
EUROGRAPHICS 2013/ M. Sbert, L. Szirmay-Kalos STAR – State of The Art Report

A Survey of Compressed GPU-Based
Direct Volume Rendering

M. Balsa Rodríguez1, E. Gobbetti1, J.A. Iglesias Guitián1,3, M. Makhinya2, F. Marton1, R. Pajarola2, S. K. Suter2

1 Visual Computing Group, CRS4, Pula, Italy – http://www.crs4.it/vic/
2 Visualization and MultiMedia Lab, University of Zürich, Switzerland – http://vmml.ifi.uzh.ch/

3 Universidad de Zaragoza, Spain

Abstract
Great advancements in commodity graphics hardware have favored GPU-based volume rendering as the main
adopted solution for interactive exploration of rectilinear scalar volumes on commodity platforms. Nevertheless,
long data transfer times and GPU memory size limitations are often the main limiting factors, especially for
massive, time-varying or multi-volume visualization, or for networked visualization on the emerging mobile devices.
To address this issue, a variety of level-of-detail data representations and compression techniques have been
introduced. In order to improve capabilities and performance over the entire storage, distribution and rendering
pipeline, the encoding/decoding process is typically highly asymmetric, and systems should ideally compress at data
production time and decompress on demand at rendering time. Compression and level-of-detail pre-computation
does not have to adhere to real-time constraints and can be performed off-line for high quality results. In contrast,
adaptive real-time rendering from compressed representations requires fast, transient, and spatially independent
decompression. In this report, we review the existing compressed GPU volume rendering approaches, covering
compact representation models, compression techniques, GPU rendering architectures and fast decoding techniques.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Picture/Image Generation—
Computer Graphics [I.3.7]: Three-dimensional graphics and realism—Coding and Information Theory [E.4]: Data
compaction and compression—Compression (Coding) [I.4.2]: Approximate methods—

1. Introduction

GPU accelerated direct volume rendering (DVR) on con-
sumer platforms is nowadays the standard approach for in-
teractively exploring rectilinear scalar volumes. Even though
the past several years witnessed great advancements in com-
modity graphics hardware, long data transfer times and GPU
memory size limitations are often the main limiting factors,
especially for massive, time-varying, or multi-volume visual-
ization in both local and networked settings. To address this
issue, a variety of level-of-detail (LOD) data representations
and compression techniques have been introduced.

In this context, data compression associated to GPU de-
compression is of great importance to save storage space
and bandwidth at all stages of the processing and rendering
pipelines. Few methods, however, support on-demand, fast
and spatially independent decompression on the GPU, which
is required for maximum benefits [FM07]. While the domain

of real-time GPU volume rendering has been exceptionally
well covered by well established surveys [EHK∗06], surveys
on rendering from compressed representations have mostly
focused on CPU decoding techniques [Yan00] and offline
compression performance [KFDB07]. In recent years, a num-
ber of new techniques have appeared in the GPU volume
graphics literature (e.g., tensor representations [SIM∗11] or
sparse coding methods [GIM12]), hardware supported meth-
ods are evolving [Ell12], and established techniques are gain-
ing an increased interest in the context of emerging networked
applications.

Our presentation of the state-of-the-art in GPU-based di-
rect volume rendering from compressed data starts with a
characterization of the basic concepts common to all current
architectures and of the requirements of each component (see
Sec. 2). After reviewing the most common compact data mod-
els used as underlying data representations (Sec. 3), we dis-

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

Output
Image

Rendering

Constraints
 # Memory
 # Quality

Section 5

Decoding
and Rendering

Constraints
 # Real-time
 # Memory
 # Quality

I/O streaming

5.1 Architectures
5.2 Decoding from Compact
 Representations

Adaptive
Loader

Constraints
 # Accuracy:
 [Lossy]
 [Lossless]
 [Near lossless]

Figure 1: Generic GPU-based compressed direct volume rendering architecture. This figure serves as a visual table of contents
for the STAR. Basic building blocks are listed together with references to the sections that discussed them.

cuss the issues related to compression and encoding (Sec. 4),
as well as decoding and rendering (Sec. 5). The survey con-
cludes with a short summary of the current achievements in
the domain and an indication of open issues.

2. Compressed GPU Volume Rendering

Volume visualization and massive models techniques are well
researched subjects. In this state-of-the-art report, we limit
our discussion to the issues related to the effective incorpora-
tion of compression methods into real-time volume rendering
pipe-lines. We refer the reader to established surveys on mas-
sive model visualization [DGY07, GKY08, YGKM08] and
GPU-accelerated volume rendering [EHK∗06] for a broader
coverage of other relevant techniques for attacking massive
data.

Compression and level-of-detail (LOD) precomputation
are effective approaches for facilitating volume processing
due to the large data sizes, limited resources, and highly re-
dundant nature of volume data. Compression/decompression
can appear at many stages of the volume rendering pipeline,
whose generic structure is depicted in Fig 1. In the context of
volume rendering, the optimal configuration with respect to
data transport is to compress the stored model (on disk) and
decompress the data at the latest possible stage of the render-
ing pipeline. This approach will reduce transport bandwidth
usage, and will better exploit of the memory hierarchy, with
larger capacity and slower access times on storage compo-
nents, and smaller capacity, but faster access times near the
GPU. However, note that the overall throughput and frame
rate may in the end depend on a balanced use of all available
resources such as the CPU, GPU, main and graphics memory.

Compression and LOD precomputation do not have to
adhere to real-time constraints and can best be performed off-
line for high quality results. In contrast, adaptive real-time
rendering from compressed representations requires the incor-
poration of low-delay and spatially selective decompression
into a multiresolution out-of-core renderer. The characteris-
tics of the major pipeline stages are elaborated next.

Preprocessing The input volume is generally processed off-
line to get a compressed representation. When dealing with
large volume datasets exceeding the available main mem-
ory resources, the compression preprocess should ideally
use an out-of-core data partitioning and processing strat-
egy to handle the full dataset most efficiently. Furthermore,
to reduce the preprocessing time it is desirable to exploit
parallelization over multiple machines, multi-core proces-
sors or additionally involve the GPUs as well. At this stage
the compression algorithms are typically parametrized to
achieve the desired compression ratio or ensure a maxi-
mum tolerated error. Data compression approaches suitable
for DVR are reviewed and presented in Secs. 3 and Sec. 4.

Adaptive loading and streaming of data At run-time, the
viewer application should adaptively select an appropri-
ate working set of nodes from the LOD data structure
that constitutes the desired best possible representation for
the current frame(s). These LOD nodes are eventually pro-
cessed by the renderer itself to generate the image. Random
access, in particular to large out-of-core data, is considered
a critical issue. Different criteria drive the loading of data,
potentially involving viewing and time-dependent param-
eters, available hardware resources or the required image
accuracy. We can, moreover, consider different types of
streaming channels that our system will need to use: se-
quentially accessing data from the network or files, coher-
ently processing that data on the CPU or GPU, as well
as sending the data eventually through the GPU renderer.
The compression scheme should be configured to exploit
the bandwidth along the streaming hierarchy (e.g. network,
disk bus, PCI bus, up to GPU memory). Volume decompo-
sition approaches for preprocessing are presented in Sec. 4,
while adaptive rendering architectures are discussed in
Sec. 5.

Decompression and rendering As previously mentioned,
asymmetric compression schemes are desired, as they are
designed to provide fast decoding at runtime at the ex-
pense of increased (but high quality) encoding time. Data
decompression could be placed at different stages of the
DVR pipeline, and it can further be subdivided to exploit

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

both the CPU as well as the GPU. In general, the data
should travel through the pipeline in compressed form as
far as possible to avoid any bandwidth bottleneck. How-
ever, any decoding overload on the CPU or GPU must
be avoided as well. Moreover, in a compressed volume
rendering architecture, decompression should ideally be
transient and local, that is, a fully reconstructed volume
is never produced. The advantage of this approach is in
efficient use of limited memory resources, such that larger
and/or more volume data is available for visualization at
any given time. This requires, however, even full random
access at the voxel level, or an appropriate reordering of
rendering operations to schedule and process sub-portion
of the dataset. This is further discussed in Sec. 5.

3. Compact Data Representation Models

The main idea behind volume data compression is to find
a more compact representation of the data, which requires
fewer bits for encoding than the original volume. A typical
approach is to decompose or transform the input dataset A
by means of a mathematical framework into a compact data
representation, which can be sent over the network and up to
the GPU in a light-weight form. When the data needs to be
visualized, the inverse process is applied to obtain the approx-
imation Ã of the original volume. As previously outlined, this
decomposition-reconstruction process is nowadays usually
highly asymmetric [FM07] (see Fig. 2). The data decomposi-
tion step is usually an offline process that is not time critical,
while the reconstruction process needs to be performed in
real-time while satisfying a certain application-defined image
quality error tolerance.

compact data
representation

preprocessing rec.

real-time
critical

prior to rendering
(not at run-time)

lossy or lossless?

�AA

Figure 2: Compression-domain DVR from compact data rep-
resentations – an asymmetric process: First, a dataset A is
decomposed into a compact data representation during a
preprocess prior to rendering. Second, the approximation Ã
from the original is reconstructed at run-time.

Volumetric datasets are most commonly represented as
a (possibly time-varying) rectilinear grid of samples, i.e.,
with a digitally sampled representation of a signal using a
sum of delta functions in space (and eventually time). While
convenient for many applications, this data model is mostly
inefficient for compression, which would benefit from more
meaningful representations capturing the significant part of
the signal with only a few coefficients. The choice of the
model that sparsifies the input signal, and its combination
with efficient encoding methods, are crucial steps for the
success of the compression approach.

In recent years, much effort has been put into the devel-

opment of mathematical representations that reconstruct/ap-
proximate volumetric datasets. A popular approach is to find
a limited set of elementary signals (most of the time form-
ing one or more bases), together with a corresponding set of
coefficients, whose weighted linear combination is a close
approximation of the original data.

Generally, there are two different types of models: pre-
defined models and learned models (see Fig. 3). Pre-defined
models apply a given general analytical model to the dataset
and output its coefficients, while learned models are gen-
erated individually for every dataset before the coefficients
corresponding to the data and the learned model are pro-
duced. Pre-defined and learned bases should be seen as two
alternatives with both assets and drawbacks. Approaches
using pre-defined bases are often computationally cheaper,
while approaches using learned models require more pre-
computation time. However, learned bases are potentially
able to remove more redundancy from a dataset.

bases

A
coefficients

...

...

(a) pre-defined bases

bases

A

coefficients
......

(b) learned bases

Figure 3: Pre-defined vs. learned bases for compact data rep-
resentations. The coefficients show the relationship between
the bases and the original A.

By definition, a compact data representation can be loss-
less, near lossless, or lossy. Lossless algorithms ensure a
binary value recovery in the reconstruction and guarantee
zero error. Near lossless algorithms are theoretically lossless,
however, may suffer from numerical floating point accuracy
reconstruction issues. Lossy algorithms incorporate a con-
trolled reduction of approximation quality, e.g., through some
sort of reduced bit quantization levels or removing coeffi-
cients, typically driven by a certain tolerated reconstruction
error. Near lossless schemes occur usually when coefficients
of a decomposition or a transform need to be represented
as floating point values. However, in theory such models
are lossless. For many medical imaging applications a lossy
compression is viewed as unacceptable [FY94], unless the
compression error is within the limit of acquisition errors, or
a progressive improvement of the representation can be guar-
anteed. In other applications, where the data only has to look
the same as the original, lossy compression schemes provide
a much greater compression ratio. Lossy models are mainly
used in order to increase the compression ratio or the data
reduction level. Accordingly, the great advantage of many
lossy approaches is the possibility to have a parameter tuning
according to the desired reconstruction quality (accuracy).

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

Note that even though some of the models are by definition
lossless, they are in practice often utilized in their lossy form,
either because their implementation is not fully lossless due
to machine precision, or, more commonly, because represen-
tations are truncated in order to obtain a larger compression
ratio. Large data visualization applications nowadays mostly
work on lossy data representations.

A lossy representation from a lossless compact model can
often be introduced in all stages of the preprocessing pipeline,
the model can be compressed in a lossy way, insignificant
coefficients can be truncated, a lossy quantization scheme
and/or a lossy encoding scheme can be applied. Actually, the
thresholding of certain coefficients can even be applied in
the rendering step of the visualization pipeline. The fact that
data loss can be introduced at any stage of the visualization
pipeline shows that the error tolerance is highly application-
driven and/or user-defined.

In general, once the data is represented in a compact form,
further data reduction and compression steps are applied. For
instance, insignificant coefficients in the transform domain or
the compact representation can be neglected. This coefficient
truncation is typically done by a thresholding or a ranking of
coefficients. In a way, this corresponds to a quantization of
possible reconstructed value spaces. Vector quantization, e.g.,
explicitly includes a quantization in the decomposed compact
data model. However, in most pipelines, there is another quan-
tization step that, e.g., converts floating point coefficients to
integer values. Eventually, the quantized values can be further
encoded with entropy coding. Depending on the volume com-
pression algorithm all three steps are implemented or only a
subset thereof.

decomposition
or transform

...

...

Sec. 3.1

truncation

...

...

...

...

Sec. 3.2

quantization

...

...

...

...

Sec. 3.2

encoding

...

... ...

Sec. 3.3

Figure 4: Stages that can be applied to produce a compact
data representation model. Truncation, quantization, and
encoding are applied in various combinations.

Next, we introduce the main compact data representation
models and the entropy encoders that have been proposed
for volume compression of rectilinear volume datasets in di-
rect volume rendering frameworks. The goal of this compact
models compendium is to give a systematic overview of the
available compressed volume rendering models and encoders.
While many possible organizations exists, for ease of discus-
sion within the context of volume rendering architectures, we
have chosen to classify methods into (1) transform/decom-
position models (Sec. 3.1), (2) thresholding and quantization
approaches (Sec. 3.2) and (3) encoding models (Sec. 3.3).
In fact, one compressed volume rendering approach may in-
clude several of the compact model concepts combined: e.g.,
a dataset can be first transformed into another domain, is
then represented by a codebook, quantized and is eventually
entropy encoded. Therefore, the summarized methods do not
exclude each other, on the contrary, some of them match well
together, as we will discuss in the following sections.

It should also be noted that something particular to large
volume visualization is that typically the input datasets are
divided into subblocks and into multiresolution data struc-
tures, see also [EHK∗06]. Accordingly, the compact models
should provide hierarchical (LOD) data structures as well as
independent bases or model generation from the individual
subblocks. These aspects will be further analyzed in Sec. 4
and Sec. 5.

3.1. Transform/Decomposition Models

The idea of transform domain approaches is to get a more bi-
ased data distribution in the transform domain and eventually
accelerate rendering. That way, artifacts from thresholding
or quantization can be minimized such as the thresholding
of wavelet coefficients typically performed in the frequency
domain. While many of the transform domain approaches
convert the data into frequency domain, transform coding is
not exclusively limited to only do that. For example, wavelets
additionally preserve spatial locality; PCA-like models trans-
form the data into a different coordinate system that better fits
the given variability of the statistical data distribution. In the
following, we describe the major domain transform/decom-
position models as well as their applications in compressed
volume rendering.

Discrete Fourier Transform (DFT) Volume data compres-
sion in the frequency domain was first applied by means
of the Fourier transform – initiated by [DNR90, MK91,
Mal93]. The DFT compactly represents a dataset as a col-
lection of sine and cosine signals. The main disadvantages
of Fourier-based representation is the insufficient local-
ization of spatial structures. However, the DFT gained
popularity in DVR applications with the first algorithms
that performed rendering directly in the compression do-
main. Fourier-compressed rendering bases on the Fourier
projection-slice theorem [Lev92], which says that the in-
verse transform of a slice extracted from the frequency

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

domain representation of a volume corresponds to a pro-
jection of the volume in a direction perpendicular to the
slice. First, a volume dataset is transformed by a 3D DFT
into the frequency domain. Then, during reconstruction, a
projection slice is selected within the frequency domain
according to the view angle and reconstructed with only
using a faster 2D inverse DFT. The great thing is that
this theorem potentially reduces the rendering complex-
ity of a volume dataset of size N3 to O(N2 log(N)). In
fact, [CYH∗97] developed the first DFT-based method that
renders directly from the frequency domain, i.e., no prior
decompression step is needed for the rendering. It should
be noted, however, that this approach works only in very
limited settings, as it does not allow the direct applica-
tion of non-trivial shading models, transfer functions, and
perspective projections.

Discrete Hartley Transform (DHT) For frequency domain
rendering, the Hartley transform is often used instead of
the DFT [Mal93, CYH∗97, VKG04], since DFT and DHT
basically do the same transform. However, the Hartley
transform works with real numbers only, whereas Fourier
transform outputs complex values, too. As for DFT, the
main application is frequency-domain rendering.

Discrete Cosine Transform (DCT) Another frequency do-
main transform is the discrete cosine transform. DCT can
be seen as a simplified alternative to DFT since it uses
only cosine waves as a basis representation. Furthermore,
similar to DHT, the DCT has the property of mapping real
input values to real output values. The DCT, however, does
not allow direct rendering from the compression domain.
Therefore, Yeo et al. [YL95] developed a strategy to de-
compress blocks of data on demand. DCT is often chosen
in practice since it offers independent bases as well as a
fast forward and inverse transforms.

Discrete Wavelet Transform (DWT) In contrast to DFT
and DCT that transform the data only into the frequency
domain, the discrete wavelet transform transforms the in-
put data into the frequency domain, while maintaining the
spatial domain. Maintaining the spatial information is a
great advantage for direct volume rendering, in particular
for block-based and multiresolution volume rendering. In
DWT, the dataset is filtered along every data direction with
a given function/basis/filter. This separates the data accord-
ing to a low-pass and a high-pass filter into coefficients.
The low-pass filtered data results in the approximation co-
efficients, while the high-pass filtered data results in the
detail coefficients. In multilevel wavelet transform (e.g.,
applied to multiresolution volume visualization), the ap-
proximation coefficients are recursively processed again
by a DWT.
DWT is near lossless in general, but integer DWT methods
can be fully lossless. However, the wavelet decomposition
is often further reduced by thresholding the coefficients,
which are close to zero. This allows a sparse and compact
representation with a limited error for the lossy approx-
imation. The loss of data is furthermore dependent on

the choice of wavelet. There are reversible wavelet func-
tions, which allow a lossless reconstruction, and there are
irreversible wavelet functions, which result in a lossy ap-
proximation.
DWT was introduced for compressed volume rendering
by Muraki [Mur93] who triggered a great many of follow-
up works [Wes94, GEA96, GLDH97, LGK97, IP99, Rod99,
KS99,NS01,GWGS02,LLYM04,WSKW05,WQ05,She06,
KLW∗08, WM08]. The discrete wavelet packet transform
(DWPT) offers an even richer decomposition since, both,
the detail and the approximation coefficients are further
decomposed. The method, that has found application in
volume segmentation [ASA11], is not however typically
applied in volume rendering. The work of Westermann
et al. [Wes94] indicates that the wavelet transform is par-
ticularly suited for multiresolution volume visualization.
Guthe et al. [GWGS02] created a block-wise hierarchi-
cal decomposition (octree) of volume data followed by
an entropy encoding of wavelet coefficients introducing a
priority-based decompression by using block caching and
projective classification during rendering. This approach is
currently shared by many compressed rendering systems.

Laplacian Transform/Pyramid The Laplacian transform
or the Laplacian pyramid are formed by pre-applying a
Gaussian filter, expansion and prediction of values. During
the rendering process, each voxel can be reconstructed on
the fly. Due to its pyramid data structure, matches well for
multiresolution representations, and shares many similari-
ties with the wavelet transform. A volume compressed
DVR application by Laplacian pyramid was presented
in [GY95, SW03].

Burrows-Wheeler Transform (BWT) The transform by
Burrows-Wheeler represents the basis for a whole family
of compression algorithms. The BWT itself is a (reversible)
permutation scheme that re-sorts a block of data according
to the context. After this re-sorting, the data blocks are
organized in a more compression-friendly way, ready for
example to apply entropy coders. Komma et al. [KFDB07]
compared the compressibility of BWT against others for
volume data compression.

Karhunen-Loeve Transform (KLT) KLT is a linear trans-
form that removes the redundancy by decorrelating the
data – closely related to PCA (also referred to as eigen-
vector transform). KLT estimates the covariance matrix
and computes the eigenvectors. In terms of decorrelation,
the Karhunen-Loeve transform is better than the DCT. Dis-
advantages of the KLT include that the bases are not in-
dependent and that there are no fast forward and inverse
transforms. Fout et al. [FM07] selected KLT for a better
quality decorrelation. Since they combine KLT with vector
quantization the reconstruction is mostly offline, prior to
rendering, when producing the vector quantization dictio-
nary. To overcome the dependent bases they use block-wise
decomposition.

Tensor Approximation (TA) The general idea behind ten-
sor decomposition is to approximate a volume dataset with

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

SVD/PCA-like tools. The most common TA approaches
are higher-order extensions of the matrix singular value
decomposition: the volume (or small volume blocks), is
interpreted as a multi-dimensional input dataset in array
form, i.e., a tensor, which is factorized into a sum of rank-
one tensors (CP decompostion) or into a product of a core
tensor and matrices), i.e., one for each dimension (Tucker
decomposition) [KB09]. TA is thus a method that works
with learned data-specific bases. Data reduction is ob-
tained by reducing the rank of the reconstruction. Suter et
al. [SZP10] have shown that rank-reduced TA is more able
to capture non-axis aligned features at different scales than
wavelet transforms using the same amount of coefficients.
Since TA, similarly to SVD/PCA, extracts specific features
based on statistical properties like the major direction, the
learned bases can be used both for data compression/reduc-
tion and feature extraction. TA has been recently applied
interactive large volume visualization, using a single TA
for every brick in a multiresolution hierarchy [SIM∗11].
The same work introduced a tensor-specific quantization
scheme and an optimized GPU reconstruction method.

Dictionaries for Vector Quantization The idea of dictio-
naries or codebooks is to represent the input volume with
a set of pre-defined or learned dictionary entries (code-
words). For that purpose, the initial volume is divided into
small data blocks. Then, an algorithm searches for every
block the dictionary entry that best matches this data block.
Finally, the volume is represented by an index list, where
each index corresponds to a data block and points to a
certain dictionary entry. The method is very popular in the
volume rendering literature since decompression is thus
extremely fast.
Dictionaries exploit the fact that many subregions of the
volume exhibit a similar 3D pattern that can be encoded
with dictionary entries. When choosing enough entries,
the dictionary approach can be lossless, but typically lit-
tle or no compression is achieved. Most applications thus
limit the choice of dictionary entries what is referred to
as vector quantization (VQ) (data blocks can be seen as
vectors). Critical issues for a good VQ performance are
first the dictionary size and second the chosen dictionary
generation algorithm. Data-specific dictionaries learned
from a the original volume data tend to perform better than
dictionaries based on predefined mathematical basis. One
main problem of learned dictionaries is the time needed
in pre-processing to obtain a good dictionary, specially,
when dealing with massive volumes. Many methods have
been proposed aiming at finding best dictionary (see sur-
vey by Lu and Chang [LC10]) and Knittel et al.’s [KP09]
PCA-based dictionary generation algorithm). Hierarchical
vector quantization (HVQ) is an improved VQ scheme
that has the ability to efficiently process multi-dimensional
data and is based on a multiresolution covariance analysis
of the original domain.
Vector quantization was first introduced in volume render-
ing by [NH92, NH93]. The first GPU implementation of

HVQ has been proposed by Schneider et al. [SW03] and
Fout et al. [FM07] have combined HVQ with a previous
domain transformation. The error obtained by just using
one dictionary entry to encode voxel blocks can be im-
proved by combining it with many different techniques
(e.g., residual VQ [PK09b, PK09a]). However, dictionary
size imposes a hard limit on achievable quality and com-
pression rate of vector quantization solutions [Ela10].

Dictionaries for Sparse Representation Modeling The
concept of dictionary is much more general than the
concept of VQ outlined above. By representing the dic-
tionary as a matrix D = Rm×K that contains K prototype
signal-atoms for columns, {d j}K

j=1, a linear combination
of these atoms can be used to represent (or approximate)
any signal S ∈ Rm. In this view, the dictionary concept can
be used to replace the transformations discussed above.
These dictionaries can be either a mathematical model
(e.g., wavelets), or learned from the data. Dictionaries of
the first type are characterized by an analytic formulation,
and thus a fast reduced-memory implicit implementation,
while those of the second type deliver increased flexibility
and the ability to adapt to specific signal data. While
historically signal decomposition was performed by
projecting signals on an orthogonal or bi-orthogonal basis,
there is now much interest in the use of over-complete
dictionaries, i.e., containing linearly dependent vectors,
which are very well suited for sparse coding, an area
which has witnessed a growing interest in the recent years
(see survey of Rubinstein et al. [RBE10]). The sparse
coding problem can be viewed as a generalization of VQ,
in which we allow each input signal to be represented by
a linear combination of dictionary elements instead of
a single ones. Therefore the coefficients vector is now
allowed more than one nonzero entry, and these can
have arbitrary values. Recent architectures based on the
sparse representation of voxel blocks have demonstrated
state-of-the-art performance on very large static and
dynamic volumes [GIM12].

Fractal Compression Fractal compression relies on the fact
that some parts of the dataset (volume) often resemble
other parts (self-similarity). Similar to vector quantization,
the idea of fractal compression is to work on block entities
and to find for each entity a most similar one. Compared
to vector quantization, where each block stores only a ref-
erence to its codeword, fractal compression stores per data
block the position of another different-sized data block of
the same volume and additionally stores the affine transfor-
mations needed convert the reference block to the current
block. During fractal compression, for each block (range
block) a larger most similar data block (domain block)
of the same volume is found. At the end of the matching
algorithm, only the transformations from a domain block
to the range block is stored. The decompression is per-
formed by applying the stored transformations iteratively
until the final volume does not improve any longer. The
compression is effective since the transformation data oc-

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

cupies little space, however, the search procedure itself
is extremely computationally intense. While the decom-
pression is straightforward, the rendering from compressed
data is problematic (due to the iterative reconstruction algo-
rithm). So far, the main application is thus off-line volume
compression [CHF96]. Resctricted forms of this method
might, however, find application in real-time rendering in
combination with dictionary methods, as already proposed
for image coding [HS00].

An orthogonal approach to the presented models had been
proposed by Wang et al. [WWLM11], where they use grid-
deformations prior to data reduction. In order to better pre-
serve features during data reduction (downsampling), the data
grid is transformed according to user defined regions. They
report improved results to wavelets and pure downsampling.

Table 1 summarizes the most popular compact models and
their essential features for compressed volume rendering. For
example, we mention models, which are inherently hierarchi-
cal - even tough we are aware of the fact that many of the
models can be constructed into a hierarchical data structure.

3.2. Thresholding and Quantization

The idea of thresholding and quantization is to further reduce
the amount of data by neglecting some of the coefficients
of the produced compact model. One simple approach is to
threshold coefficients that are close to zero (e.g., typical case
for wavelets). Other approaches sort the values and truncate
the least significant coefficients (e.g., PCA-like models). Dic-
tionaries are often designed such that they explicitly include
a quantization step (e.g., vector quantization), i.e., they only
allow a limited number of dictionary entries (codewords)
and the available dictionary entries are learned to best ap-
proximate a dataset. Another typical quantization step is to
represent floating point coefficients with integer values. All
those approaches have in common that they make a com-
pact model lossy. However, the user can define what error is
allowed to be introduced.

3.3. Encoding Models

The reduced and limited number of coefficients can be fur-
ther compressed by additional encoding. Almost always, this
is a lossless process. Well-known encoders are run-length
encoders (RLE) or so called entropy encoders like Huffman
coding and arithmetic coding. Run-length encoders analyze
a stream of data by counting the number of equal values
occurring after each other. This value count is then stored
together with the actual value in the stream. The main idea
of entropy encoding is to represent frequent voxel values
with a short code and infrequent values with a longer code,
i.e., the encoding is lossless. However, this variable length
encoding is inconvenient to quickly reconstruct an arbitrary
sequence of data. Therefore, even tough entropy encoders
are effective, i.e., result in a high compression ratio, they

also imply more work during decoding. That is why a lot of
research (mainly for wavelet coefficient encoding) was put
into finding encoding schemes, which have a fast random
access for the reconstruction, e.g., [Rod99]. As we will see in
the following sections, many of the systems thus use hybrid
methods, e.g., using entropy coders to reduce on-disk stor-
age, but performing entropy decoding before rendering time,
which is performed on a more GPU friendly representation.

In compressed DVR, RLE was widely used since the
early applications of volume rendering [ASK92, LL94,
YL95, GEA96, KS99, KFDB07, WYM10]. Entropy encoders,
too, are frequently used in compressed volume rendering:
Mostly they used Huffman encoding [FY94, YL95, Rod99,
GWGS02, LLYM04, WSKW05, KFDB07] or arithmetic en-
coding [GWGS02, XWCH03, KFDB07] also combined with
RLE [GWGS02, SMB∗03]. In order to accelerate the decod-
ing of variable length codewords in entropy encoding fixed
length Huffman coders were explicitly used and combined
with a RLE [GWGS02, She06, KLW∗08]. Another attempt to
accelerate the decoding was achieved by using a less known
entropy encoder, the Golomb-Rice encoder, which [WQ05]
favored over arithmetic coding and Huffman coding since
it has better random access due to its lower computational
complexity. Other approaches (mainly for wavelet coefficient
encoding) [LGK97, Rod99, IP99] tried to fully avoid entropy
encoding and RLE by using significance maps of wavelet
coefficients and bit-wise encodings.

Komma et al. [KFDB07] benchmarks and analyses loss-
less compression encodings for compressed volume data and
covers entropy encodings, run-length-encoding (RLE), vari-
able bit length encoding (VBL), LZ77, LZW, ZIP, BZIP2,
(lossless) JPEG-2000 until the wavelet transformation.

Finally, there exist models that have a particular hardware
support during the decoding. An example is the block trunca-
tion coding (BTC). During BTC, the data is decomposed into
equal-sized blocks. Then each block is truncated as long as a
given criteria is satisfied. For instance, each block is truncated
as long as the standard deviation and the average value of
the original data are maintained. That means, the error toler-
ance (threshold level) is different per block. We can consider
three adaptations of BTC that support hardware accelerated
random access: (1) VTC [Cra04] which is the extension to
3D of S3TC [Bro01], (2) ETC2 [SP07] texture compression
using invalid combinations, and (3) adaptive scalable texture
compression (ASTC) [NLP∗12], which shares some similar-
ities with S3TC. Agus et al. [AGIM10] proposed a method
to handle segmented datasets where small blocks are quan-
tized to have only one or two different components inside.
The encoded data is constituted by the type of block and the
splitting plane which subdivides the block.

3.4. Models for Time-Varying Data

For real time rendering of time-varying volumetric datasets
the use of a compressed representation is essentially a must-

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

Compact Models and Encodings Fi
rs

ti
n

D
V

R

Tr
an

sf
or

m
do

m
ai

n

A
na

ly
tic

al

L
ea

rn
ed

H
ie

ra
rc

hi
ca

l

L
os

sl
es

s

N
ea

rl
os

sl
es

s
L

os
sy

Discrete Fourier Transform (DFT) [DNR90, Mal93] X X X
Discrete Hartley Transform (DHT) [Mal93] X X X
Discrete Cosine Transform (DCT) [YL95] X X X
Discrete Wavelet Transform (DWT) [Mur93] X X X X X
Laplacian Pyramid/Transform [GY95, SW03] X X X X
Burrows-Wheeler Transform (BWT) [KFDB07] X X X

Karhunen-Loeve Transform (KLT) [FM07] X X X
Tensor Approximation (TA) [SZP10, SIM∗11] X X X
Dictionaries for Vector Quantization [NH92, SW03] X X X
Dictionaries for Sparse Representation Modeling [GIM12] X X X X X
Fractal Compression [CHF96] X X

Table 1: Features of compact data representation models.

have feature. In fact, due to the limited bandwidth is not
feasible to interactively load decode and render each time
step in GPU in real time. Three main compression strategies
can be highlighted in the time-varying domain.

First, the previous compression methods can be extended
in the dimensionality from 3D to 4D. This kind of approach
can exploit the correlation of voxels in subsequent frames to
obtain good compression ratios, but on the other hand it re-
quires to have in memory a small set of frames for rendering
a single time step [ILRS03, WWS03, WWS∗05]. Moreover,
difficulties frequently arise due to the discrepancy between
the spatial and temporal resolutions, and handling these di-
mensions equally often prevents the possibility of detecting
the peculiar coherence of the temporal domain.

The second possibility is to treat the fourth dimension in a
different way, as it is done in video encoding. This approach,
too, has the advantage of obtaining good compression rates
exploiting the temporal coherence [Wes95, MS00, WGLS05,
She06, KLW∗08, MRH10, WYM10, SBN11, JEG12]. Voxel
data is delta encoded with respect to some reference time
step(s), which must be already available to decode the current
one. In this framework, key frames plus delta encoding of
arbitrary time steps can theoretically be used to provide better
access to random points in the sequence. In such approaches
it is also common to exploit temporal coherence first per-
forming a spatial subdivision and then encoding compactly
corresponding blocks of adjacent time steps.

The third way is to encode each time step separately with
one of the previous static volumes compression methods. The
main advantages of this method are simplicity of implementa-
tion and temporal full random access [GIM12], but it can not
reach the compression rates of the previous two approaches
not exploiting temporal coherence.

Finally there are some methods, which are based on a

mix of previous approaches like [LMC01, BCF03, FAM∗05,
NIH08, WYM08, CWW11]. A survey on time-varying vol-
umetric datasets has been presented by De Floriani et
al. [WF08].

3.5. Discussion

The first two important choices made in compressed volume
rendering architecture are how to transform data in order to
sparsify its representation and how to efficiently encode the
sparse representations.

Of the various methods presented, sparse coding and most
of the methods based on analytical transforms supports a
variable compression ratio, from extremely lossy to (near)
lossless. Vector quantization with limited dictionary size has,
on the other hand, a limit on achievable quality.

It is important to emphasize that the different data models
presented do not exclude each other. Among the methods
based on analytical transforms, the most commonly applied
transform in compact volume rendering application is the
wavelet representation, which is often combined with vector
quantization and run-length encoding of coefficients. Block
truncation approaches are, instead, the most common choice
for fixed hardware implementations, due to very simple de-
compression and fast random access into the compressed
volume. They are, however, not fully scalable in terms of
quality, and exhibit a lower signal over noise ratio with re-
spect to other transform methods.

PCA-like models as tensor approximation (TA) were only
recently introduced to direct volume rendering. While the TA-
approach demonstrated that the learned and rank-reducible
bases are extremely compact and are able to capture non-axis
aligned features at different scales, current tests indicate that
wavelet approaches are still advantageous to reconstruct the

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

overall statistical distribution of a dataset at coarser resolu-
tions [SZP10].

Vector quantization is often chosen and applied to
transform-domain data. Recently, overcomplete dictionaries
(i.e., linearly dependent vectors as dictionary entries) have
drawn attention and have triggered recent contributions in
sparse compact models for DVR. Early results in this area
indicate state-of-the-art performance for sparse-coding tech-
niques [GIM12]. Moreover, a sparse-coding implementation
can be seen as a generalization of HVQ and VQ.

The selection of the compressed data model in a com-
pressed volume rendering application is not only dictated by
compression performance target, but has to take into account
the applicability to the model to very large data, and the ca-
pability to provide fast and localized decoding at rendering
time. These issues are discussed in the following sections.

4. Preprocessing and Encoding

The preprocessor has to transform the input volume into a
compressed representation using the models described in
Sec. 3. In order to support adaptive, transient and local re-
construction, compression algorithms are often paired with
a block structure embedded within a LOD hierarchy. Since
preprocessing is applied when volumes hardly fit into the
available resources, it should be designed to be scalable in
terms of memory and time. In particular, it needs to work in
an out-of-core manner, to avoid hard limits on input data size,
and in a parallel setting, to speed-up processing on current
multi-core/multi-cpu environments. During the preprocess-
ing phase, two steps are typically identified: (1) a global data
processing step, that requires access to all the input data,
typically to learn some representation, and (2) local data pro-
cessing steps, which only need to access independent blocks,
possibly using the representation learned in the global step to
encode them.

4.1. Global Processing

Global processing of the volume is typically employed in
dictionary-based methods in order to learn a dictionary that
will later be used in the local step to independently encode the
small blocks. Early transform coding methods [Lev92,Mal93]
also performed a global preprocessing step transforming the
whole volume with DFT or DHT transforms. On more recent
approaches, however, these transforms are only applied to
small independent blocks.

Finding the dictionary requires to analyze all the input
data. This global step working on billions of samples has two
main problems: first the algorithm must be able to handle
all the data within the available memory resources and also
within acceptable times. Second handling these huge datasets
could introduce numerical instability problems which must
be properly handled to produce reliable results.

A common way to limit the computational complexity of
the global step, is to split the volume into manageable subvol-
umes [FM07] and for each of them find a proper dictionary.
This scheme has the benefit that is easy to implement, but
on the other hand increases the size of the data which need
to be stored (one dictionary for each subvolume) and tends
to introduce discontinuity among subvolumes encoded with
different dictionaries. For these reasons, other more sophisti-
cated methods have been devised.

4.1.1. Vector Quantization: Global Processing

The global step of vector quantization algorithms generally
do not require to access all the input volume at the same time,
but need only to keep some local statistics for each group of
similar elements, while streaming over all the input elements.
Such online learning algorithms do not incur into memory
limitation issues, having memory occupancy proportional to
the size of the dictionary, but generally have long process-
ing times, due to a large number of streaming iterations and
their slow convergence behavior. Preprocessing is generally
based on the generalized Lloyd algorithm [Llo82, LBG80]
which exploit these two conditions: first, given a codebook
the optimal partition is found on nearest neighbor assignment,
second, given a partition the optimal codevector is the cen-
troid of the partition. Thus starting from an initial partition
we can easily associate all the vectors to their corresponding
cells, next all the cell representatives are updated to the cell
centroids. These two steps are iterated until convergence. Var-
ious volume rendering vector quantization papers are based
on variations of this technique, like [NH92, NH93]. In partic-
ular is important how initial partition is identified: Knittel et
al. [KP09] find initial codevectors based on principal compo-
nent analysis (PCA) and uses error-directed subdivision of
the eigenspace in reduced dimensionality, they also include
shape-directed split decisions based on eigenvalue ratios to
improve the visual appearance. However, dictionary size im-
poses a hard limit on achievable quality and compression
rate of vector quantization solutions [RBE10]. In hierarchical
vector quantization [SW03] the learning of the codebooks
is performed through a modification of the LBG [LBG80]
algorithm. Each new seed is not inserted randomly, but a
split plane is identified in the cell with the higher residual
distortion. The split plane is selected performing principal
component analysis of the cell, producing two sub-cells of
roughly equal residual distortions. Finally the iterative sub-
division is concluded applying some [LBG80] LBG-steps
as post-refinement to relax the centroids quickly generating
stable Voronoi regions. To improve the quality of the decoded
data Knittel et al. [PK09a, PK09b] use Residual Vector Quan-
tization, performing VQ encoding of the signal and of its
residuals due to the encoding error, up to a certain level (4 in
the paper). VQ codebook is computed in parallel distributing
the dataset and the codebook and performing the computation
with GPU and OpenMP.

Fout and Ma [FM07] subdivide the volume in small blocks

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

which are processed with Karhunen-Loeve transform. Each
block is encoded with VQ and then decoded. If the residual
is above a certain threshold it is encoded with a second dic-
tionary. The process is applied again. In such a way three
bands (low-, band-, high-pass) are identified and encoded
with three dictionaries. Most of the elements are encoded
with just the low-band, reducing occupancy, while retaining
the possibility of encoding more details for higher-frequency
signals with the other two codebooks. The inverse transform
of the Karhunen-Loeve is computationally intensive thus dur-
ing preprocessing partial reprojections are precomputed and
stored in the codebooks instead of the coefficients.

Fractal compression [CHF96] also shares common prob-
lems with vector quantization methods. A block-based search
is performed looking for near-matches using some trans-
formations of the blocks in the dictionary (color and voxel
permutations). The fractal component in this compression
scheme comes when there are no near-matches in the search
space. Then the blocks are subdivided and new candidates
for near-matches are searched for. Such a technique is very
computationally intensive and is not currently applied on very
large volumes.

4.1.2. Sparse Coding: Global Processing

A major improvement over Vector Quantization methods
is to employ a representation in which each block is repre-
sented as a sparse linear combination of few dictionary ele-
ments. Recent years have witnessed a growing interest in such
sparse representations (see the recent survey of Rubinstein
et al. [RBE10] for an overview of the state-of-the-art). Data-
specific dictionaries learned from each training set tend to per-
form better than dictionaries based on a mathematical model
of the data (e.g., wavelets) [Ela10]. Gobbetti et al. [GIM12]
employ the K-SVD algorithm [AEB06] for dictionary train-
ing, a state-of-the-art method in the domain [Ela10]. Per-
forming K-SVD calculations directly on massive input vol-
umes would, however, be prohibitively expensive. Even
though memory problems could be circumvented with emerg-
ing online training techniques [MBPS10, SE10], massive
datasets still lead to large computational time and possible
numerical instabilities. For Bidirectional Texture Functions
(BTF) compression, Ruiters and Klein [RK09] attacked this
problem by reducing the dataset prior to K-SVD training
through a truncated SVD. Instead, Gobbetti et al. [GIM12]
perform data reduction by smartly subsampling and re-
weighting the original training set, applying the concept of
coreset [AHPV05, CS07].

4.2. Independent Block Encoding

Since all current architectures are based on independent
blocks, all current compressors/encoders currently perform
an encoding pass working locally. This pass can eventually
use information gathered during a global step, as in learned

dictionary techniques. This local encoding step is very of-
ten applied within a multiresolution framework, which en-
codes blocks at various resolution levels, typically obtained
by digital filtering and subsampling. Since the processing is
local, this step requires memory resources independent from
the input size. Moreover, encoding time grows linearly with
dataset size, and parallelization can be achieved by distribut-
ing blocks to different threads/processes. The differences
between the various approches mostly rely on the specific
compact model employed for block coding.

4.2.1. Transform Models: Local Processing

In these methods, the volume is transformed into another
representation projecting it into a set of pre-defined bases,
like what is done with DFT, DHT, DCT or wavelets. After
that transform, the data is more suitable for compression
because most of the signal information tends to be concen-
trated in a few low-frequency components, which can be
compacted with quantization and various types of entropy
coding techniques. Fourier Volume Rendering algorithms per-
form rendering directly from transformed data thanks to the
Fourier projection-slice theorem. In [CYH∗97] the volume
is subdivided into subcubes which are transformed by DFT,
then frequency coefficients are quantized and organized with
a zigzag order and compacted with run-length and Huffman
encoding. DCT transform method [YL95] partitions data in
blocks which are further subdivided into subblocks. Then
subblocks are transformed by the DCT, like what is done
in 2D with JPEG lossy compression. DC coefficients are
grouped quantized and delta encoded, while AC coefficients
are compressed as previously described for the DFT approach
of [CYH∗97].

Many approaches apply a wavelet transformation then
quantize and encode the resulting coefficients. Lippert et
al. [LGK97] use B-spline wavelets, in preprocessing to com-
pute wavelet coefficients and positions which are arranged
with decreasing importance, then are compressed with delta
encoding, quantization, run-length and Huffman coding. In-
sung et al. [IP99] and Kim et al. [KS99] partition the vol-
ume into small blocks which are further subdivided into
subblocks which are then transformed with a three dimen-
sional Haar wavelet applied respectively two and three times.
Then coefficients are quantized and encoded. Rodler [Rod99]
presents a compression schema based on wavelets that treats
3D data as separate correlated slices in order to exploit re-
sults in the area of video coding like using temporal/spa-
tial coherence amongst these slices. In [NS01, GWGS02]
volume is partitioned in blocks which are transformed in-
dependently respectively with the the biorthogonal 9/7-tap
Daubechies wavelet filter and biorthogonal spline wavelets.
Wetekam et al. [WSKW05] propose a multiresolution ap-
proach where they build an octree storing for each node its
wavelet transform which is computed as in [GWGS02]. Data
is decoded at run-time through a FPGA hardware decoder.
Wu et al. [WQ05] uses a modified 3-D dyadic wavelet trans-

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

form tailored to volumetric medical images and an optimized
Rice code of very low complexity scalable lossless coding
scheme for compression of volumetric medical images.

In the Laplacian pyramid [GY95] approach a sequence
of low pass filtering operations, and computation of deltas
between the filtered expanded signal and the original one is
performed. The delta values are encoded with variable length
encoding and at run time the root plus the residuals permit to
reconstruct the original signal.

The tensor approximation (TA) approach used for DVR as
presented by Suter et al. [SIM∗11] builds a multiresolution
structure where each block is encoded into a rank-reducible
basis learned from the input dataset. Generally in TA, a tensor
decomposition is applied to a N-dimensional input dataset
A ∈ RI1×I2×···×IN (stored as data array), which is either de-
composed (1) into a sum of R rank-one tensors (CP model), or
(2) into a product of N basis matrices U(n) ∈RIn×Rn and an N-
dimensional core tensor B ∈ RR1×R2×···×Rn (Tucker model).
The Tucker model used in Suter et al. [SIM∗11] is based on a
higher-order singular value decomposition (HOSVD) – also
known as higher-order PCA. The HOSVD is applied to the in-
put dataset along every data direction. In fact, an alternating
least squares (ALS) algorithm – called the higher-order or-
thogonal iteration (HOOI) – optimizes the basis matrices one
after each other. The core tensor is only produced once the
basis matrices cannot be improved anymore. The core tensor
B represents a projection of the input datasetA onto the basis
matrices U(n), i.e., the coefficients of the core tensor show the
relationship between the original data and the bases. Since
the core tensor of the Tucker model is all-orthogonal (i.e.,
produced from orthonormal basis matrices), a rank-reduction
similar to the one of the matrix SVD can be applied to the
tensor decomposition.

The Tucker model is defined for a multilinear rank
(R1,R2, . . . ,RN), i.e., one rank Rn per dataset direction. In
fact, the HOOI is already produced for a given initial mul-
tilinear rank, which typically corresponds already to a data
reduction when starting with an initial rank Rn =

In
2 [SIM∗11].

However, further adaptive rank reductions (i.e., data reduc-
tion) can be applied after the initial decomposition. Even
tough the ordering of the coefficients in the core tensor is not
strictly decreasing, as in the matrix SVD case, in practice it
can be shown that progressive tensor rank reduction in the
Tucker model works well for adaptive visualization. For mul-
tiresolution volume rendering with equally sized blocks, the
multilinear rank is typically equal as well, i.e., R1 = R2 = R2.
Finally, Suter et al. [SIM∗11] quantize the floating point co-
efficients of the tensor decomposition with a TA optimized
quantization scheme (8bit encoding for core tensor coeffi-
cients, 16bit encoding for basis matrices).

It was shown that by applying the tensor rank reduction
in the Tucker model to volume datasets, features at different
scales can be extracted and visualized and a good approxima-
tion quality and data reduction level could be achieved.

4.2.2. Dictionary Based Methods: Local Processing

In vector quantization the block encoding part is generally
trivial, being performed finding the block nearest neighbor
in the dictionary. Instead in sparse representation the block
encoding phase requires a more complex algorithm: each
block of size m = M3 is mapped to a column vector y ∈ Rm.
Given the dictionary D ∈ Rm×K computed in the learning
phase, a sparse representation of y of at most S entries in each
column can be found by solving the following problem:

min
λi

{
‖yi−Dλi‖2

}
subject to‖λi‖0 ≤ S (1)

where ‖λi‖0 is the number of non-zero entries in λi. The
exact solution to this problem is NP-hard, but several effi-
cient greedy pursuit approximation algorithms exist [Ela10].
Gobbetti et al. [GIM12] employ ORMP via Choleski Decom-
position [CARKD99] because of its simplicity and efficiency.
Compression of yi is thus achieved by storing the sparse
representation of the vector λi, specifying the indices of its
nonzero elements and their magnitudes.

4.3. Quantization and Encoding

Most of the presented transformation and dictionary based
compression techniques apply a quantization and encoding
step to further diminish the memory occupancy of the new
data representation. The encoding can vary from simple quan-
tization techniques to more sophisticated variable length en-
coding approaches. In most of the early compression algo-
rithms the variable bit length encoding was preferred due
to its capability of achieving high compression rates. Many
algorithms, in a special way the ones that use pre-defined
bases [CYH∗97, YL95, GY95, LGK97, IP99, KS99, Rod99,
NS01, WSKW05, WQ05], quantize and then encode the co-
efficients resulting from transformation, exploiting various
combinations of entropy coders. Later there has been some
techniques using fixed length encoding at the cost of worst
compression ratios. The scheme based on fixed length Huff-
man plus run length encoding revealed really high decom-
pression speed [GWGS02, She06, KLW∗08]. Variable length
approach is less suited for a GPU implementation than the
fixed length encoding which instead is widely used from
more recent methods which exploit full GPU decoding. Vari-
able bit length schemes still result useful in data compression
to leverage disk and network fetching times. But up to now
the corresponding decompression step is executed in CPU to
unpack coefficients before uploading them to GPU.

4.4. Preprocessing of Time-varying Data

Handling time-varying data generally leads to mixing and
matching the previously discussed methods to build com-
pressed structures while trying to exploit temporal coherence.
Many of the contribution in this are are mostly at the system
level.

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

A few methods build a Time Space Partitioning Tree
structure which is made by an octree whose nodes con-
tain a binary tree with temporal information [MS00]. In
[WCCA04, She06] a similar approach has been applied to
a a 3D wavelet transformation of the original data using a
Wavelet-based TSP. Westermann et al. [Wes95] and Wang
et al. [WYM10] build a hierarchical structure for each time
step then group and encode together space-corresponding
nodes. Fout et al. [FAM∗05] propose two methods for mul-
tivariate time-varying volumes: one grouping voxels in tem-
poral domain and on the other in spatial domain, then apply-
ing vector quantization algorithms to corresponding blocks.
Nagayasu et al. [NIH08] pack three time steps into RGB
channels then use standard VTC compression for 3D-RGB
data. Ko et al. [KLW∗08] classify each time step as intra
coded frame or predictive frame. All frames are encoded
with Haar wavelet, but predictive frames are also expressed
as delta with respect to previous frames and then encoded.
Mensman et al. [MRH10] perform delta encoding of block
data with respect to the corresponding block of the previ-
ous time step. Each block is then quantized with a proper
bit count per voxel depending on the range of data inside
the brick. Finally all blocks are encoded with a LZO algo-
rithm. She et al. [SBN11] first perform delta encoding of
adjacent time steps, then learn this data with hierarchical
vector quantization. Jang et al. [JEG12] propose an approach
similar to [KLW∗08] but encode data with a functional repre-
sentation based on spherical ellipsoids derived by [JBL∗06].
Wavelet transform was frequently applied to time-varying
volume data, too, in particular from these systems [Wes95,
GS01, WS04, WGLS05, She06, WS09, MA09, WYM10].

4.5. Discussion

Producing compact representations from massive volumetric
datasets requires application developers to take into account
a number of requirements.

First of all, the output should be produced in a way that
will allow the streaming and rendering components to per-
form efficiently. This leads to the generation of datasets that
are most commonly based on a multiresolution hierarchy of
blocks, where each block is compactly encoded using one or
more of the models presented in Sec. 3. Such an organization
into independent blocks is currently the best suited method
to support localized access and data loading.

Second, the processing technique should be scalable: pro-
cessing should be applicable to arbitrarily large datasets, with-
out hard limits due to memory usage, numerical errors, or
exceedingly long times. While methods based on independent
block coding (such as all the methods based on analytical
models) do not pose particular problems in this regard, dictio-
nary based methods are more problematic. In particular, in the
sparse-coding area, on-line techniques currently do not offer
the same performance of off-line training methods, and the
current approaches for reducing training datasets are either in-

trinsically limited (localized dictionaries [FM12]) or require
an a-priori model of the significance of the data [GIM12].
Dictionary training for massive volumes thus remains an open
research area.

Finally, the particular data model selected should support
efficient decoding by the renderer. As we will see in Sec. 5,
not all the models support, for instance and efficient GPU
decoder. Some of the solutions presented, thus, imply the
careful selection of hybrid models. For instance, Fout and
Ma [FM07] precompute at processing time the partial re-
projections required for KLT decoding, and use VQ to com-
pactly encode the results. A common approach is also to use
a generic entropy encoding scheme on top of a representation
well suited for GPU decoding (e.g., [NIH08, MRH10]).

5. Decoding and Rendering

Interactive visualization of compressed massive volume data
is generally paired with multiresolution data structures com-
monly computed in a preprocessing step. At run time a work-
ing set, adaptively selected from this structure, is incremen-
tally updated to provide a good representation of the vol-
ume according to transfer function and viewing criteria. Im-
ages are generated by frame-buffer compositing of individual
blocks rendered through slicing [LMHJ99, BNS01, GS04]
or ray-casting [HQK05, KWAH06]. Small blocks, required
for adaptivity, lead, however, to high communication over-
head and pressure on compositing hardware. For this rea-
son, researchers have introduced out-of-core GPU meth-
ods, which traverse adaptively maintained space-partitioning
GPU data structures covering the full working set [Lju06,
GMI08, CNLE09]. Another choice is to employ per-block
multiresolution, where each block is encoded with a few
levels of detail like what happens with hierarchical vec-
tor quantization [SW03], or in many wavelet representa-
tions [KS99, Rod99, IP99, LLYM04] Both the global and
per block multiresolution strategies could be present inside
the same structure like what is presented by Wetekam et
al. [WSKW05].

As volume rendering demands interactive performance, the
interaction between decompression and rendering is a funda-
mental issue. As it has been discussed in Sec. 2, asymmetric
encoding/decoding schemes are preferred, as the available
hardware resources in the GPU is the major limiting factor
affecting GPU-based architectures for rendering from com-
pressed data.

5.1. Architectures

Current architectures propose to accomplish the decompres-
sion at different stages of the visualization pipeline since the
nature of the decompression methods could differ notably.
There are several points at the visualization pipeline eligible
to perform data decompression:

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

GPU General

Decompression architectures References ba
nd

w
id

th

m
em

or
y

Q
ua

lit
y

sc
al

ab
ili

ty

H
Q

fil
te

rin
g

Full working set CPU decom-
pression

[KLW∗08, She06, GWGS02, IP99] HIGH HIGH LOW X

Full working set GPU decom-
pression

[SIM∗11, MRH10, WSKW05] LOW HIGH MEDIUM X

HW-supported GPU decom-
pression

[NLP∗12, IGM10, YNV08, SP07,
NIH08,Cra04,Fen03,Bro01,INH99]

MEDIUM MEDIUM MEDIUM X

Custom GPU decompression [PK09b, NIH08, SW03] LOW LOW MEDIUM
Partial working set GPU decom-
pression

[GIM12, WYM10, FM07, FAM∗05,
VKG04]

LOW LOW HIGH X

Table 2: Compression schemes

5.1.1. Decompression in CPU before Rendering

Decompress the data stream while loading from disk re-
duces the storage needs and allow faster and remote access
to data. This is the proffered stage for including lossless
decompression stages, typical in pure CPU based implemen-
tations [She06]. The main disadvantages of such approaches
are the large memory resources needed to fit the data of the
full decompressed working set and the waste of the GPU
memory bandwidth due to data transmission in a not com-
pressed format. Since for time-varying datasets those tasks
need to be performed almost for each frame, using only a
CPU-based decompression scheme is generally not sufficient.
In fact, CPU decompression is typically used in a first loss-
less decompression step within hybrid CPU-GPU architec-
tures [MRH10, NIH08] while data is maintained in some
compact representation for later decompression steps in the
GPU. From an architectural point of view, recently Beyer
et al. [BHJ∗11] proposed a multi-resolution run-time brick
reconstruction from 2D slices where sampling is performed
on a virtual octree volume. Authors don’t explicitly mention
details about a data compression strategy but it could proba-
bly be integrated at least in a per-slice manner when loading
data from disk to the CPU/s.

5.1.2. Decompression in GPU before Rendering

Some authors have proposed to speed-up decompression by
using the GPU. A straight-forward implementation of this
idea needs a prior decompression of the full working set
in GPU memory. Such kind of architecture has been pro-
posed by Wetekam et al. [WSKW05], in that case using an
FPGA decoder to decompress wavelet coefficients based on
Huffman variable bit decoding. More recently Mensmann
et al. [MRH10] visualize time-varying animations and as-
sembly several volume subblocks at each frame in a single
final three-dimensional texture before the rendering. Suter et
al. [SIM∗11] proposed a GPU block-based decoder based on

multiscale tensor reconstruction. In general, the idea of de-
compressing the full working set before rendering introduces
the main disadvantage of limiting the maximum working
set size by its size in uncompressed form. Nevertheless, this
solution may work out fine for cases of time-varying visual-
izations where the information contained in each single frame
fits completely in the GPU memory, which may not always
be the case.

5.1.3. Decompression during Rendering

In this case data is transmitted in a compressed form from
the CPU to the GPU, but decoding occurs on-demand during
the rendering process, and the entire dataset is never fully de-
compressed in GPU memory. This way, memory bandwidth
is better exploited when the data is compressed for its trans-
mission to the GPU. There are two main strategies at this
point, the first option is to perform a pure random-access to
the volume data and the second choice is to support a full or
partial decompression of the working set before its rendering.

Pure random-access. In this case data decompression is
performed each time the renderer needs to access to a
single voxel in the volume. This strategy corresponds with
a literal interpretation of the compression-domain volume
rendering concept. Only few hardware implementations
fulfill the requirements for on-demand, fast and spatially
independent decompression on the GPU, which is required
for maximum benefits [FM07].
A first group of methods is formed by those directly sup-
ported by the graphics hardware. The simplest hardware-
supported fixed-rate block-coding methods (e.g., OpenGL
VTC [Cra04, NIH08] have, however, limited flexibility in
terms of supported data formats and achievable compres-
sion. GPU implementations of per-block scalar quantiza-
tion can be considered as HW supported random-access
(e.g., [YNV08,IGM10]). Recently, Nystad et al. [NLP∗12]
presented a fixed-rate lossy texture compression method

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

called Adaptive Scalable Texture Compression (ASTC)
which shares some similarities with other block-based
methods like S3TC [INH99] which is in turn an adaptation
of Block Truncation Coding [DM79].
The second category of pure random-access approaches
are those that, while not being directly supported by the
graphics hardware, they could be easily implemented using
shaders or GPGPU programming techniques. Examples
of this kind of methods are GPU implementations of VQ
or HVQ [SW03, FM07]. In general those GPU implemen-
tations of random-access are costly in performance and
rarely implement multisampling or high-quality shading
without relying on deferred filtering strategies.

Local and Transient Decoding. A second choice to avoid
such problems is to perform a partial decompression of
the working set and perform some sort of interleaving be-
tween decompression and rendering. This approach better
exploit the GPU memory bandwidth and, in general, im-
proves the usage of the available GPU memory resources.
Deferred filtering solutions [FAM∗05, WYM10] exploit
spatial coherence and supports high-quality shading de-
compressing groups of slices which can be reused during
rendering for gradient and shading computations. Never-
theless, this solution was proposed as a single resolution
system and therefore limiting the size of the volume data
set. An extension of this idea to work with multiresolution
data representations was proposed in the COVRA [GIM12]
architecture. In that case, the volume is subdivided in a
small number of octrees of compressed blocks that are
rendered and composited in a GPU ray-caster in front-to-
back order. Working over these subtrees of the original
octree makes possible to better exploit the GPU memory
resources as data can be discarded as soon as it has been
used for rendering. Authors extended deferred filtering to
supported multiresolution representations.

5.2. Decoding from Compact Representations

The different compression methods presented in Sec. 3 can
be employed within one or many of the previously described
architectures. In general, it can distinguished between de-
compression methods that operate directly in the transformed
domain (pure compression-domain approaches), methods that
perform a per-voxel access (pure random-access) or per-block
accesses with the idea to amortize the decompression com-
putation, supporting high quality filtering and shading for
a group of voxels. Next, we describe how those methods
perform the decoding and rendering in the existing archi-
tectures, giving priority to those methods for which a GPU
implementation exists.

5.2.1. Transform/Decomposition Models

Original transform-domain approaches operate directly in
the transformed domain to perform the accumulation pro-
cess [Lev92, Wes94]. In general the decoding consists in

the inverse stages of the forward encoding. In the case of
the Fourier transform the projection slice is extracted thanks
to the Fourier projection-slice theorem [Lev92] using the
Inverse 2D Fast Fourier Transform. Viola et al. [VKG04]
proposed the following single-resolution strategy for a slice-
based rendering. After the compressed data is uploaded to the
GPU, the rendering is divided into two stages: (i) slicing in
the frequency domain and (ii) the inverse transform. The slic-
ing refers to the re-sampling of the projection slice from the
3D frequency data. For this, the authors used a setup where
the slice is perpendicular to the viewing direction intersecting
the frequency volume in the origin of the frequency spectrum.
When changing the viewing direction, the texture is rotated
around the frequency volume origin. The algorithm performs
in O(M2) for a M×M slice, instead of O(N3) that would be
required to perform the projection of a N×N×N volume
in the spatial domain. The inverse transform re-sample the
frequency slice back to the spatial domain and results in the
projection of accumulated intensities into the frame-buffer.
In the original paper the authors proposed to use the Hartley
transform because of its memory efficiency with respect to
the Fourier transform, but equivalent implementations for
fast inverse transformations exist for other algorithms (e.g
FFT, DCT, etc.) and GPU implementations are common, at
least for the 2D case. This theorem allows the generation of
attenuation-only renderings of volume data in O(N2logN)
time for a volume of size N3.

In the case of the Wavelet transform, as with the Fourier
transform there also exist the possibility to perform a pro-
jection in the frequency domain an employ the inverse
wavelet transform to go back to the spatial domain. The vol-
ume is commonly decoded per blocks and in many cases
combined with some sort of multiresolution data struc-
ture [Wes94, IP99, KS99, GWGS02]. During the traversal
of such multiresolution data structures, the blocks belonging
to the working set are filtered out. Wavelets can be com-
bined with many other compression techniques, (e.g., run-
length encoding [LGK97], Rice-coding [WQ05]). The de-
coding of the needed parameters are commonly plugged
in a sequential order from one method to the next one.
Another authors combine the wavelets with time-varying
data structures, e.g., wavelet-based time-space partitioning
(WTSP) [WS04,WGLS05,She06]. Ko et al. [KLW∗08] elim-
inated the hierarchical decompression dependency commonly
found in the hierarchical wavelet representation methods, by
applying video based compression techniques that lead to
a more efficient reconstruction of data along the time axis.
Garcia et al. [GS05] proposed a GPU-based algorithm for
reconstructing 3D wavelets using fragment programs and tile-
boards to distribute the 3D wavelet coefficients. An FPGA
hardware implementation has been proposed by Wetekam et
al. [WSKW05] in which authors proposed a HW implemen-
tation of the reverse wavelet transformation.

In the case of the Karhunen-Loeve Transform (KLT), Fout
et al. [FM07] optimized the inverse transform computation

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

precomputing partial re-projections and storing them in what
they called associated codebooks. Thus, a portion of the
volume can be represented by four progressive levels of ap-
proximation xi = ∑

P
p=1 C∗

p(kp, i)) where C∗
p represents the

associated dictionaries for the p− th volume partition.

The tensor approximation method has been proposed
in combination with a multiresolution octree hierar-
chy [SIM∗11]. The decompression of the full working set is
performed before the rendering stage using a per-brick solu-
tion. The reconstruction, proposed and implemented in the
GPU, is based on the Tucker formulation and implements the
tensor times matrix (TTM) multiplications. In their optimized
implementation, each kernel thread is in charge of the decom-
pression of one voxel with a computational complexity O(M),
instead of O(M3), and grows only linearly with the rank M.
In the hierarchical tensor-based transform proposed by Wu
et al. [WXC∗08] the entire domain of the input volume is
recursively partitioned into smaller blocks and a truncated
tensor-product basis for each block is defined. Over this idea,
the original tensor is represented as a summation of incom-
plete tensor approximations at multiple levels. The tensors at
each level are subdivided in residual tensors passed from the
higher levels.

In dictionary based methods the pre-processing could be a
tedious and costly process, but in contrast the decoding and
rendering are quite easy and fast, and several GPU imple-
mentations exist. In methods like VQ, HVQ [SW03, FM07],
RVQ [PK09a, PK09b] or flag based classified hierarchical
vector quantization (FCHVQ) [ZFW12,ZYX∗11] each voxel
is commonly reconstructed on-the-fly just accessing to the
selected and needed codewords, thus supporting per-voxel
random-access. Dictionaries can be uploaded to GPU mem-
ory and just one additional memory indirection per codeword
is needed. The computational complexity of reconstructing
VQ is linear O(N), being N the number of blocks. In HVQ
the complexity is O(N×M), where M is the number of dic-
tionaries (note for M = 1 you get the complexity of VQ). The
sparse coding of voxel blocks employ a linear combination of
different codewords of a dictionary, thus the computational
complexity of the method remains very similar to HVQ and
is O(N×S) where S is the sparsity. Similarly to VQ based im-
plementations, each voxel can be decompressed in parallel by
accessing to the corresponding codewords and their weight-
ing coefficients, like proposed by Gobbetti et al. [GIM12].

5.2.2. Thresholding and Quantization Models

Random-access decompression methods can be easily imple-
mented in GPU as a per-block scalar quantization [YNV08,
IGM10]. In those methods a minimum and maximum value
per block is computed, as well as a local index in between
those values. Finally, the decompressed value is computed as
vi jk = min+(max−min)∗ index

2ibits−1 where ibits is the number
of bits used to represent the index values.

Smelyanskiy et al. [SHC∗09] employed a differences based

compression scheme. During decompression, they essentially
load the data for multiple elements (eight in the case of 128-
bit SSE), and expand the stored differences into 16-bit values.
These values are then added to the base value to obtain the
final values. Since different blocks may have different number
of bits per element, they pre-compute and store the different
shift patterns in a separate table, and at run-time simply look
up the appropriate data shuffle patterns to expand the data
into 16-bit values. In practice, the overhead of lookups is
negligible.

Mensmann et al. [MRH10] proposed an hybrid scheme.
The decompression part has to resolve the variable-length
coding, resolve the delta encoding, and perform the brick
assembly. As the variable-length coding requires different ad-
dressing modes based on with how many bits a brick is stored,
the authors implemented individual kernels for handling each
of the supported bit lengths. Implementing the delta encoding
is trivial, as the kernel just needs to add the calculated value
to the existing value in the volume instead of overwriting it.

5.2.3. Encoding Models

Most of the hardware-supported fixed-rate block-coding tech-
niques are nowadays based on simple fixed-rate block-coding
methods (e.g., VTC [Cra04] or S3TC [INH99]). For example
VTC, and similarly other DXT variations of S3TC, approxi-
mate voxel values by selecting between different linear inter-
polation modes in a lookup table, then applying the selected
formula over a precomputed subset of representative values.
This interpolation is done independently for each block, and
thus exploits spatial coherence in small blocks. Note that
this interpolation is quickly done by the on-the-fly decoder
implemented as a hardware component. In addition, the on-
the-fly decompression does not require additional memory
to store the decompressed data, because the entire volume
is not decompressed at a time. Thus, rendering can be per-
formed directly accessing to the coordinates of the voxel and
reconstructing the value in real-time.

Adaptive Scalable Texture Compression
(ASTC) [NLP∗12] is a fixed-rate lossy texture com-
pression method. ASTC is scalable and adaptive in the sense
that the proposed hardware supports different block-sizes
configurations covering a wide range of bit rates (e.g., for 3D
textures, 6x6x6 blocks result in 0.56 bps and 3x3x3 in 4.74
bps). ASTC proposes a general method for representing value
sequences using a fractional number of bits per value, and a
system for constructing per-texel color weights from sparse
samples. Authors claim that their results are competitive with
the most advanced HW-supported formats in use today, and
to improve over industry standards such as DXT [Bro01],
ETC2 [SP07] and PVRTC [Fen03]. Nevertheless, the 3D part
of the full ASTC specification is still undergoing detailed
evaluation for its inclusion in next OpenGL releases [Ell12].

Fraedrich et al. [FBS07] proposed a general approach for
applying common sequential data compression schemes to

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

blocks of data, which can be decoded on-the-fly by the graph-
ics processing unit (GPU) in a single render pass. The block
is decomposed into parallel stripes of voxels. For decoding,
a quad is rendered with the size of the index texture and
each fragment decodes one stripe of the block. The decoded
scalar values are written into different color channels of mul-
tiple render targets, which are used as textures for volume
rendering in a subsequent render pass.

5.2.4. Discussion

Local and transient reconstruction is a key feature for a com-
pressed volume renderer. In order to support it, decisions must
be taken both in terms of compact data model and rendering
architectures.

A number of solutions have been presented that perform
rendering directly in the transform domain, e.g., using Fourier,
Hartley, or wavelet transform. This approach maximally re-
duces rendering complexity and memory pressure. However,
full rendering in transform domain is only applicable to a
very reduced number of situations (e.g., X-ray imaging), since
it does not efficiently support perspective rendering, trans-
fer functions, or complex shading. Other authors have also
proposed to exploit dictionaries, e.g., obtained by vector quan-
tization, to speed-up some portion of rendering (e.g., global
illumination or occlusion) by performing computations in the
transform domain (see Hadwiger et al. [HLSR09] for a sur-
vey). In the general case, however, current compressed direct
volume renderers need to decode data prior to rendering.

Of the three possible architectures presented, only the so-
lutions based on pure voxel-level random access on the GPU
and the on-line partial decoders during rendering achieve the
goal of avoiding full data decompression. Shaded rendering
with good quality interpolation when using pure voxel-level
random access is, however, currently doable only when using
hardware-supported methods, thus limiting the flexibility in
terms of supported data formats and achievable compression.
The most flexible approach thus remains partial decompres-
sion.

Doing decompression at rendering time thus requires the
ability to decompress blocks of data on-the-fly within real-
time constraints. Few of the current methods currently have
such a performance, and most of them only within very lim-
ited settings. For instance, analytical transforms, Tensor ap-
proximation [SIM∗11] and Sparse Coding [GIM12] achieve
their best performance when using variable per-block rank/s-
parsity, which are not support by current GPU reconstructors
due to difficulty in handling complex memory layouts. Effi-
ciently handling variable local bit rate, while not impacting
on reconstruction speed, is an area of research.

Efficient decompression methods are particularly impor-
tant in view of the current move to lighter client, especially
in the mobile settings. In this case, also due to the more con-
straining network speeds, hybrid architectures that perform

partial decoding at data loading time, and another decoding
step at rendering time seem promising.

In terms of quality, one of the limitations shared by all
current block-based compressed volume-rendering architec-
tures is that reconstruction artifacts at low bit rates mani-
fest themselves as visible discontinuities between adjacent
blocks. It should be noted that such an artifact also appears
when employing LOD scheme, g even in conjunction with un-
compressed data, since the different local resolutions within
adjacent blocks then cause discontinuities in the rendered
image. In the case of uncompressed multiresolution data,
this artifact has been handled with various data replication
schemes [WWH∗00, GS04] or with interblock interpolation
methods [LLY06, BHMF08, HLPS08]. Deblocking has not,
however, been tackled in the volume rendering literature
when dealing with compressed data.

6. Conclusions

The investigation of compressed volume rendering methods
to dynamically render models whose size exceeds current
hardware capabilities has been, and still is, a very active com-
puter graphics research area, which is obviously impossible
to fully cover in a short survey. In this state-of-the-art report,
we have provided a characterization of the basic concepts
common to all current architectures and of the requirements
of each component. After reviewing the most common com-
pact data models used as underlying data representations, we
discussed the issues related to compression and encoding, as
well as decoding and rendering, with a special focus on GPU
techniques fully supporting transient and local decoding.

Even though the domain is mature and has a long history,
open problems remain. The current trend consists in moving
all the decompression to the last part of the pipeline, being
able to keep all data compressed in GPU, thus better exploit-
ing available bandwidth and memory resources. Current fully
GPU accelerated methods have some limitations in terms of
compression rate vs. quality. In particular, few of the methods
can efficiently cover the full spectrum from extreme compres-
sion to (near)lossless compression. Wavelet-based techniques
and recent methods based on tensor analysis or sparse coding
theoretically cover a wide rate and quality spectrum, but most
of current implementations supporting fast GPU decoding
do not optimally support variable bit-rate encoding. Com-
pression performance is thus currently not on par with the
performance obtained with GPU techniques.

Moreover, block based techniques inherently introduce
blocking artifacts. Various approaches have been proposed
to reduce perceptual effects in image or video applications
and many of these methods focus on "post-processing", that
is, processing images when received or viewed. So far, none
of these methods have been applied in volume rendering.
Moreover, elimination of compression artifacts in volumetric
multiresolution structures is still an open problem.

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

On current desktop platforms, the compression methods
surveyed in this report will have their main future applica-
bility when dealing with time-varying data, multi-volume
visualization, or multi-attribute datasets. While current high
end graphics system currently have enough GPU memory for
handling common single scalar dataset, efficiently handling
multiple time steps, multiple volumes, and multiple modali-
ties within a single visualization is not within reach. Handling
these cases imposes research not only at the level of com-
pression models, but also at the level of adaptive rendering
algorithm, and at the system level.

Finally, given the increasingly wide diffusion of mobile
platforms with high quality graphics support, such as tablets
or smart-phones, and the increasing interest in moving many
infrastructures to “the cloud”, networked and mobile volume
visualization is expected to gain increased interest. Algo-
rithms which perform pretty well in current desktop platforms
are, however, still far from being integrated on the constrained
environments provided by mobile devices.

Acknowledgments. This work is partially supported by the People
Programme (Marie Curie Actions) of the European Union’s Seventh
Framework Programme FP7/2007-2013/ under REA grant agree-
ments n◦290227 (DIVA) and n◦251415 (GOLEM).

References

[AEB06] AHARON M., ELAD M., BRUCKSTEIN A.: K-svd: An
algorithm for designing overcomplete dictionaries for sparse rep-
resentation. IEEE Transactions on Signal Processing 54, 11 (Nov.
2006), 4311–4322. 10

[AGIM10] AGUS M., GOBBETTI E., IGLESIAS GUITIÁN J. A.,
MARTON F.: Split-voxel: A simple discontinuity-preserving voxel
representation for volume rendering. In Proc. Volume Graphics
(2010), pp. 21–28. 7

[AHPV05] AGARWAL P., HAR-PELED S., VARADARAJAN K.:
Geometric approximation via coresets. Combinatorial and Com-
putational Geometry 52 (2005), 1–30. 10

[ASA11] ALZUBI S., SHARIF M., ABBOD M.: Efficient imple-
mentation and evaluation of wavelet packet for 3d medical image
segmentation. In Proceedings of IEEE International Workshop on
Medical Measurements and Applications Proceedings (MeMeA)
(may 2011), pp. 619 –622. 5

[ASK92] AVILA R. S., SOBIERAJSKI L. M., KAUFMAN A. E.:
Towards a comprehensive volume visualization system. In Pro-
ceedings of IEEE Visualization (1992), IEEE Computer Society
Press, pp. 13–20. 7

[BCF03] BINOTTO A. P. D., COMBA J., FREITAS C. M. D. S.:
Real-time volume rendering of time-varying data using a fragment-
shader compression approach. In Proceedings of IEEE Symposium
on Parallel and Large-Data Visualization and Graphics (2003),
pp. 69–76. 8

[BHJ∗11] BEYER J., HADWIGER M., JEONG W.-K., PFISTER H.,
LICHTMAN J.: Demand-driven volume rendering of terascale em
data. In Proceedings of ACM SIGGRAPH Talks (2011), pp. 57:1–
57:1. 13

[BHMF08] BEYER J., HADWIGER M., MÖLLER T., FRITZ L.:
Smooth mixed-resolution GPU volume rendering. In Proc.
IEEE/EG Symposium on Volume and Point-Based Graphics
(2008), pp. 163–170. 16

[BNS01] BOADA I., NAVAZO I., SCOPIGNO R.: Multiresolution

volume visualization with a texture-based octree. The Visual
Computer 17 (2001), 185–197. 12

[Bro01] BROWN P.: Ext texture compression s3tc. OpenGL Ex-
tension Registry, 2001. 7, 13, 15

[CARKD99] COTTER S. F., ADLER R., RAO R. D., KREUTZ-
DELGADO K.: Forward sequential algorithms for best basis
selection. In Proceedings of Vision, Image and Signal Processing
(1999), vol. 146, IET, IET, pp. 235–244. 11

[CHF96] COCHRAN W. O., HART J. C., FLYNN P. J.: Fractal
volume compression. IEEE Transactions on Visualization and
Computer Graphics 2, 4 (Dec. 1996), 313–322. 7, 8, 10

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN
E.: Gigavoxels: ray-guided streaming for efficient and detailed
voxel rendering. In Proceedings of symposium on Interactive 3D
graphics and games (2009), ACM, pp. 15–22. 12

[Cra04] CRAIGHEAD M.: Gl_nv_texture_compression_vtc.
OpenGL Extension Registry, 2004. 7, 13, 15

[CS07] CZUMAJ A., SOHLER C.: Sublinear-time approximation
algorithms for clustering via random sampling. Random Struc-
tures & Algorithms 30, 1-2 (2007), 226–256. 10

[CWW11] CAO Y., WU G., WANG H.: A smart compression
scheme for gpu-accelerated volume rendering of time-varying
data. In Proceedings of the International Conference on Virtual
Reality and Visualization (2011), IEEE Computer Society, pp. 205–
210. 8

[CYH∗97] CHIUEH T.-C., YANG C.-K., HE T., PFISTER H.,
KAUFMAN A.: Integrated volume compression and visualization.
In Proceedings of IEEE Visualization (oct. 1997), pp. 329 –336.
5, 10, 11

[DGY07] DIETRICH A., GOBBETTI E., YOON S.: Massive-
model rendering techniques: A tutorial. IEEE Computer Graphics
and Applications 27, 6 (nov/dec 2007), 20–34. 2

[DM79] DELP E., MITCHELL O. R.: Image compression using
block truncation coding. IEEE Transactions on Communications
27, 9 (1979), 1335–1341. 14

[DNR90] DUNNE S., NAPEL S., RUTT B.: Fast reprojection of
volume data. In Proceedings of Conference on Visualization in
Biomedical Computing (may 1990), pp. 11 –18. 4, 8

[EHK∗06] ENGEL K., HADWIGER M., KNISS J. M., REZK-
SALAMA C., WEISKOPF D.: Real-time volume graphics. A
K Peters, 2006. 1, 2, 4

[Ela10] ELAD M.: Sparse and Redundant Representations.
Springer, 2010. 6, 10, 11

[Ell12] ELLIS S.: GL_KHR_texture_compression_astc_ldr.
OpenGL (4.3 & ES 3) Registry, 2012. 1, 15

[FAM∗05] FOUT N., AKIBA H., MA K.-L., LEFOHN A., KNISS
J. M.: High-quality rendering of compressed volume data formats.
In Proceedings of EG/IEEE Symposium on Visualization (2005).
8, 12, 13, 14

[FBS07] FRAEDRICH R., BAUER M., STAMMINGER M.: Sequen-
tial data compression of very large data in volume rendering. In
Proceedings of the Conference Vision, Modeling and Visualization
(2007), pp. 41–50. 15

[Fen03] FENNEY S.: Texture compression using low-frequency
signal modulation. In Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS conference on Graphics hardware (2003), pp. 84–91.
13, 15

[FM07] FOUT N., MA K.-L.: Transform coding for hardware-
accelerated volume rendering. IEEE Transactions on Visualization
and Computer Graphics 13, 6 (2007), 1600–1607. 1, 3, 5, 6, 8, 9,
12, 13, 14, 15

[FM12] FOUT N., MA K.-L.: An adaptive prediction-based ap-
proach to lossless compression of floating-point volume data.
(Accepted by VisWeek/Vis 2012), 2012. 12

[FY94] FOWLER J. E., YAGEL R.: Lossless compression of vol-

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

ume data. In Proceedings of the Symposium on Volume Visualiza-
tion (VVS) (1994), ACM. 3, 7

[GEA96] GROSSO R., ERTL T., ASCHOFF J.: Efficient data struc-
tures for volume rendering of wavelet-compressed data. In Pro-
ceedings of Winter School of Computer Graphics (1996), Com-
puter Society Press. 5, 7

[GIM12] GOBBETTI E., IGLESIAS GUITIÁN J., MARTON F.:
Covra: A compression-domain output-sensitive volume render-
ing architecture based on a sparse representation of voxel blocks.
Computer Graphics Forum 31, 3pt4 (2012), 1315–1324. 1, 6, 8,
9, 10, 11, 12, 13, 14, 15, 16

[GKY08] GOBBETTI E., KASIK D., YOON S.: Technical strate-
gies for massive model visualization. In Proc. ACM Solid and
Physical Modeling Symposium (2008), ACM Press, New York,
NY, USA, pp. 405–415. 2

[GLDH97] GROSS M. H., LIPPERT L., DITTRICH R., HÄRING
S.: Two methods for wavelet–based volume rendering. Computers
& Graphics 21, 2 (1997), 237–252. 5

[GMI08] GOBBETTI E., MARTON F., IGLESIAS GUITIÁN J. A.:
A single-pass GPU ray casting framework for interactive out-
of-core rendering of massive volumetric datasets. The Visual
Computer 24, 7-9 (July 2008), 797–806. 12

[GS01] GUTHE S., STRASSER W.: Real-time decompression and
visualization of animated volume data. In Proceedings of IEEE
Visualization (2001), IEEE Computer Society Press, pp. 349–356.
12

[GS04] GUTHE S., STRASSER W.: Advanced techniques for high
quality multiresolution volume rendering. Computers & Graphics
28 (2004), 51–58. 12, 16

[GS05] GARCIA A., SHEN H.: Gpu-based 3d wavelet reconstruc-
tion with tileboarding. The Visual Computer, Special Issues of
Pacific Graphics 21, 8–10 (2005), 755–763. 14

[GWGS02] GUTHE S., WAND M., GONSER J., STRASSER W.:
Interactive rendering of large volume data sets. In Proceedings of
IEEE Visualization (2002), pp. 53–60. 5, 7, 10, 11, 13, 14

[GY95] GHAVAMNIA M. H., YANG X. D.: Direct rendering of
laplacian pyramid compressed volume data. In Proceedings of
IEEE Visualization (1995), IEEE Computer Society Press, pp. 192–
. 5, 8, 11

[HLPS08] HEGE H., LAIDLAW D., PAJAROLA R., STAADT O.:
Smooth mixed-resolution gpu volume rendering. In IEEE/EG
Symposium on Volume and Point-Based Graphics (2008). 16

[HLSR09] HADWIGER M., LJUNG P., SALAMA C., ROPINSKI
T.: Gpu-based volume ray-casting with advanced illumination. In
Eurographics Tutorials (2009), pp. 39–211. 16

[HQK05] HONG W., QIU F., KAUFMAN A.: GPU-based object-
order ray-casting for large datasets. In Proceedings of Volume
Graphics (2005), Eurographics Association, pp. 177–186. 12

[HS00] HAMZAOUI R., SAUPE D.: Combining fractal image
compression and vector quantization. Image Processing, IEEE
Transactions on 9, 2 (2000), 197–208. 7

[IGM10] IGLESIAS GUITIÁN J. A., GOBBETTI E., MARTON F.:
View-dependent exploration of massive volumetric models on
large scale light field displays. The Visual Computer 26, 6–8
(2010), 1037–1047. 13, 15

[ILRS03] IBARRIA L., LINDSTROM P., ROSSIGNAC J., SZYM-
CZAK A.: Out-of-core compression and decompression of large
n-dimensional scalar fields. Computer Graphics Forum 22, 3
(2003), 343–348. 8

[INH99] IOURCHA K., NAYAK K., HONG Z.: System and method
for fixed-rate block-based image compression with inferred pixel
values. US Patent 5,956,431, 1999. 13, 14, 15

[IP99] IHM I., PARK S.: Wavelet-based 3d compression scheme
for interactive visualization of very large volume data. Computer
Graphics Forum 18 (1999), 3–15. 5, 7, 10, 11, 12, 13, 14

[JBL∗06] JANG Y., BOTCHEN R. P., LAUSER A., EBERT D. S.,
GAITHER K. P., ERTL T.: Enhancing the interactive visualization
of procedurally encoded multifield data with ellipsoidal basis
functions. Computer Graphics Forum 25, 3 (2006), 587–596. 12

[JEG12] JANG Y., EBERT D. S., GAITHER K. P.: Time-varying
data visualization using functional representations. IEEE Trans-
actions on Visualization and Computer Graphics 18, 3 (2012),
421–433. 8, 12

[KB09] KOLDA T. G., BADER B. W.: Tensor decompositions and
applications. Siam Review 51, 3 (Sep 2009), 455–500. 6

[KFDB07] KOMMA P., FISCHER J., DUFFNER F., BARTZ D.:
Lossless volume data compression schemes. In Proceedings of
the Conference Simulation and Visualization (2007), pp. 169–182.
1, 5, 7, 8

[KLW∗08] KO C.-L., LIAO H.-S., WANG T.-P., FU K.-W., LIN
C.-Y., CHUANG J.-H.: Multi-resolution volume rendering of
large time-varying data using video-based compression. In Pro-
ceedings of IEEE Pacific Visualization Symposium (2008), pp. 135–
142. 5, 7, 8, 11, 12, 13, 14

[KP09] KNITTEL G., PARYS R.: Pca-based seeding for improved
vector quantization. In Proceedings of International Conference
on Imaging Theory and Applications (2009). 6, 9

[KS99] KIM T.-Y., SHIN Y. G.: An efficient wavelet-based com-
pression method for volume rendering. In Proceedings of Pacific
Conference on Computer Graphics and Applications (1999), IEEE
Computer Society Press, pp. 147–. 5, 7, 10, 11, 12, 14

[KWAH06] KAEHLER R., WISE J., ABEL T., HEGE H.-C.: GPU-
assisted raycasting for cosmological adaptive mesh refinement
simulations. In Proceedings of Volume Graphics (2006), Euro-
graphics Association, pp. 103–110. 12

[LBG80] LINDE Y., BUZO A., GRAY R.: An algorithm for vector
quantizer design. IEEE Transactions on Communications 28, 1
(1980), 84–95. 9

[LC10] LU T., C.Y. C.: A survey of vq codebook generation.
Journal of Information Hiding and Multimedia Signal Processing
1 (2010), 190–203. 6

[Lev92] LEVOY M.: Volume rendering using the fourier projection-
slice theorem. In Proceedings of Conference on Graphics Inter-
face (1992), pp. 61–69. 4, 9, 14

[LGK97] LIPPERT L., GROSS M., KURMANN C.: Compression
domain volume rendering for distributed environments. Computer
Graphics Forum 16, 3 (September 1997), 95–107. 5, 7, 10, 11, 14

[Lju06] LJUNG P.: Adaptive sampling in single pass, GPU-based
raycasting of multiresolution volumes. In Proceedings of Volume
Graphics (2006), Eurographics Association, pp. 39–46. 12

[LL94] LACROUTE P., LEVOY M.: Fast volume rendering using a
shear-warp factorization of the viewing transformation. In Pro-
ceedings of Conference on Computer graphics and interactive
techniques (1994), ACM, pp. 451–458. 7

[Llo82] LLOYD S.: Least squares quantization in pcm. IEEE
Transactions on Information Theory 28, 2 (1982), 129 – 137. 9

[LLY06] LJUNG P., LUNDSTRÖM C., YNNERMAN A.: Multires-
olution interblock interpolation in direct volume rendering. In
Proceedings of EuroVis (2006), pp. 259–266. 16

[LLYM04] LJUNG P., LUNDSTROM C., YNNERMAN A.,
MUSETH K.: Transfer function based adaptive decompression for
volume rendering of large medical data sets. In Proceedings of
IEEE Symposium on Volume Visualization and Graphics (2004),
pp. 25–32. 5, 7, 12

[LMC01] LUM E. B., MA K. L., CLYNE J.: Texture hardware
assisted rendering of time-varying volume data. In Proceedings of
IEEE Visualization (2001), IEEE Computer Society Press, pp. 263–
270. 8

[LMHJ99] LA MAR E. C., HAMANN B., JOY K. I.: Multiresolu-
tion techniques for interactive texture-based volume visualization.
In Proceedings of IEEE Visualization (Oct. 1999), pp. 355–362.

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

12
[MA09] MEFTAH A., ANTONINI M.: Scan-based wavelet trans-

form for huge 3d volume data. In Proceedings of Picture Coding
Symposium (PCS) (may 2009), pp. 1 –4. 12

[Mal93] MALZBENDER T.: Fourier volume rendering. ACM
Transactions on Graphics 12, 3 (1993), 233–250. 4, 5, 8, 9

[MBPS10] MAIRAL J., BACH F., PONCE J., SAPIRO G.: Online
learning for matrix factorization and sparse coding. The Journal
of Machine Learning Research 11 (2010), 19–60. 10

[MK91] MALZBENDER T., KITSON F. L.: A fourier technique
for volume rendering. In Proceedings Focus on Scientific Visual-
ization (1991), pp. 305–316. 4

[MRH10] MENSMANN J., ROPINSKI T., HINRICHS K.: A gpu-
supported lossless compression scheme for rendering time-varying
volume data. In Proceedings of Volume Graphics (2010), West-
ermann R., Kindlmann G. L., (Eds.), Eurographics Association,
pp. 109–116. 8, 12, 13, 15

[MS00] MA K.-L., SHEN H.-W.: Compression and accelerated
rendering of time-varying volume data. In Proceedings of the Inter-
national Computer Symposium-Workshop on Computer Graphics
and Virtual Reality (2000), pp. 82–89. 8, 12

[Mur93] MURAKI S.: Volume data and wavelet transforms. IEEE
Computer Graphics and Applications 13, 4 (July 1993), 50–56. 5,
8

[NH92] NING P., HESSELINK L.: Vector quantization for volume
rendering. Workshop on Volume Visualization (1992), 69–74. 6,
8, 9

[NH93] NING P., HESSELINK L.: Fast volume rendering of com-
pressed data. In Proceedings of IEEE Visualization (1993). 6,
9

[NIH08] NAGAYASU D., INO F., HAGIHARA K.: Two-stage com-
pression for fast volume rendering of time-varying scalar data.
In Proceedings of International Conference on Computer graph-
ics and interactive techniques in Australasia and Southeast Asia
(GRAPHITE) (2008), ACM, pp. 275–284. 8, 12, 13

[NLP∗12] NYSTAD J., LASSEN A., POMIANOWSKI A., ELLIS
S., OLSON T.: Adaptive scalable texture compression. In Pro-
ceedings of High Performance Graphics (2012), Dachsbacher
C., Munkberg J., Pantaleoni J., (Eds.), Eurographics Association,
pp. 105–114. 7, 13, 15

[NS01] NGUYEN K. G., SAUPE D.: Rapid high quality compres-
sion of volume data for visualization. Computer Graphics Forum
20, 3 (2001), 49–57. 5, 10, 11

[PK09a] PARYS R., KNITTEL G.: Giga-voxel rendering from
compressed data on a display wall. In Proceedings of Winter
School of Computer Graphics (2009), pp. 73–80. 6, 9, 15

[PK09b] PARYS R., KNITTEL G.: Interactive large-scale volume
rendering. In Proceedings of High End Visualization Workshop
(2009). 6, 9, 13, 15

[RBE10] RUBINSTEIN R., BRUCKSTEIN A., ELAD M.: Dictio-
naries for sparse representation modeling. Proceedings of the
IEEE 98, 6 (2010), 1045 –1057. 6, 9, 10

[RK09] RUITERS R., KLEIN R.: Btf compression via sparse tensor
decomposition. In Computer Graphics Forum (2009), vol. 28,
Wiley Online Library, pp. 1181–1188. 10

[Rod99] RODLER F. F.: Wavelet based 3d compression with fast
random access for very large volume data. In Proceedings of Pa-
cific Conference on Computer Graphics and Applications (1999),
IEEE Computer Society Press, pp. 108–. 5, 7, 10, 11, 12

[SBN11] SHE B., BOULANGER P., NOGA M.: Real-time ren-
dering of temporal volumetric data on a gpu. In Proceedings of
the International Conference on Information Visualisation (2011),
IEEE Computer Society, pp. 622–631. 8, 12

[SE10] SKRETTING K., ENGAN K.: Recursive least squares dictio-
nary learning algorithm. IEEE Transactions on Signal Processing

58, 4 (2010), 2121–2130. 10
[SHC∗09] SMELYANSKIY M., HOLMES D., CHHUGANI J., LAR-

SON A., CARMEAN D. M., HANSON D., DUBEY P., AUGUS-
TINE K., KIM D., KYKER A., LEE V. W., NGUYEN A. D.,
SEILER L., ROBB R.: Mapping high-fidelity volume rendering
for medical imaging to cpu, gpu and many-core architectures.
IEEE Transactions on Visualization and Computer Graphics 15,
6 (Nov. 2009), 1563–1570. 15

[She06] SHEN H.-W.: Visualization of large scale time-varying
scientific data. Journal of Physics 46, 1 (2006), 535–544. 5, 7, 8,
11, 12, 13, 14

[SIM∗11] SUTER S. K., IGLESIAS GUITIÁN J. A., MARTON F.,
AGUS M., ELSENER A., ZOLLIKOFER C. P., GOPI M., GOB-
BETTI E., PAJAROLA R.: Interactive multiscale tensor reconstruc-
tion for multiresolution volume visualization. IEEE Transactions
on Visualization and Computer Graphics 17, 12 (December 2011),
2135–2143. 1, 6, 8, 11, 13, 15, 16

[SMB∗03] SCHELKENS P., MUNTEANU A., BARBARIEN J.,
GALCA M., I NIETO X. G., CORNELIS J.: Wavelet coding of
volumetric medical datasets. IEEE Transactions Medical Imaging
22, 3 (2003), 441–458. 7

[SP07] STRÖM J., PETTERSSON M.: Etc2: texture compression us-
ing invalid combinations. In Proceedings of ACM SIGGRAPH/EU-
ROGRAPHICS symposium on Graphics hardware (2007), pp. 49–
54. 7, 13, 15

[SW03] SCHNEIDER J., WESTERMANN R.: Compression domain
volume rendering. In Proceedings of IEEE Visualization (2003),
pp. 293–300. 5, 6, 8, 9, 12, 13, 14, 15

[SZP10] SUTER S. K., ZOLLIKOFER C. P., PAJAROLA R.: Ap-
plication of tensor approximation to multiscale volume feature
representations. In Proceedings of Vision, Modeling and Visual-
ization (2010), pp. 203–210. 6, 8, 9

[VKG04] VIOLA I., KANITSAR A., GRÖLLER M. E.: Gpu-based
frequency domain volume rendering. In Proceedings of spring
conference on Computer graphics (2004), ACM, pp. 55–64. 5, 13,
14

[WCCA04] WANG Z., CHUI C.-K., CAI Y., ANG C.-H.: Mul-
tidimensional volume visualization for pc-based microsurgical
simulation system. In Proceedings of VRCAI (2004), Brown J. R.,
Cai Y., (Eds.), ACM, pp. 309–316. 12

[Wes94] WESTERMANN R.: A multiresolution framework for
volume rendering. In Proceedings of the Symposium on Volume
Visualization (VVS) (1994), ACM, pp. 51–58. 5, 14

[Wes95] WESTERMANN R.: Compression domain rendering of
time-resolved volume data. In Proceedings of IEEE Visualization
(1995), IEEE Computer Society Press. 8, 12

[WF08] WEISS K., FLORIANI L.: Modeling and visualization
approaches for time-varying volumetric data. In Proceedings of
International Symposium on Advances in Visual Computing, Part
II (2008), Springer-Verlag, pp. 1000–1010. 8

[WGLS05] WANG C., GAO J., LI L., SHEN H.-W.: A multireso-
lution volume rendering framework for large-scale time-varying
data visualization. In Proceedings of Volume Graphics (2005),
Eurographics Association, pp. 11–19. 8, 12, 14

[WM08] WANG C., MA K.-L.: A statistical approach to volume
data quality assessment. IEEE Transactions on Visualization and
Computer Graphics 14, 3 (may-june 2008), 590–602. 5

[WQ05] WU X., QIU T.: Wavelet coding of volumetric medical
images for high throughput and operability. IEEE Transactions
on Medical Imaging 24, 6 (june 2005), 719–727. 5, 7, 10, 11, 14

[WS04] WANG C., SHEN H.-W.: A Framework for Rendering
Large Time-Varying Data Using Wavelet-Based Time-Space Par-
titioning (WTSP) Tree. Tech. rep., Department of Computer and
Information Science, The Ohio State University, 2004. 12, 14

[WS09] WOODRING J., SHEN H.-W.: Multiscale time activity
data exploration via temporal clustering visualization spreadsheet.

c© The Eurographics Association 2013.

M. Balsa et al. / Compressed GPU Volume Rendering

IEEE Transactions on Visualization and Computer Graphics 15, 1
(Jan. 2009), 123–137. 12

[WSKW05] WETEKAM G., STANEKER D., KANUS U., WAND
M.: A hardware architecture for multi-resolution volume render-
ing. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware (2005), pp. 45–51. 5, 7, 10, 11,
12, 13, 14

[WWH∗00] WEILER M., WESTERMANN R., HANSEN C., ZIM-
MERMANN K., ERTL T.: Level-of-detail volume rendering via
3d textures. In Proc.IEEE symposium on Volume visualization
(2000), pp. 7–13. 16

[WWLM11] WANG Y.-S., WANG C., LEE T.-Y., MA K.-L.:
Feature-preserving volume data reduction and focus+context vi-
sualization. IEEE Transactions on Visualization and Computer
Graphics 17 (2011), 171–181. 7

[WWS03] WOODRING J., WANG C., SHEN H.-W.: High di-
mensional direct rendering of time-varying volumetric data. In
Proceedings of IEEE Visualization (2003), pp. 55–. 8

[WWS∗05] WANG H., WU Q., SHI L., YU Y., AHUJA N.: Out-
of-core tensor approximation of multi-dimensional matrices of
visual data. ACM Transactions on Graphics 24, 3 (July 2005),
527–535. 8

[WXC∗08] WU Q., XIA T., CHEN C., LIN H.-Y. S., WANG H.,
YU Y.: Hierarchical tensor approximation of multi-dimensional
visual data. IEEE Transactions on Visualization and Computer
Graphics 14, 1 (Jan. 2008), 186–199. 15

[WYM08] WANG C., YU H., MA K.-L.: Importance-driven time-
varying data visualization. IEEE Transactions on Visualization
and Computer Graphics 14, 6 (2008), 1547–1554. 8

[WYM10] WANG C., YU H., MA K.-L.: Application-driven
compression for visualizing large-scale time-varying data. IEEE
Computer Graphics and Applications 30, 1 (Feb 2010), 59–69. 7,
8, 12, 13, 14

[XWCH03] XIONG Z., WU X., CHENG S., HUA J.: Lossy-
to-lossless compression of medical volumetric data using three-
dimensional integer wavelet transforms. IEEE Transactions on
Medical Imaging 22, 3 (March 2003), 459–470. 7

[Yan00] YANG C.-K.: Integration of Volume Visualization and
Compression: A Survey. Tech. rep., SUNY SB, 2000. 1

[YGKM08] YOON S., GOBBETTI E., KASIK D., MANOCHA D.:
Real-time Massive Model Rendering, vol. 2 of Synthesis Lectures
on Computer Graphics and Animation. Morgan and Claypool,
August 2008. 2

[YL95] YEO B.-L., LIU B.: Volume rendering of DCT-based
compressed 3D scalar data. IEEE Transactions on Visualization
and Computer Graphics 1, 1 (1995), 29–43. 5, 7, 8, 10, 11

[YNV08] YELA H., NAVAZO I., VAZQUEZ P.: S3dc: A 3dc-
based volume compression algorithm. Computer Graphics Forum
(2008), 95–104. 13, 15

[ZFW12] ZHAO L.-P., FANG M., WEI Y. W.: An efficient com-
pressed volume rendering algorithm based on gpu. Advanced
Materials Research 433 - 440 (2012), 5448–5452. 15

[ZYX∗11] ZHAO L.-P., YUE G., XIAO D.-G., ZHOU X., YU X.,
YU F.: A content-based classified hierarchical vector quantization
algorithm for volume compression. Journal of Software 6, 2
(2011), 322–330. 15

Appendix A: STAR Authors

Marcos Balsa Rodríguez Marie Curie Early Stage Re-
searcher in the Visual Computing group of the CRS4 re-
search center. He holds a MS degree from the Polytechnic
University of Catalonia (UPC) in Spain. His research inter-
ests cover scientific visualization, massive model render-
ing, parallel programming, volume rendering and mobile
programming.

Enrico Gobbetti Director of Visual Computing at the CRS4
research center. His research spans many areas of computer
graphics and is widely published in major journals and con-
ferences. Volume compression, processing, streaming, and
rendering are among his researched topics. Enrico holds
an Engineering degree (1989) and a Ph.D. degree (1993)
in Computer Science from the Swiss Federal Institute of
Technology in Lausanne (EPFL).

José A. Iglesias Guitián Researcher in the Visual Comput-
ing group at the CRS4 research center. Holds a Masters
degree in Computer Science (2006) from University of
A Coruña, Spain, and a PhD degree in Electronics and
Computer Engineering (2011) from University of Cagliari,
Italy. His current research interests are in volume visualiza-
tion, compressed data representations, GPU algorithms. He
recently joined the Graphics and Imaging Lab at the Uni-
versity of Zaragoza as a Marie Curie Postdoc Researcher.

Maxim Makhinya Researcher at the Visualization and Mul-
timedia Lab at the University of Zurich, Switzerland. He
holds a Ph.D. degree (2012) in computer science from the
University of Zurich. His research interests include volume
visualization and parallel data rendering.

Fabio Marton Senior researcher in the Visual Computing
group at the CRS4 research center. He holds a Laurea
(M.Sc.) degree (1999) in Computer Engineering from the
University of Padua, Italy. His current research interests
include out-of-core data processing, multiresolution mod-
eling and time-critical rendering.

Renato Pajarola Head of the Visualization and MultiMedia
Lab and Professor at the Department of Informatics at the
University of Zurich, Switzerland. His research spans a
wide range of topics from interactive 3D computer graphics
and geometry processing to high-performance scientific
visualization. He received a Dipl. Inf-Ing ETH engineering
as well as a Dr. sc.-techn. degree from the Swiss Federal
Institute of Technology (ETH) Zürich in 1994 and 1998
respectively.

Susanne K. Suter A Ph.D. student in computer science at
the Visualization and Multimedia Lab at the University
of Zurich, Switzerland. Her research covers large volume
visualization from compact and compressed datasets, fea-
ture extraction as well as the application of mathematical
frameworks to visualization. She holds a M.Sc. degree
(2005) in computer science from the University of Zurich.

c© The Eurographics Association 2013.

