
Coarse-grained Multiresolution Structures for
Mobile Exploration of Gigantic Surface Models

Marcos Balsa Rodrı́guez
CRS4

Enrico Gobbetti
CRS4∗

Fabio Marton
CRS4

Alex Tinti
CRS4

Figure 1: Top row: Giga-triangle models interactively explored on a iPhone 4 and on “the new iPad” using the Compact Adaptive TetraPuz-
zles (CATP) approach. Bottom row: Parameterized scanned models interactively explored using the Adaptive Quad Patches (AQP) approach
on a Acer Iconia Tab W501 using native OpenGL implementation (two leftmost images) and on a linux laptop using a WebGL/JavaScript
running within Chromium (two rightmost images).

Abstract

We discuss our experience in creating scalable systems for distribut-
ing and rendering gigantic 3D surfaces on web environments and
common handheld devices. Our methods are based on compressed
streamable coarse-grained multiresolution structures. By combin-
ing CPU and GPU compression technology with our multiresolu-
tion data representation, we are able to incrementally transfer, lo-
cally store and render with unprecedented performance extremely
detailed 3D mesh models on WebGL-enabled browsers, as well as
on hardware-constrained mobile devices.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/Network Graphics

Keywords: mobile graphics, LOD, massive models, compression

1 Introduction

With the increasingly widespread diffusion of graphics-enabled
mobile terminals with high-quality screens, mobile 3D graphics is
attracting a lot of attention. In many domains, detailed high density
3D models are an important ingredient of the information flow that
needs to be made available to the public. In cultural heritage, for in-
stance, highly detailed representations are required to reproduce the

∗CRS4 Visual Computing, Italy — www.crs4.it/vic/ —
{name.surname}@crs4.it

unique aura of real objects. Such models, however, are heavy, of-
ten containing billions of color and geometry samples, and must be
experienced in a highly non-linear interactive way. These charac-
teristics impose adaptive streaming and rendering techniques, rea-
sonable compression, and GPU accelerated rendering methods.

Mobile hardware is continuously improving at impressive paces.
Screen resolutions are often extremely large. However, mobile
3D graphics hardware is still constrained compared to the desk-
top counterparts. Major limiting factors are the comparatively low
computing powers, low memory bandwidths, small amounts of
memory, and limited power supply. Streaming and rendering ex-
tremely detailed 3D surface models, thus requires improving state-
of-the-art results in a number of technological areas.

We have recently demonstrated how coarse-grained multiresolution
techniques combined with compression methods provide a solid ba-
sis upon which to create high performance mobile 3D graphics ren-
derers. In this presentation, we illustrate two recently introduced
approaches, Compact Adaptive TetraPuzzles (CATP) [Balsa Ro-
driguez et al. 2013] and Adaptive Quad Patches (AQP) [Gobbetti
et al. 2012], which achieve high performance by exploiting differ-
ent levels of regularity in the multiresolution structure.

These two surface representation approaches share a number of
concepts and are integrated in a common compression, streaming,
and rendering framework. Our results show that current mobile
graphics terminals and/or Web environments are capable with our
methods to support, using nowadays networks, the ubiquitous inter-
active exploration of giga-sample-sized colored 3D models.

2 Related work

Building an efficient system for the exploration of massive 3D
meshes on mobile devices requires the improvement and combina-
tion of state-of-the-art results in a number of technological areas. In



the following, we briefly discuss only the approaches most closely
related to ours. Readers may refer to established surveys on mas-
sive model rendering [Gobbetti et al. 2008], compression [Alliez
and Gotsman 2003; Peng et al. 2005], and mobile graphics [Capin
et al. 2008] for further details.

While many examples exist for rendering light 3D models on
portable platforms (e.g., MeshPad [ISTI-CNR Visual Computing
Lab 2012] for meshes or PCL [Marion 2012] for points), explor-
ing massive models on mobile devices is still a hot research topic.
Much of the work in model distribution has focused so far on com-
pression of mesh structures rather than adaptive view-dependent
streaming. Compressed graphics data potentially enables mobile
application to better utilize the limited storage space and band-
width at all levels of the pipeline. Many mesh compression algo-
rithms offer good performance in compression ratio for both topol-
ogy and vertex attributes. MPEG-4 [Jovanova et al. 2009] is a ref-
erence work in the field, and includes 3D mesh coding (3DMC)
algorithms based on topological surgery algorithm [Taubin and
Rossignac 1998] and progressive forest split [Taubin et al. 1998].

Classic methods for view-dependent LOD and progressive stream-
ing of arbitrary meshes were built on top of fine-grained updates
based on edge collapses or vertex clustering [Xia and Varshney
1996; Hoppe 1997; Luebke and Erikson 1997]. Many compres-
sion and streaming formats for the web have been built upon
them [Maglo et al. 2010; Blume et al. 2011; Niebling et al.
2010]. These methods, however, are CPU-bound and spend a great
deal of rendering time computing a view-dependent triangulation
prior to rendering, making their implementation in a mobile set-
ting particularly challenging. With the increasing raw power of
GPUs, the currently higher-performance methods typically reduce
the per-primitive workload by pre-assembling optimized surface
patches [Cignoni et al. 2004; Yoon et al. 2004; Cignoni et al.
2005; Borgeat et al. 2005; Gobbetti and Marton 2004a; Gobbetti
and Marton 2004b; Goswami et al. 2013], although this kind of ap-
proach has been demonstrated to work on mobile devices until very
recently only in the context of point-based rendering [Balsa Ro-
driguez et al. 2012].

This work illustrates two recently introduced coarse-grained mul-
tiresolution mesh approaches: a general compressed multiresolu-
tion mesh structure based upon tetrahedral space partitioning (Com-
pact Adaptive TetraPuzzles (CATP) [Balsa Rodriguez et al. 2013]),
which improves the Adaptive TetraPuzzles approach [Cignoni et al.
2004] by introducing a compressed GPU-friendly representation
that ensures crack-free surfaces while using local quantization, and
an efficient image-based mesh representation [Gobbetti et al. 2012],
which works for models for which a isometric quad parametrization
exist on a simple domain.

Rather than looking for maximum compression, CATP focuses,
instead, in computing a representation for geometry that reduces
the bandwidth required to transmit it to the graphics subsystem.
Hardware-compatible vertex data compression is typically achieved
in this context by attribute quantization. Since global position quan-
tization [Calver 2002; Purnomo et al. 2005; Lee et al. 2009] pro-
vides poor rate-distortion performance for large meshes, recent ef-
forts have concentrated on local quantization techniques [Lee et al.
2010], which, however, lead to cracks for multiresolution meshes.
In CATP, we improve over these local quantization approaches by
expressing positions of mesh fragment vertices in the barycentric
coordinate system relative to the containing tetrahedron. Hardware-
friendly normal compression is achieved through an octahedral
parametrization of normals [Meyer et al. 2010]. To our knowledge
CATP is the first method fully supporting local quantization in a
general adaptive 3D mesh structure.

The AQP methods employs, instead, a solution that encodes much
of the shape and appearance of a model into a texture. This is
also the goal of geometry images [Gu et al. 2002; Sander et al.
2003]. which enable the powerful GPU rasterization architecture
to process geometry in addition to images, and the networking
component to rely on already existing and optimized libraries for
compression and streaming of images. Geometry images focus on
reparametrizations of meshes onto regular grids, while we focus
on developing a specific multiresolution structure on top of a repa-
rameterized model. Our quad-based parametrization leads in ad-
dition to a tighter texture packing and a simple handling of chart
boundaries. We also adapt semi-uniform adaptive patch tessella-
tion [Dyken et al. 2009] to handle collections of quad patches at dif-
ferent LODs with textured detail. Whereas previous adaptive GPU
mesh refinement approaches are typically used to amplify coarse
geometry, our end-to-end framework is designed to faithfully re-
produce a resampled high-resolution model.

3 Regularity in multiresolution models

Networked massive model renderers have to employ methods for
filtering out as efficiently as possible the data that is not contribut-
ing to a particular image. and to adaptively load and render them,
efficiently using bandwidth and local resources by combining com-
pression and data management methods. A compressed continuous
level-of-detail (LOD) model, i.e., a compact description of multiple
representations of a single shape supporting the extraction of rep-
resentations with varying accuracies in different regions, is the key
element for providing the necessary degrees of freedom to achieve
run-time adaptivity. The basic ingredients of a such a model are a
base mesh, that defines the coarsest approximation to the 3D model
surface, a set of compactly represented updates, that, when incre-
mentally loaded and applied to the base mesh, provide variable
resolution mesh-based representations, and a dependency relation
among updates, which allows combining them to extract consistent
intermediate representations. Different specialized multiresolution
models, of various efficiency and generality, are obtained by mixing
and matching different instances of all these ingredients.

In the most general (and common) case, the multiresolution model
is based on a fully irregular approach in which the base mesh is an
irregular triangulation with unrestricted connectivity, and updates
are encoded as changes to regions of this triangulations. Because of
their flexibility, fully irregular approaches are theoretically capable
of producing the minimum complexity representation for a given
error measure. However, this flexibility comes at a price. In partic-
ular, mesh connectivity, hierarchy, and dependencies must explic-
itly be encoded, and simplification and coarsening operations must
handle arbitrary neighborhoods. By imposing constraints on mesh
connectivity and update operations it is possible to devise classes of
more restricted models that are less costly to store, transmit, render,
and simpler to modify. This is because much of the information
required for all these tasks becomes implicit, and often, because
stricter bounds on the region of influence of each local modifica-
tion can be defined.

In this paper, we illustrate two recently introduced approaches that
achieve performance by introducing some regularity in the repre-
sentation. The first example is the Compact Adaptive TetraPuz-
zles (CATP) method, introduced by Balsa et al. [2013], based on
irregular triangulations but exploiting the regularity of a hierarchi-
cal volumetric space partitioning to construct a compact and seam-
less multiresolution model. The second example, the Adaptive
Quad Patches (AQP) approach introduced by Gobbetti et al. [2012]
adopts, instead, a fully regular approach by parameterizing and re-
sampling the mesh into an image-based structure.



4 CATP: Compact Adaptive TetraPuzzles

The CATP method, introduced by Balsa et al. [2013], builds on
Adaptive TetraPuzzles (ATP) [Cignoni et al. 2004] by using a regu-
lar conformal hierarchy of tetrahedra to spatially partition the input
3D model and to arrange mesh fragments at different resolution in
an implicit diamond graph.

Figure 2: CATP overview A regular conformal hierarchy of tetra-
hedra spatially partitions the input 3D model and arranges mesh
fragments at different resolution in an implicit diamond graph.
Tetrahedra not only partition but also clip the original triangula-
tion, ensuring that each mesh fragment is fully contained within its
bounding tetrahedron. Local quantization with appropriate bound-
ary constraints can thus be used to compress the model. At run-
time, clients maintain an adaptive local graph cut, and rendering
is performed directed on compressed data, which is dequantized in
the vertex shader.

The leaves of the multiresolution structure contain representation of
the full resolution original model, while inner nodes contain simpli-
fied representations of the geometry with approximatively half of
the number of triangles contained into the children. In contrast to
ATP, tetrahedra not only partition but also clip the original triangu-
lation, ensuring that each mesh fragment is fully contained within
its bounding tetrahedron, and that vertices shared with neighbor-
ing fragments always lie on a tetrahedron’s face. The tetrahedral
structure can thus be exploited in a compression scheme by encod-
ing vertex positions with tetrahedral barycentric coordinates, i.e.,
expressing vertex positions as combinations of a tetrahedron’s cor-
ners. These coordinates can be quantized locally for each tetrahe-
dra. Continuity among adjacent tetrahedra is ensured when quan-
tizing positions, by the fact that barycentric coordinates of vertices
lying on tetrahedra faces are expressed as combination of only the
three corners defining that face, which are the same among neigh-
boring tetrahedra in a conformal hierarchy. Such an approach intro-
duces for the first time local quantization in a general adaptive 3D
mesh structure

Quantized vertex coordinates are encoded together with normals
and colors into a compact GPU-friendly 64bit representation suit-
able for direct rendering, where 3 bytes are used for position, 2
bytes for normal and 3 bytes for color. Position is parameterized
with 4 barycentric coordinates, but only 3 components are required
since the four components sum to one. Normals are encoded using
the octahedron normal vector approach [Meyer et al. 2010], which
maps unit vectors to two parametric coordinates. This encoding
consists in projecting the normals onto the octahedron by normaliz-
ing them with the 1-norm. The octahedron is unwrapped to a square
and the [u, v] parameters in the plane are quantized to 8 bits, lead-
ing to sub-degree precision [Meyer et al. 2010]. Decompression
is numerically stable and requires only few basic operations which

can be executed in the vertex shader. The remaining 3 bytes are
used for a RGB representation of colors. This 64bit/vertex encod-
ing provides an extremely compact aligned representation that can
be efficiently accessed on current GPUs, which typically require
vertex data to be aligned on 32 bit boundaries.

For storage and network distribution, further compression is ob-
tained on top of the compact GPU-friendly representation by ex-
ploiting local data coherence using a low-complexity coding ap-
proach based on a wavelet transformation followed by entropy cod-
ing of coefficients (see Balsa et al. [2013] for details).

On a mobile client, an adaptive rendering approach incrementally
updates the representation that best fits the current point of view
and retrieves the required data from a remote server in an incre-
mental fashion. Differently from ATP, where the multiresolution
structure was encoded by six binary trees of disjoint tetrahedra, the
CATP run-time structure is based on diamonds. Each diamond is
composed by the set of all the tetrahedra sharing their longest edge.
Using a diamond based structure, see Weiss and De Floriani [2010],
dependencies are implicitly encoded into the hierarchy, and refine-
ment is interruptible, producing a conforming mesh also when chil-
dren data is not available. This feature perfectly fits in a mobile
rendering architecture, where it is common to experience data fetch
delays due to bandwidth limitations.

The working set is kept to a fixed small size in a GPU friendly
representation by performing entropy decoding at network loading
time and storing data on the mobile device directly in the the com-
pact 64-bit/vertex GPU format suitable for direct rendering through
specific shaders that do the decoding directly in the Vertex Shader.
Since color is already in the RGB24 format, the only extra work that
needs to be performed is the linear transformation of positions from
local barycentric coordinates and the decoding of normals from the
two quantized octahedral map coordinates.

Advantages The method is fully adaptive and able to retain all
the original topological and (within quantization limits) geomet-
rical detail of the original meshes. The method is not limited to
meshes of a particular topological genus or with a particular subdi-
vision connectivity and preserves geometric continuity of variable
resolution representations at no run-time cost. CPU and GPU coop-
erate for decompression, and a shaded rendering of colored meshes
is performed at interactive speed on the GPU directly from an inter-
mediate compact representation that uses only 8bytes/vertex, there-
fore coping with both memory and bandwidth limitations. Keep-
ing data compact up to rendering time is of particular importance
with current mobile devices, with extremely large screen resolu-
tions, which dictate large rendering working sets, but limited main
memory sizes. For instance, the current iPad generation sports a
3Mpixel display, but has a RAM capacity of only 1GB. Moreover,
by decoding compressed data on-the-fly on graphics hardware, we
can not only reduce local memory consumption, but also power
consumption, thanks to reduced memory access and data transmis-
sion through the system bus.

Limitations The regularity of the subdivision structure does not
adapt to geometric complexity. In addition, the mesh simplification
approach repeatedly merges nearby surface points based on error
minimization considerations. The method, thus, perform best for
highly tessellated surfaces that are otherwise relatively smooth and
topologically simple, since it becomes difficult, in other cases, to
derive good “average” merged properties and to generate subdivi-
sion with a reduced amount of boundary vertices/patch.



Device compatibility The method poses minimal constraints on
the hardware, and just requires standard vertex shaders to execute
vertex dequantization. On all tested platforms, we achieved maxi-
mum performance when data is stored in an interleaved array of 8
bytes per vertex.

Implementation and results Using a Core i7 GPU, input mod-
els from the Digital Michelangelo Repository are processed at about
24k triangles/s, achieving a data compression rate between 40 and
50 bits/vertex (including topology and entropy quantization). Ren-
dering is performed directly on the compact vertex array, with on-
the-fly GPU decoding from the 64bits/vertex data representation.
We have implemented the method both on Android and iOS de-
vices. On a 3rd generation iPad we are able to sustain an average
throughput of 30 Mtriangles/second, while on a low-end iPhone 4
the throughput is 2.8 Mtriangles/second. High-detail interactive ex-
ploration is achieved in both cases (with average frame rates rang-
ing from 10 to 30 fps), since the lower performance of the iPhone4
is balanced by the much reduced screen resolution. We have mea-
sured performance with a wireless connection of a Linksys WAP
200 802.11 b/g access point 54 Mbps, as well as with UMTS/HSPA
connections. The wireless network was shared among many clients,
and we measured its peak performance to be 17 Mbps. Applications
performs data fetching asynchronously in a separate thread to avoid
delaying interactive rendering, and have a peak network bandwidth
usage of about 4.8Mbps for an iPad connected to the wireless net-
work and 3.3Mbps for the UMTS/HSPA connection. iPhone per-
formance is about 1.5x slower, due to the lower CPU performance,
which leads to increased decoding time. This peak network utiliza-
tion occurs only upon startup or at abrupt image changes. In any
case, interactive performance is guaranteed even for current broad-
band networks. More detailed results are available in the original
paper [Balsa Rodriguez et al. 2013].

5 AQP: Adaptive Quad Patches

AQP [Gobbetti et al. 2012] introduces a remote rendering approach
based in which a large class of textured geometric models are con-
verted into a fully regular compact multiresolution image-based
representations suitable for storage, distribution, and real-time ren-
dering on modern commodity/web platforms. The approach can be
seen as step aiming at bridging the gap that currently exists from
general-purpose meshes to rendering oriented structures based on
real-time tessellation with normal/bump maps, which are typical of
modern gaming platform but currently require considerable human
effort to create.

The pipeline takes as input a dense point sampling of the origi-
nal model. This kind of sampled representation can be created
from a large variety of models - point clouds, meshes, or para-
metric objects. A two-manifold triangular mesh is first fit to the
point cloud using a surface reconstruction and topology cleaning
step, and the resulting two-manifold mesh is parameterized. Re-
construction and topological filtering are achieved through Pois-
son reconstruction [Kazhdan et al. 2006], while parameterization
on a simple quad-based domain is achieved by first constructing an
almost isometric triangle mesh parameterization through abstract
domains [Pietroni et al. 2010], which maps the original mesh to
a simplified parametrization domain made of equilateral triangles,
and then converting the result domain triangulation into a collec-
tion of 2D square regions by adding a vertex in the barycenter of
each triangle and building a quad for each edge. The final param-
eterization domain D thus consists in a small collection of almost
isometric square patches. Since each of these patches can be sam-
pled on a grid with lines parallel to its sides, storing 3D positions,
normals and colors of the associated point on the mesh in a N ×N

Figure 3: AQP overview Input models are transformed into two-
manifold meshes whose parametrization domain is a small collec-
tion of 2D square regions, encoded into a very compact multireso-
lution structures composed of variable resolution quad patches. At
run-time, we adaptively stream and store geometry and color in a
tightly packed mipmapped texture atlas. Seamless variable resolu-
tion shape representations are rendered using a GPU-accelerated
adaptive tessellation algorithm with negligible CPU overhead.

square patch, the overall shape representation consists of M square
patches of N ×N samples. This regular structure is then encoded
into a compact multiresolution structure composed of variable res-
olution quad patches assembled in 2D images. Geometry and color
are stored in a tightly packed multiresolution texture atlas, which
can be streamed over the network for generating variable resolution
shape representations using a GPU-accelerated adaptive tessella-
tion algorithm. On the client side, the texture atlas is stored as a
texture MipMap. Seamless surface rendering is substantially per-
formed by the GPU through a vertex/fragment shader pair, leaving
to the CPU only the tasks of selecting the proper level of details for
each patch, and of querying missing data from a server. To produce
a continuous representation patches must match perfectly along the
edges, so they must have the same level of resolution for each edge.
The patch LOD evaluation thus first computes the desired LOD for
each edge of the quad by projecting it to the screen and compar-
ing it with the desired screen tolerance. Then, each quad patch
LOD is set to the maximum (finest) of the 4 edge LODs. We then
adapt semi-uniform adaptive patch tessellation [Dyken et al. 2009]
to draw quad patches with textured detail with constant resolution at
the interior and edge stitching on the boundary. This is achieved by
rendering patch templates, and fetching geometry and color details
using texture fetches.

The resulting rendering subsystem has negligible CPU overhead
and is heavily built on top of consolidated 2D image representa-
tions. It can thus be efficiently implemented both on conventional
commodity platforms and on the newly emerging scripting plat-
forms for the web. In contrast to AQP, all the encoding/decoding
of data can be done using standard image libraries, a major advan-
tage in scripting environments.

Advantages The AQP pipeline is fully automatic and targets
densely tessellated models, such as those created by 3D scanning
or modeling systems such as ZBrush. The simplicity of a regu-
larly remeshed representation has many benefits. In particular, it
reduces random memory accesses and eliminates the indirection
and storage of per triangle vertex indices and per vertex texture co-
ordinates. The resulting representation is compact, can be built on
top of existing image representations, and is very well suited to
streaming. Due to the negligible run-time CPU overhead, real-time
performance is achieved both on conventional GPU platforms us-



ing OpenGL, and on the emerging web-based environments based
on WebGL. Promising applications of the technology range, thus,
from the automatic creation of rapidly renderable objects for local
and online games to the set-up of browsable 3D models repositories
in the web.

Limitations AQP not general purpose, but targets only restricted
classes of meshes defining closed objects with large components
(i.e., typical solid objects without fine topological detailssuch as
small handles). As for other compressed streamable formats, the
method does not strive to exactly replicate the original geometry
and color, but only to visually approximate them in a faithful way.
As a result, and similarly to compressed video/image formats, the
representation is lossy, and thus not applicable in situations where
precise measures of the original geometry are required (e.g., CAD
systems). Moreover, an efficient full-GPU implementation of the
method requires vertex texture fetch (VTF) capabilities, which are
currently only available on selected mobile platforms.

Device compatibility considerations There are a variety of
GPU chipsets from different vendors present in current mobile
devices. From those, the most extended ones include the Pow-
erVR SGX 5xx GPUs present in Apple devices and many Android
phones, and the Qualcomm Adreno family integrated in Android
HTC devices and many of the latest high-end Android devices. The
hardware present in those two GPU families fully support OpenGL
ES 2.0 and, in their latest versions, OpenGL ES 3.0. Unfortunately,
while on Android devices the drivers typically expose VTF capa-
bilities,the drivers from iOS 4.x and on does not. Rendering this
feature unavailable in iPhone/iPad/iPod devices. The latest T6xx
version of the ARM Mali GPU, integrated in the Nexus 10, also in-
cludes support for VTF. A number of tablet devices, in addition, use
chipsets with discrete or integrated GPUs originally designed for
netbooks, which fully support VTFs. An example are chips from
the AMD Radeon HD series used in a number of Windows-based
tablets.

Implementation and results The methods has been imple-
mented for both mobile clients using native codes and web-based
environments, using JavaScript and OpenGL. In order to guarantee
full compatibility among platforms and minimum decoding over-
head, we have used plain PNG encoding for storage and transport
of quad patches, achieving a compression rate of about 24bps for
colored models. At the expense of portability, higher compression
rates can be achieved with formats such as DXT1 and DXT5. Ren-
dering performance has been evaluated both for in-browser render-
ing (desktop machine) using WebGL and mobile rendering using
native implementation. Using a Chromium browser, on a 1.6 GHz
laptop equipped with an NVidia Geforce GTX 260M with 1 GB
video memory, we achieve a throughput of of 34.2MTri/s, for an
average frame-rate of 37fps for a 750x350 in-browser window and
a tolerance of 1 pixel. Coming to mobile platforms, on a Acer Ico-
nia Tab W501, with a AMD Radeon HD 6290 graphics adapter
with 384MB DDR3, we achieve a peak throughput of 27.5MTri/s
using the native C++/OpenGL implementation, which is perfectly
adequate to guarantee real-time performance. The combination
of incremental multiresolution refinement with compression also
reduces network bandwidth, which was measured to range from
312Kbps for exploration of areas not previously seen, and peaks
of 2.8Mbps at viewpoint discontinuities. Interactive mobile appli-
cations are thus possible both for wireless connections to typical
ADSL lines, and for current mobile broadband network such as
UMTS/HSPA. More detailed results, with a focus on the WebGL
implementation, are available in the original paper [Gobbetti et al.
2012].

6 Conclusions

We have briefly illustrated our experience in creating scalable
systems for distributing and rendering gigantic 3D surfaces on
common handheld devices. Our methods are based on com-
pressed streamable coarse-grained regular or irregular multireso-
lution structures. By exploiting structure regularity, and combining
CPU and GPU compression technology with our multiresolution
data representation, we are able to incrementally transfer, locally
store and render with unprecedented performance extremely de-
tailed 3D mesh models on WebGL-enabled browsers, as well as
on selected hardware-constrained mobile devices.

Both presented techniques exploit GPU hardware to render directly
from compressed data. This compression-domain rendering ap-
proach is promising, but the currently limited feature sets of mo-
bile GPUs (e.g., lack of tessellation units or low performance in
texture fetches), severely limits the kind of approaches that can be
implemented. However, the current hardware trend is to deploy
architectures that finally bring feature/API parity to PCs, next-gen
consoles, and smartphones. For instance, the announced Tegra4
GPU (NVIDIA Logan architecture) is announced to support Di-
rectX11, OpenGL 4.4, OpenGL ES 3.0, hardware tessellation, and
CUDA 5. This convergence promises to foster a new generation of
mobile graphics applications in which complex scenes are rendered
directly from compact GPU-friendly models without prior decom-
pression.

Acknowledgments. This work is partially supported by the EU FP7 Pro-
gram under the DIVA project (REA Agreement 290277). We also acknowl-
edge the contribution of Sardinian Regional Authorities. We thank Fabio
Ganovelli and Marco Di Benedetto from ISTI-CNR for their important con-
tribution in the implementation of the AQP approach. Models are courtesy
of Stanford University, the Digital Michelangelo Project, and ISTI-CNR.

References

ALLIEZ, P., AND GOTSMAN, C. 2003. Recent advances in com-
pression of 3D meshes. In Advances in Multiresolution for Geo-
metric Modelling, Springer-Verlag, 3–26.

BALSA RODRIGUEZ, M., GOBBETTI, E., MARTON, F., PINTUS,
R., PINTORE, G., AND TINTI, A. 2012. Interactive exploration
of gigantic point clouds on mobile devices. In The 14th Interna-
tional Symposium on Virtual Reality, Archaeology and Cultural
Heritage, 57–64.

BALSA RODRIGUEZ, M., GOBBETTI, E., MARTON, F., AND
TINTI, A. 2013. Compression-domain seamless multiresolu-
tion visualization of gigantic meshes on mobile devices. In Proc.
ACM Web3D, 99–107.

BLUME, A., CHUN, W., KOGAN, D., KOKKEVIS, V., WEBER,
N., PETTERSON, R., AND ZEIGER, R. 2011. Google Body: 3D
human anatomy in the browser. In ACM SIGGRAPH 2011 Talks,
19:1.

BORGEAT, L., GODIN, G., BLAIS, F., MASSICOTTE, P., AND
LAHANIER, C. 2005. GoLD: interactive display of huge colored
and textured models. ACM Trans. Graph. 24, 3, 869–877.

CALVER, D. 2002. Vertex decompression in a shader. ShaderX:
Vertex and Pixel Shader Tips and Tricks, 172–187.

CAPIN, T., PULLI, K., AND AKENINE-MOLLER, T. 2008. The
state of the art in mobile graphics research. IEEE Computer
Graphics and Applications 28, 4, 74–84.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F.,
PONCHIO, F., AND SCOPIGNO, R. 2004. Adaptive TetraPuzzles



– efficient out-of-core construction and visualization of gigantic
polygonal models. ACM Trans. Graph. 23, 3, 796–803.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F.,
PONCHIO, F., AND SCOPIGNO, R. 2005. Batched multi tri-
angulation. In Proc. IEEE Visualization, 207–214.

DYKEN, C., REIMERS, M., AND SELAND, J. 2009. Semi-uniform
adaptive patch tessellation. Computer Graphics Forum 28, 8,
255–263.

GOBBETTI, E., AND MARTON, F. 2004. Layered point clouds. In
Proc. Eurographics Symposium on Point Based Graphics, 113–
120,227.

GOBBETTI, E., AND MARTON, F. 2004. Layered point clouds: A
simple and efficient multiresolution structure for distributing and
rendering gigantic point-sampled models. Computers & Graph-
ics 28, 1, 815–826.

GOBBETTI, E., KASIK, D., AND YOON, S.-E. 2008. Technical
strategies for massive model visualization. In Proc. ACM SPM,
405–415.

GOBBETTI, E., MARTON, F., BALSA RODRIGUEZ, M., GANOV-
ELLI, F., AND DI BENEDETTO, M. 2012. Adaptive Quad
Patches: an adaptive regular structure for web distribution and
adaptive rendering of 3D models. In Proc. ACM Web3D, 9–16.

GOSWAMI, P., EROL, F., MUKHI, R., PAJAROLA, R., AND GOB-
BETTI, E. 2013. An efficient multi-resolution framework for
high quality interactive rendering of massive point clouds using
multi-way kd-trees. The Visual Computer 29, 1, 69–83.

GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry im-
ages. ACM Trans. Graph. 21, 3, 355–361.

HOPPE, H. 1997. View-dependent refinement of progressive
meshes. In Proc. ACM SIGGRAPH, 189–198.

ISTI-CNR VISUAL COMPUTING LAB, 2012. MeshLab for iOS:
A powerful easy-to-use 3D mesh viewer for iPad and iPhone.
www.meshpad.org.

JOVANOVA, B., PREDA, M., AND PRETEUX, F. 2009. MPEG-4
Part 25: A graphics compression framework for xml-based scene
graph formats. Image Commun. 24, 1-2, 101–114.

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson
surface reconstruction. In Proc. SGP, 61–70.

LEE, H., LAVOUÉ, G., AND DUPONT, F. 2009. Adaptive coarse-
to-fine quantization for optimizing rate-distortion of progressive
mesh compression. In Proc. VMV, 73–82.

LEE, J., CHOE, S., AND LEE, S. 2010. Compression of 3D mesh
geometry and vertex attributes for mobile graphics. Journal of
Computing Science and Engineering 4, 3, 207–224.

LUEBKE, D., AND ERIKSON, C. 1997. View-dependent simplifi-
cation of arbitrary polygonal environments. In Proc. ACM SIG-
GRAPH, 199–208.

MAGLO, A., LEE, H., LAVOUÉ, G., MOUTON, C., HUDELOT,
C., AND DUPONT, F. 2010. Remote scientific visualization of
progressive 3D meshes with X3D. In Proc. ACM Web3D, 109–
116.

MARION, P., 2012. Point cloud streaming to mobile devices with
real-time visualization. www.pointclouds.org.

MEYER, Q., SUESSMUTH, J., SUSSNER, G., STAMMINGER, M.,
AND GREINER, G. 2010. On floating-point normal vectors.
Computer Graphics Forum 29, 4, 1405–1409.

NIEBLING, F., KOPECKI, A., AND BECKER, M. 2010. Collab-
orative steering and post-processing of simulations on hpc re-
sources: Everyone, anytime, anywhere. In Proc. ACM Web3D,
101–108.

PENG, J., KIM, C.-S., AND JAY KUO, C. C. 2005. Technolo-
gies for 3D mesh compression: A survey. J. Vis. Comun. Image
Represent. 16, 6, 688–733.

PIETRONI, N., TARINI, M., AND CIGNONI, P. 2010. Almost iso-
metric mesh parameterization through abstract domains. IEEE
Transactions on Visualization and Computer Graphics 16, 4,
621–635.

PURNOMO, B., BILODEAU, J., COHEN, J. D., AND KUMAR, S.
2005. Hardware-compatible vertex compression using quanti-
zation and simplification. In Proc. ACM Graphics Hardware,
53–61.

SANDER, P. V., WOOD, Z. J., GORTLER, S. J., SNYDER, J., AND
HOPPE, H. 2003. Multi-chart geometry images. In Proc. SGP,
146–155.

TAUBIN, G., AND ROSSIGNAC, J. 1998. Geometric compression
through topological surgery. ACM Trans. Graph. 17, 2, 84–115.

TAUBIN, G., GUÉZIEC, A., HORN, W., AND LAZARUS, F. 1998.
Progressive forest split compression. In Proc. ACM SIGGRAPH,
123–132.

WEISS, K., AND DE FLORIANI, L. 2010. Simplex and diamond
hierarchies: Models and applications. In Eurographics 2010 -
State of the Art Reports, 113–136.

XIA, J., AND VARSHNEY, A. 1996. Dynamic view-dependent
simplification for polygonal models. In Proc. IEEE Visualiza-
tion, 327–334.

YOON, S.-E., SALOMON, B., GAYLE, R., AND MANOCHA, D.
2004. Quick-vdr: Interactive view-dependent rendering of mas-
sive models. In Proc. IEEE Visualization, 131–138.


