
 - Especially true when using Pydoop
- Successfully used in Seal and many companies
- The robustness added of the system is essential for automation
- Automation is very important for scaling sample throughput and maximizing the R.O.I. in any large-scale operation.

MapReduce

- Is often a good solution for Big Data problems that present loosely coupled parallelism
- Especially true for I/O-bound problems
- Simplifies development of parallel programs
 - Especially true when using Pydoop
- Successfully used in Seal and many companies
- The robustness added of the system is essential for automation
- Automation is very important for scaling sample throughput and maximizing the R.O.I. in any large-scale operation.

Questions?