
The Visual Computer Preprint
February 2012

An Efficient Multi-resolution Framework for High Quality
Interactive Rendering of Massive Point Clouds using Multi-way
kd-Trees

Prashant Goswami · Fatih Erol · Rahul Mukhi · Renato Pajarola ·
Enrico Gobbetti

Abstract We present an efficient technique for out-

of-core multi-resolution construction and high quality

interactive visualization of massive point clouds. Our

approach introduces a novel hierarchical level of detail

(LOD) organization based on multi-way kd-trees,

which simplifies memory management and allows con-

trol over the LOD-tree height. The LOD tree, con-

structed bottom up using a fast high-quality point sim-

plification method, is fully balanced and contains all

uniformly sized nodes. To this end, we introduce and

analyze three efficient point simplification approaches

that yield a desired number of high-quality output points.

For constant rendering performance, we propose an effi-

cient rendering-on-a-budget method with asynchronous

data loading, which delivers fully continuous high qual-

ity rendering through LOD geo-morphing and deferred

blending. Our algorithm is incorporated in a full end-to-

end rendering system, which supports both local ren-

dering and cluster-parallel distributed rendering. The

method is evaluated on complex models made of hun-

dreds of millions of point samples.

Keywords Point-based rendering · level-of-detail ·
multi-way kd-tree · entropy-based reduction · k-

clustering · parallel rendering · geo-morphing

1 Introduction

Modern 3D scanning systems can generate massive datasets,

which easily exceed 100s of millions of points. Visualiz-

P. Goswami, F. Erol, R. Pajarola
Visualization and MultiMedia Lab, University of Zurich
E-mail: {goswami, erol}@ifi.uzh.ch, pajarola@acm.org

E. Gobbetti
CRS4, Italy
E-mail: gobbetti@crs4.it

ing such massive models is best addressed using level-

of-detail (LOD), asynchronous out-of-core data

fetching and parallel rendering techniques. However,

since modern GPUs sustain very high primitive ren-

dering rates, a slow CPU-based data fetching and LOD

selection process can easily lead to starvation of the

graphics pipeline. Hence the CPU-GPU bottleneck be-

comes the prominent challenge to be addressed as a

whole, from the choice of data structures used for pre-

processing and rendering the models, to the design of

the display algorithm. In recent years, this considera-

tion has led to the emergence of a number of coarse-

grained multi-resolution approaches based on a hierar-

chical partitioning of the model data into parts made of

100s to 1000s of primitives. These methods successfully

amortize data structure traversal overhead over render-

ing cost of large numbers of primitives, and effectively

exploit on-board caching and object based rendering

APIs.

Direct point-based rendering (PBR) is gradually

emerging in industrial environments as a viable alter-

native to the more traditional polygonal mesh methods

for interactively inspecting very large geometric models.

Points as rendering primitives are often a more efficient

means for initial data processing and visual analysis of

large raw 3D data. Furthermore, PBR is also advanta-

geous compared to triangles especially in regions where

a triangle might project to a pixel or less on the screen.

Points also constitute a more compact representation

as the mesh connectivity of triangles is not required.

More benefits arise due to the simplicity of preprocess-

ing algorithms.

In this paper, we further improve the state-of-the-

art in PBR with a novel end-to-end system for out-of-

core multi-resolution construction and high quality par-

allel visualization of large point datasets. The proposed

approach features fast preprocessing and high quality

2 Prashant Goswami et al.

rendering of massive point clouds at hundreds of mil-

lions of point splats per second on modern GPUs, im-

proving the quality vs. performance ratio compared to

previous large point data rendering methods. We ex-

ploit the properties of multi-way kd-trees to make ren-

dering more GPU oriented which includes a fast high

quality LOD construction and a LOD tree with uni-

formly sized nodes which can efficiently be stored in the

GPU’s Vertex Buffer Objects (VBOs) or using OpenGL

bindless graphics extensions.

Some basic features of our framework were presented

in a preliminary short paper [1]. We here provide a

more thorough exposition, but also present a number of

significant extensions. In particular, we generalize our

balanced LOD construction technique to support dif-

ferent data reduction strategies, and introduce twonovel

strategies, namely Entropy-Based Reduction and k-Clustering.

These strategies, together with the original Normal De-

viation Clustering, are comparatively analyzed with re-

spect to a standard iterative point collapse method [17].

We also introduce in our tree the ability to blend rep-

resentations among levels using a Geo-morphing tech-

nique, guaranteeing for the first time smooth-transitions

in an adaptive coarse-grained point-based renderer. In

addition, we present how our rendering approach can

be integrated in a cluster-parallel adaptive LOD point

rendering framework, and discuss additional qualitative

and quantitative results. Finally, we have attempted to

further clarify our data structures and the steps in our

algorithms to facilitate implementation and to make the

transfer between abstract concepts and actual code as

straightforward as possible.

2 Related Work

While the use of points as rendering primitives has been

introduced very early [2,3], only over the last decade

they have reached the significance of fully established

geometry and graphics primitives [4–6]. Many techniques

have since been proposed for improving upon the dis-

play quality, LOD rendering, as well as for efficient out-

of-core rendering of large point models. We concentrate

here on discussing only the approaches most closely re-

lated to ours. For more details, we refer the reader to

the survey literature [6–8].

QSplat [9] has for long been the reference system

for large point rendering. It is based on a hierarchy of

bounding spheres maintained out-of-core, that is tra-

versed at run-time to generate points. This algorithm

is CPU bound, because all the computations are made

per point, and CPU/GPU communication requires a di-

rect rendering interface, thus the graphic board is never

exploited at its maximum performance. A number of

authors have also proposed various ways to push the

rendering performance limits, mostly through coarse

grained structures and efficient usage of retained mode

rendering interfaces.

Grottel et al. [10] recently presented an approach for

rendering of Molecular Dynamics datasets represented

by point glyphs, which also includes occlusion culling

and deferred splatting and shading. The method uses a

regular grid rather than a hierarchical data decomposi-

tion, and has thus limited adaptivity. Sequential Point

Trees [11] introduced a sequential adaptive high per-

formance GPU oriented structure for points limited to

models that can fit on the graphics board. XSplat [12]

and Instant points [13] extend this approach for out-

of-core rendering. XSplat is limited in LOD adaptivity

due to its sequential block building constraints, while

Instant points mostly focuses on rapid moderate quality

rendering of raw point clouds. Both systems suffer from

a non-trivial implementation complexity. Layered point

clouds (LPC) [14] and Wand et al.’s out-of core ren-

derer [15] are prominent examples of high performance

GPU rendering systems based on hierarchical model de-

compositions into large sized blocks maintained out-of-

core. LPC is based on adaptive BSP subdivision, and

subsamples the point distribution at each level. In or-

der to refine an LOD, it adds points from the next level

at runtime. This composition model and the pure sub-

sampling approach limits the applicability to uniformly

sampled models and produces moderate quality simpli-

fication at coarse LODs. In Bettio et al.’s approach [16]

these limitations are removed by making all BSP nodes

self-contained and using an iterative edge collapse sim-

plification to produce node representations. We propose

here a faster high quality simplification method based

on adaptive clustering. Wand et al.’s approach [15] is

based on an out-of-core octree of grids, and deals pri-

marily with grid based hierarchy generation and edit-

ing of the point cloud. The limitation is in the qual-

ity of lower resolutions created by the grid no matter

how fine it is. All these previous block-based methods

produce variable sized point clouds allocated to each

node. None of them support fully continuous blending

between nodes, potentially leading to popping artifacts.

All the mentioned pipelines for massive model ren-

dering create coarser LOD nodes through a simplifi-

cation process. Some systems, e.g., [14,15], are inher-

ently forced to use fast but low-quality methods based

on pure subsampling or grid-based clustering. Others,

e.g., [12,16], can use higher quality simplification meth-

ods, as those proposed by Pauly et al. [17]. In this

context, we propose three fast, high quality techniques

which produce targeted number of output points and

improve upon the state-of-art in this context, for exam-

Title Suppressed Due to Excessive Length 3

ple [17]. All the proposed methods produce high qual-

ity simplifications on non-uniform point clouds and are

able to rapidly generate the information required to

implement geo-morphing. Moreover, our preprocessor

does not require prior information like connectivity or

sampling rate from the input data points.

Our framework supports cluster-parallel distributed

rendering on a graphics cluster through the integration

with a parallel graphics library. Among various parallel

rendering framework options, like VR Juggler [18] and

Chromium [19], we have chosen Equalizer [20] for its

configuration and task distribution flexibility and ex-

tensibility features to port our point renderer to run on

a cluster driving multiple displays. Many works (e.g.,

[21,22]) leverage the parallel power of multiple machines

to achieve speed-up or for large wall based displays us-

ing triangular primitives. Similar solutions (e.g., [23,

25]) have been introduced for parallel point-based ren-

dering of moderately sized models. None of these works,

however, compare points as parallel rendering primi-

tives on large wall displays with triangles for very large

models. Our paper further provides an initial evalua-

tion of parallel rendering in the context of point-based

graphics in comparison to triangles, both on perfor-

mance and quality level.

3 Multi-resolution Data Structure

3.1 The Multi-way kd-Tree (MWKT)

The concept of multi-way kd-trees (MWKT) for out-of-

core rendering of massive point datasets was introduced

in [1], see also Figure 1. The benefits of a MWKT over

conventional data structures can be summarized as fol-

lows:

1. A MWKT is symmetric like an octree or kd-tree.

2. A MWKT divides data equally among all nodes sim-

ilar to kd-trees.

3. A MWKT is flexible, given the number of points in

the model n, a fan-out factor N can be chosen for

leaf nodes to have approximately s ≈ n/N number

of elements which can be a target VBO size.

4. Since the fan-out factor and number of internal nodes

can directly be controlled in a MWKT, one has more

choices for LOD adaptivity. Leaves of a MWKT con-

tain the original model points and the LOD is con-

structed bottom-up for internal nodes.

5. A MWKT can be kept and managed in an array

just like a kd-tree.

Additionally, MWKTs are in fact easy to implement

and offer equally sized nodes that are easy to handle

caching units.

r2

r1

r5r4r3

B DA C F HE G J LI K N PM O

r2 r3 r4 r5

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

r1

Fig. 1 Multi-way kd-tree (MWKT) example for N = 4. Each
of the leaf regions contains nearly the same number of points.

3.2 MWKT Construction

The procedure to construct a MWKT is outlined in

Algorithm 1 below. In a fully balanced tree, n
s is a power

of N and thus N can be chosen such that log n
s / logN

is as close as possible to an integral value. In that case,

the number of points in the leaf nodes will consequently

be as close as possible to the target VBO size s.

Algorithm 1 MWKdTree(node)

1: if (number of points in node ≤ s) then
2: return
3: end if

4: Determine the longest axis of node
5: if (an ancestor sorted along same axis exists) then
6: Get sorted data from ancestor
7: else
8: Sort data of node
9: end if

10: Split the node data into N child nodes Nci
11: for all (children i ≤ N) do
12: MWKdTree(Nci)
13: Get reduced LOD points from child node by calling

Representatives(Nci)
14: end for

In the tree construction procedure, we exploit delay-

ing the sorting wherein we first check if an ancestor was

sorted along the desired axis. This can be implemented

by retrieving sorted lists from ancestors as indicated

in Figure 2. If an ancestor in the MWKT has already

sorted the points along the desired axis, the order is

carried over to the new node, otherwise the points are

sorted locally. However, if the size of desired sorted seg-

4 Prashant Goswami et al.

z

x

z

y

x

level 0

level 1

level 2

level 3

level 4

Fig. 2 Delayed sorting during node construction.

ment is much smaller than that of the sorted ancestor,

we perform a new local sort on that segment in the

current node.

3.3 Hierarchical Multi-resolution Construction

The basic space subdivision strategy ensures that each

leaf node in a MWKT stores close to s points. How-

ever, in order to maintain the equally sized uniform

caching units, we also need to ensure that Representa-

tives() in Algorithm 1 returns s representative points

for every child node Nci. In this section, we provide

a brief review of the earlier proposed work followed by

two new methods of multi-resolution hierarchy creation:

entropy-based reduction and k-clustering. Given an ini-

tial set of points, all these methods can provide a sim-

plification that yields a desired number of target points

k. The aim of all presented approaches is to generate k

best clusters through global simplification of the input

dataset. All of the proposed methods use a virtual K3-

grid to support fast spatial search and data access, i.e.

to obtain an initial neighborhood set, but this can be

replaced by other spatial indexing methods. The neigh-

borhood set of a point can be defined either by a k-

nearest neighbor set or as being within a spatial range

d < r1+r2 where d is the distance between point centers

and r1, r2 the point splat radii. We focus on the latter

in our algorithms. Any of the three presented methods

can be employed to implement Representatives() in

Algorithm 1. In Section 6, we provide a comparative

analysis between these methods together with an iter-

ative point collapse method as suggested in [17].

3.3.1 Normal Deviation Clustering

Point simplification is achieved by clustering points in

every cell of theK3-grid within each MWKT node. This

is achieved as follows: All points within a grid cell ini-

tially form separate clusters and each such cluster is

Fig. 3 Normal deviation clustering. Points (shown by green
arrows in their unit normal spheres) within a grid cell are
clustered according to their normal deviation.

pushed into a priority queue Q which is ordered by an

error metric. The error metric itself could be chosen to

be the number of points in the cluster. It should be

noted that once initial clusters are obtained, we oper-

ate only over Q and the grid structure can be dropped.

Thereafter, in each iteration, the top cluster of Q is

popped and points within it, which satisfy the normal

deviation limit are merged. This is exemplified in Fig-

ure 3 where a K3 grid is established in the multi-way

kd-tree node. All points falling in a grid cell, for exam-

ple A, constitute one cluster. These clusters are added

to a priority queue Q. At each iteration, cluster from

the top of Q is popped. In the shown example, grid

cell B will be popped before A. Points within it that

respect the maximum normal deviation threshold are

combined. Whereas cells like B would produce multiple

points, others with less normal deviation (like A) would

generate a single point. Grouping of points within a

cluster is done using θ (Figure 3) which is compared

with a global threshold. As shown in the figure, after

merging points, the resultant clusters are pushed again

in Q with updated maximum normal angle deviation in

the cluster. This is repeated until a convergence is ob-

tained in terms of required number of points. As shown,

this leads to better quality and simplification as com-

pared to simple averaging of all points within one grid

cell as in [15]. For a more detailed description of this

method, we refer the reader to [1].

3.3.2 Entropy-Based Reduction

This technique aims to create k points using entropy

as an error metric, given by Equation 1. Here Entropyi
refers to the entropy of the i-th point which is calcu-

lated using θij , which is the normal angle deviation of

the i-th point to its j-th neighbor, and leveli, which

indicates the number of times the i-th point has been

merged. We call this Entropyi as it represents to some

Title Suppressed Due to Excessive Length 5

sorts the amount of entropy induced into the system

by combining a point with its neighbors and hence the

summation in Equation 1. In this approach, in each it-

eration we pick up a point, which when merged with

its neighbors introduces the minimum entropy to the

system. The more often a point is merged, the higher

is its level leveli and hence its entropy. On the other

hand, the lower the normal angle deviation θij is with

its neighbors, the smaller the entropy. Neighbors are

computed once in the beginning for all points. There-

after, each time a point p is merged with another point

q , the neighborhood set of the new point is obtained

by taking the union of the old neighbors of p ∪ q.

Entropyi =
∑
j

1 + leveli
1 + cos θij

(1)

Algorithm 2 Entropy-Based Reduction.
Require: S, the input point set
1: Initialize min priority queue Q on entropy
2: Initialize c = |S|
3: Mark all points valid
4: Set level of all points to 0

5: Compute neighbors for each point
6: Compute entropy for all points using Equation 1 and

push them into Q

7: while (c > k and Q is not empty) do
8: p = Pop Q
9: if (p.valid) then

10: – Create p′

11: – p′.level = p.level + 1
12: – Compute position, normal and radius of p′ using

p and its valid neighbors
13: – Mark all neighbors of p as invalid
14: – Assign valid neighbors of neighbors of p to p′

15: – Compute the entropy of p′ together with its neigh-
bors

16: – Push p′ to Q
17: – Decrement c for each point newly marked invalid
18: end if
19: end while

20: Output: Valid points in Q

The basic steps of the entropy-based reduction are

outlined in Algorithm 2. The algorithm begins by ini-

tializing all points by finding their neighbors and com-

puting their entropy using Equation 1. All points are

marked valid and their level is initialized to 0. A global

minimum priority queue Q is prioritized on the entropy

values and all points are pushed into it. Thereafter, the

top point from Q is popped and merged with its neigh-

bors to create a new point. This necessitates computa-

tion of position, normal and the radius of a new point

p′, obtained by merging point p with its neighbors (line

11). The radius of the new point p′ is such that it cov-

ers all the merged neighbors. All merged neighbors are

marked invalid and the entropy is recomputed for the

newly created point p′ before adding it back to Q (lines

7-18). This procedure is repeated until k points are ob-

tained or Q is empty. The final set of points is obtained

by emptying Q in the end (line 19).

3.3.3 k-Clustering

Standard k-clustering is the natural choice that comes

up in one’s mind when k clusters are desired. The ba-

sic method is derived from k-means clustering [27] that

aims to partition n observations into k clusters such

that each observation is grouped with the cluster having

closest mean. For this, the observations are repeatedly

moved among the clusters until an equilibrium is at-

tained. The complexity of solving the original k-means

clustering problem is NP-hard [28]. For our purpose,

we need a simpler formulation of k-means clustering to

obtain k points from the given set S, which are good

enough representatives of their cluster such that the re-

maining |S| − k points can be grouped into one of the

chosen k points.

The choice of k clusters (set M in Algorithm 3) is

crucial to obtain high quality aggregate clusters. How-

ever, to obtain an initial crude guess for the k seed

points, we use the hashing method proposed in [24]

which is based on a separation of the point data into

non self-overlapping minimal independent groups. The

basic motivation behind their approach is that if a point

set is sufficiently split into multiple groups, overlapping

splats can be reduced. Overlap between splats can be

determined using overlap length, area or even volume

between two or more splats. We divide the original set

S of splats into 8 groups using the fast online hash al-

gorithm which gives us the initial estimate of the set

M. At this point, M is not overlap free and hence is re-

fined further such that no two points have an overlap.

One could employ either the offline or online algorithm

as suggested in [24]. Furthermore, one can choose to

divide into more or less than 8 groups without loss of

generality. The basic idea here is to choose the points

in one of the 8 groups (M) as an initial set to gen-

erate our k clusters. To this end, we add or remove

points in M such that the model is adequately sam-

pled with minimal overlap and complex regions having

higher sampling density.

The basic steps followed to obtain k clusters are

given in Algorithm 3. Following division of input points

into 8 groups using the hashing method proposed in [24],

the group with maximum number of splats is picked

(line 2, 3) which constitutes the initial M, see also Fig-

6 Prashant Goswami et al.

(a) (b) (c)

Fig. 4 k-Clustering (a) Initial points in M (line 3 in Algorithm 3) (b) Overlapping points removed (lines 7-11) (c) Points
added to undersampled regions (lines 13-17).

Algorithm 3 k-Clustering.
Require: S, the input point set
1: Compute neighbors for each point in S
2: Group points into 8 groups using online group hashing as

given in [24]
3: Pick group with most number of splats, M
4: Initialize maximum priority queue Q on overlapping ex-

tent with neighboring splats
5: Calculate overlap of each point in M with its neighbors

and push it into Q if there is an overlap

6: /*— Remove the points from over-sampled regions —*/
7: while (there is overlap in M and Q is not empty) do
8: – p = Pop Q
9: – Remove p from M

10: – Recalculate overlap of its neighbors
11: end while

12: /*— Add points to the under-sampled regions —*/
13: for each point p in (S-M) do
14: if p and none of its neighbors are in M then
15: – Add p to M
16: end if
17: end for

18: /*— Iterate for k points by removing or adding points as
required —*/

19: while (|M| > k) do
20: – Remove a point from M that has least deviation with

its (extended) surrounding points
21: end while
22: while (|M| < k) do
23: – Add a point from (S-M) to M that has least overlap

in group M with its neighbors
24: end while

25: for each point p in (S-M) do
26: Group p with its neighbor in M having minimum nor-

mal deviation
27: end for

28: Output: Points in M merged with their neighbors

ure 4(a). Thereafter, splats are pushed into Q based on

overlap priority and points are removed from Q until

there is no more overlap in M (lines 4-11) (Figure 4(b)).

In order to enforce more uniform sampling, points are

selected from (S-M) which have none of their neigh-

bors in M (lines 12-17). This gives us a good initial

estimate of M (Figure 4(c)). It should be noted that at

this point (following line 17), M has almost no overlap.

M itself is further refined until it has only k points left.

If M has more than k elements, the point with the least

deviation with its surrounding set of points is removed

(lines 19-21). Here we determine the deviation by tak-

ing an extended neighborhood which is in fact all the

points in ±1 grid cells of the current cell that contains

the point. To ensure that point densities are not signif-

icantly reduced in some regions, we include the number

of points in the extended neighborhood set in the error

metric. On the other hand, if M has fewer than k ele-

ments, points are chosen from (S-M) which have the

least overlap in M (lines 22-24). Following this, each

of the remaining points in (S-M) are grouped with a

neighbor point present in M that has least normal de-

viation with it (lines 25-27).

3.4 Data Organization

After the MWKT construction, all nodes are kept on

disk in a compressed form using LZO compression. The

position values (x, y, z) of a point are quantized with re-

spect to the minimum and maximum coordinates of the

bounding box of the node using 16 bits, normals with

16 bits using a look-up table corresponding to vectors

on a 104 × 104 grid on each of the 6 faces of a unit

cube and splat radius using 8 bits with respect to the

Title Suppressed Due to Excessive Length 7

minimum and maximum splat size in a node. Further,

geo-morphing coordinates are maintained by keeping

with each point in a coarser level node, the number of

refined LOD points it represents in the child node. The

extra space overhead incurred is just one byte per point.

Through this number, the correspondence of finer LOD

points in child nodes to coarser LOD points in the par-

ent node can be made as points are ordered sequentially

in VBOs. Furthermore, in each of the three simplifica-

tion methods proposed above it is straightforward to

maintain geo-morphing correspondences.

4 Rendering

4.1 LOD Selection

We employ a simple view dependent screen-space LOD

refinement strategy. At rendering time, a node is asso-

ciated with a projected size and based on this a decision

is made which nodes are to be refined or coarsened. For

each rendered frame, a set of nodes in the LOD hierar-

chy with projected size larger than a given threshold is

selected for display (see also Figure 6). These selected

nodes constitute the targeted rendering front for that

frame.

An alternative to using VBOs on GPU is to use

OpenGL bindless graphics extensions (GL NV shader

buffer load and GL NV vertex buffer unified

memory), which reduce GPU cache misses involved in

setting vertex array state by directly specifying GPU

addresses, letting shaders fetch from buffer objects by

GPU address. Since our structures have a coarse granu-

larity, the rendering performance of the two approaches

appears to be similar (see Sec. 6).

4.2 Rendering on Budget

(a) Budget. (b) Pixel.

Fig. 5 Quality comparison: (a) rendering on budget (3M
points) vs. (b) pixel error threshold (3.0 pixels).

In interactive rendering applications it is often prefer-

able to maintain a constant high frame rate than adher-

ing to a strict LOD requirement, especially during in-

teractive manipulations. To optimize interactivity and

LOD quality, rendering can be controlled by a rendering

budget B which indicates that no more than the best

B LOD points are displayed every frame which are also

the parts of 3D scene closer to the user. This is achieved

through Algorithm 4; we maintain a priority queue Q
of LOD nodes at runtime ordered by the following LOD

metric for refinement or coarsening.

εl =
c0(lmax − l + 1)

c1d+ c2d2
, (2)

Here d is the distance to the viewer, ci are constants

and l refers to the level of node in MWKT, lmax being

the maximum level (also refer to [1]).

Note however, that our rendering system also sup-

ports view-dependent LOD selection based on projected

screen-space LOD point pixel size as shown in Fig-

ure 5. For that purpose, the LOD nodes, e.g. of the

past frame’s rendering front, are refined or coarsened

based on projected pixel size and no budget limit is

included.

Algorithm 4 LOD selection for rendering on a budget

B.
1: Initialize empty queue Q prioritized on εl
2: Push the root node r onto Q
3: count = |r|
4: n = null

5: while (count− |n|+ s ·N . B and Q is not empty) do
6: Pop node n from Q

7: if (n is not a leaf) then
8: count = count− |n|
9: for (each child c of n) do

10: Push c onto Q, prioritized on εl
11: count = count− |c|
12: end for
13: else
14: Add n to rendering front
15: end if
16: end while

17: if (Q is not empty) then
18: Add nodes from Q to rendering front
19: end if

4.3 Asynchronous Fetching

In order to maintain a consistent frame rate, inclusion

of many new nodes via LOD refinement or coarsening

can be spread over a few frames. For this purpose, we

8 Prashant Goswami et al.

b c d g h j,k l∅

b c e,f g h i l∅

available node
asynchronous fetch request

current front

rendered front

a b c d

fe

i

kjhg

l

root of MW kd-tree

synchronous fetch

current front

Fig. 6 LOD update and asynchronous fetching example for
a MWKT with N = 2.

make use of incrementally updating the front from the

last rendered frame, both for pixel- and budget-based

rendering. The current front is derived from the last one

and all newly selected nodes are activated for display.

This way out-of-core latency can largely be hidden. Fig-

ure 6 illustrates how parent-to-children and children-to-

parent fetches can be carried out asynchronously using

a concurrent thread while rendering the data already

available in the GPU memory.

4.4 Geo-Morphing

In order to make continuous transition between LODs,

our rendering employs geo-morphing. Given the front

based rendering as indicated in Figure 6 and described

in Section 4.3, during each transition of type parent-to-

child or child-to-parent, the additional data required for

geo-morphing is supplied as a per vertex texture to the

vertex shader for interpolation. To achieve this, each

splat in the currently rendered VBO is also given the

target splat position, size and normal that will replace

it. This is simple in our case as each parent splat main-

tains the count of its refined splats in the child VBO

and hence can compute the index to these splats. The

transition from a coarser parent LOD point to a set of

refined child LOD points (or the other way around) is

then smoothed over a few frames during which the po-

sitions, sizes and normals of source and target splats

are slowly interpolated.

4.5 Backface and Occlusion Culling

Our approach integrates backface culling, using normal

cone for each node in tree and occlusion culling, similar

to [14] to avoid rendering of invisible points. Unused

point budget reclaimed from the occluded or backfacing

LOD nodes can be reused to refine some more nodes of

a coarser LOD resolution.

4.6 Smooth Point Interpolation

Real-time smooth point interpolation for small models

is easy to achieve with conventional blended splatting

algorithms. However, most of these approaches are not

well suited for very large scale point sets as ours since

they are too resource intensive and slow down rendering

speed significantly. Object-space smoothing approaches

often use two passes over the point geometry and an-

other pass over the image. To avoid multiple processing

and rasterization of geometry, we adopt the deferred

blending approach as introduced in [24]. While ren-

dering, point splats in a node are separated into eight

groups such that the overlap within a group is minimal.

This is done based on an online hashing scheme [24] and

can be combined with the asynchronous loading of LOD

nodes from hard disk. Each group is then rendered into

a separate frame buffer texture and finally the eight

partial images obtained from these groups are blended

using the algorithm given in [24] in a final fragment

pass.

5 Parallel Rendering

The integration of sophisticated features like smooth

blending and geo-morphing together with the capabil-

ity of rendering several hundreds of millions of points

per second, makes point-based rendering attractive for

large display walls or multi-machine rendering. Not only

rendering workload can be distributed over available

computer and graphics resources, but also a wide range

of applications can employ our techniques for efficient

visualization of high quality data.

The basic motivation to use points instead of tri-

angles on multi-machine large displays comes from the

possibility of more efficient rendering with not much

loss in quality, also see Section 6. The rendering data

can be more easily divided among the machines with-

out worrying about the connectivity between meshes of

different levels-of-detail. The quality gap between tri-

angles and points can be partly bridged by using more

sophisticated operations like geo-morphing.

Title Suppressed Due to Excessive Length 9

(a) (b)

Fig. 7 Main task division modes on our point renderer using (a) sort-first and (b) sort-last modes. Screen area or data rendered
by each of the three machines is color-coded, and the left large image shows the color-coded final assembled image.

Decomposition Modes: Equalizer supports two basic

task partitioning modes for scalable rendering which are

directly applicable in our case: screen domain or sort-

first, and database domain or sort-last [26].

– Sort-first or screen-space decomposition divides the

task in image space. Therefore, all machines render

the complete database but only within a subset of

the overall view frustum. Each machine performs

culling with the supplied frustum and renders only

the visible MWKT nodes on its screen tile, as indi-

cated in Figure 7(a). This configuration is particu-

larly useful for wall displays.

– Sort-last or database decomposition refers to the
division of the 3D data among the rendering ma-

chines. Each of the rendering clients obtains a range

[low, high] from the Equalizer server which is a sub-

range of the unit interval [0, 1] which represents the

entire database. Therefore, any given machine ren-

ders only the geometric data corresponding to its

supplied range based on some linear data index-

ing and subdivision. Our division strategy is sim-

ilar to [21], wherein we divide the list of all selected

and visible MWKT nodes after the LOD traversal

among the participating machines equally, also see

Figure 7(b)). This achieves an implicit load balanc-

ing of rendering burden among machines.

Figure 8 demonstrates the quality of St. Matthew

model rendering with OpenGL points as primitives with

a rendering budget of approximately 3M per rendering

machine.

Fig. 8 St. Matthew model on a high-resolution 24Mpixel
tiled-wall display cluster using glPoints and a LOD rendering
budget of only 3M points per machine, drawn at 15 fps.

6 Results

The proposed method has been implemented in C++

using OpenGL and GLUT. Unless otherwise specified,

the results have been evaluated on a system with 2x2.66

GHz Dual-Core Intel Xeon processors, NVIDIA GeForce

GTX 285 and a display window of 1024× 1024 pixels.

The parallelized version of this software ported to

Equalizer is used to run experiments on a PC cluster

of six Ubuntu Linux nodes with dual 64-bit AMD 2.2

GHz Opteron processors and 4GB of RAM each. Each

computer connects to a 2560×1600 LCD panel through

one NVIDIA GeForce 9800 GX2 graphics card, thus re-

sulting in a 24Mpixel 2×3 tiled display wall. Each node

has a 1Gb ethernet network interface, which is also uti-

lized to access out-of-core data from a central network

attached disk. For comparative analysis of quality and

efficiency, we use a simple polygonal rendering applica-

tion, eqPly, which renders triangle mesh data in parallel

using optimized static display lists.

10 Prashant Goswami et al.

6.1 Preprocessing

The MWKT preprocessing time and disk usage of var-

ious models have been presented in detail in [1]. In this

section, we describe and compare the additional results

obtained using various point simplification methods.

Figure 9 compares the outputs obtained using: nor-

mal deviation clustering, entropy-based reduction, k-

clustering and iterative simplification ([17]). All these

methods produce a desired number of output (represen-

tative) points k, for a given input point set. It shows

that simplification through normal deviation and k-

clustering produce the best results followed by entropy-

based reduction and iterative simplification. Normal de-

viation and entropy-based reduction are simple to im-

plement. The relative loss of quality in iterative sim-

plification is attributed to the fact that each time a

point pair is chosen to collapse, it replaces it with a new

representative point with larger radius which results in

accumulating conservative coverage attributes. It also

needs a higher number of iterations to achieve k points

which ultimately leads to a larger overlap as compared

to other methods. In our methods, a group of splats are

replaced by a single representative point, thereby reduc-

ing this overlap. Furthermore, as listed in Table 1 sim-

plification through normal deviation runs much faster

than all other methods producing high quality clusters.

In fact, all the three proposed methods reduce prepro-

cessing time while enhancing point quality as compared

to [17] while still yielding the desired k clusters. k-

clustering can be chosen over normal deviation if strict

quality control is preferred over time. All the proposed

methods can easily be employed for preprocessing of

large out-of-core point data models due to their effi-

ciency and high quality. Furthermore, all these methods

are simple to implement and integrate with any point

renderer.

Model In Out Nor. D. k-Clust. Entr. R. Iter. S.
Armadillo 173K 39K 1.24 3.08 4.27 7.72

David Head 417K 77K 1.63 6.91 7.55 26.73
Lucy Head 513K 47K 1.69 7.47 9.44 38.43

Table 1 Comparison of preprocessing time (in sec) on vari-
ous models using normal deviation, entropy-based reduction,
k-clustering and iterative simplification ([17]) methods. Input
and output point counts are as given in each case.

6.2 Rendering Quality

Figure 10 shows different views of our large models

demonstrating the LOD mechanism for a rendering bud-

get of B = 3 to 5 million points. Furthermore, in Fig-

ure 11 we compare the rendering quality of different

point drawing primitives: simple square OpenGL points,

screen-aligned round antialiased points, surface-aligned

elliptical depth-sprites, and blended points. In [1], the

comparison of sampling and rendering quality depend-

ing on the choice of LOD tree data structure (octree,

kd-tree or MWKT) has been presented.

In Figure 12, we compare the LOD quality gener-

ated by our method with respect to other state of the

art approaches. [9] starts with a mesh and uses a very

fine LOD granularity to produce lower resolution and

tree traversal as compared to ours. On the other hand,

in [14] the LOD hierarchy construction purely relies on

point subsampling leading to a somewhat noisier LOD

with less budget. Our method offers a more flexible

and tunable compromise between the two, for choice

of granularity and hence efficiency vs. quality.

(a) Layered Point Clouds.

(b) QSplat.

(c) Ours.
Fig. 12 LOD quality comparison between (a) Layered point
clouds, (b) QSplat and (c) our approach for a rendering bud-
get of approximately 3M points.

Title Suppressed Due to Excessive Length 11

(a) Armadillo, Input: 173K, Output: 39K

(b) David Head, Input: 417K, Output: 77K

(c) Lucy Head, Input: 513K, Output: 47K

Fig. 9 Point clustering created with (from left to right) normal deviation, k-clustering, entropy-based reduction and Pauly’s
iterative simplification methods respectively for three different models.

6.3 Rendering Efficiency

In Table 2, we list the rendering performances for var-

ious models. These tests were conducted on a 1024 ×
1024 pixel screen for curved paths of camera that al-

low rotation, translation and zooming-in of the models.

As is clear from Table 2, rendering efficiency in terms of

frames per second and points per second is quite similar

for all models despite them varying significantly in size.

We achieve rendering rates of nearly 290M points per

second with peaks exceeding 330M even for the larger

datasets. Additionally as is obvious from Table 2, geo-

morphing does not reduce the rendering performance

significantly while providing higher rendering quality.

Table 3 compares the rendering performance of our

MWKT with and without bindless graphics for a bud-

get of 5M points. Our experiments suggest that the

Model #SamplesN VBO(K) Fps Pps(M) Fps Pps(M)
Nor. Nor. Geo Geo

David2mm 4.1M 3 51 95 288 80 244
Lucy 14M 2 55 98 294 80 241

David1mm 28M 5 45 94 290 78 241
St. Matthew 186.9M 3 85 97 290 81 240

Pisa Cathedral 368.5M 4 90 93 285 77 237

Table 2 Rendering performance statistics for various models
and VBO sizes, given a rendering budget of B = 3M compar-
ing normal vs. geo-morphed rendering.

use of bindless graphics does not necessarily imply a

performance boost especially within the order of VBO

switches that the MWKT achieves. In all our measure-

ments, even with a high rendering budget for massive

models, frame rates and point throughput came out to

be quite similar for bindless as well as normal VBOs.

On the other hand, with the proper construction of the

12 Prashant Goswami et al.

(a) Pisa Cathedral. (b) St. Matthew. (c) David1mm.
Fig. 10 Varying zoom views of the Pisa Cathedral (368M samples), St. Matthew 0.25mm (187M samples) and David 1mm
(28M samples) models.

Fig. 11 Choice of splat primitive: Square OpenGL points, round points, elliptical depth-sprites and blended splats.

Model Normal Bindless
fps pps fps pps

Lucy 57 290.00 57 289.67
David1mm 55 284.23 55 282.94

St. Matthew 54 271.45 53 269.33

Table 3 Performance comparison with bindless graphics for
a budget of 5M points.

MWKT one can clearly benefit over standard binary

kd-trees (as demonstrated in Table 4).

We tested our implementation for various VBO sizes

and thus fan-out values N with the St. Matthew model

using simple OpenGL points as drawing primitives. An

extensive statistical analysis of this is available in [1]

showing that the proper choice of N and VBO size

can be important to obtain an optimal performance.

This is further verified by additionally comparing our

MWKT also with a kd-tree for point throughput us-

ing budget-based rendering for similar maximal node

sizes (see also Table 4). It shows the total VBO fetches

and context switches for different VBO sizes. It is clear

that a MWKT can obtain better frame rates and point

throughput for same sized VBOs than a kd-tree due

to minimized VBO fetches and context switches. Fur-

ther, for a similar amount of space occupied and hence

LOD quality, the MWKT can be constructed in less

time than a kd-tree.

State-of-the-art chunk-based systems [14,16] can be

made more efficient with the integration of MWKT as

their basic data structure on the efficiency front.

6.4 Parallel Rendering

In Figure 13, we compare the quality between using tri-

angles or points on multi-machine large tiled displays

for different rendering budgets. Figure 14 summarizes

the performance comparison. We make two observa-

tions here:

1. Rendering using points is about 3-4 times faster

even when using the maximal rendering budget.

2. There is no significant quality difference between

Figure 13(a) and Figure 13(b) which compare the

maximal rendering budget using both kinds of prim-

itives. Even as the point rendering budget is reduced

and the frame rates obtained increase, quality is not

notably affected.

The same observation is reinforced from Figure 8.

This implies that one could obtain a close to one or-

der of magnitude of speed-up when rendering points in

Title Suppressed Due to Excessive Length 13

Model VBO Size Fps Pps CS VBOF Time(s) Space(MB)

David1mm
55048

K
d

-t
re

e 84 254 297170 526 620 234
13762 44 132 1110910 2135 705 250

St. Matthew
24029 85 255 268723 811 7686 2186
45614 73 219 406126 1013 6152 1750

David1mm
55048

M
W

K
d

-t
re

e 91 281 86685 162 382 224
13762 58 173 831707 1399 573 250

St. Matthew
24029 96 289 92580 174 5208 1739
45614 95 287 120341 202 4977 1674

Table 4 Comparison of performance and preprocessing statistics between kd-tree and MWKT using a budget of 3M points.
CS refers to total context switches and VBOF to total VBO fetches from disk to graphics memory.

(a) Triangles. (b) 28M points. (c) 2M points. (d) 1M points.

Fig. 13 Quality comparison between triangles and points as rendering primitives on various rendering budgets per machine
for points (a) Triangles (b) Points (28 M) (c) Points (2 M) (d) Points (1 M).

comparison to triangles without losing too much on the

quality front.

Fig. 14 Comparing triangles and points as rendering primi-
tives on parallel multi-machine large displays.

7 Conclusion and Future Work

We have presented an efficient framework for hierar-

chical multi-resolution preprocessing and rendering of

massive point cloud datasets which can support high

quality rendering using geo-morphing and smooth point

interpolation. Our fast, high quality preprocessing meth-

ods improve upon the state-of-art to obtain targeted

number of output points which can be efficiently kept

as VBOs. We have demonstrated that our novel point

hierarchy definition is flexible in that it can adapt to a

desired LOD granularity by adjusting its fan-out factor

N , that we can target specific rendering-efficient VBO

sizes and that our algorithm supports adaptive out-of-

core rendering, featuring asynchronous prefetching and

loading from disk as well as rendering on a budget.

Related future work could include better compres-

sion schemes to reduce the per node VBO data size

while still allowing it to be used by the GPU with min-

imal runtime processing overhead on the CPU, and to

apply extensions that make the approach suitable for

streaming over network and remote rendering.

Acknowledgements

We would like to thank and acknowledge the Stan-

ford 3D Scanning Repository and Digital Michelangelo

projects as well as Roberto Scopigno, for the Pisa Cathe-

dral model, for providing the 3D geometric test datasets

used in this paper. This work was supported in parts

by the Swiss Commission for Technology and Innova-

tion (KTI/CTI) under Grant 9394.2 PFES-ES.

References

1. Goswami, Prashant and Zhang, Yanci and Pajarola, Re-
nato and Gobbetti, Enrico, High Quality Interactive Ren-
dering of Massive Point Models using Multi-way kd-Trees,
93–100, Proceedings Pacific Graphics Poster Papers (2010)

2. Levoy, Marc and Whitted, Turner, The Use of Points as
Display Primitives, TR 85-022, Technical Report, Depart-
ment of Computer Science, University of North Carolina at
Chapel Hill (1985)

3. Grossman, J.P. and Dally, William J., Point Sample Ren-
dering, 181–192, Proceedings Eurographics Workshop on
Rendering (1998)

14 Prashant Goswami et al.

4. Pfister, Hanspeter and Gross, Markus, Point-Based Com-
puter Graphics, Number 4, Vol. 24, 22–23, IEEE Computer
Graphics and Applications, July/August (2004)

5. Gross, Markus H., Getting to the Point...?, Number 5, Vol.
26, 96 - 99, IEEE Computer Graphics and Applications,
September/October (2006)

6. Gross, Markus H. and Pfister, Hanspeter, Point-Based
Graphics, Morgan Kaufmann Publishers (2007)

7. Sainz, Miguel and Pajarola, Renato, Point-Based Render-
ing Techniques, Number 6, Vol. 28, 869 - 879, Computers
& Graphics (2004)

8. Kobbelt, Leif and Botsch, Mario, A Survey of Point-Based
Techniques in Computer Graphics, Number 6, Vol. 28, 801
- 814, Computers & Graphics (2004)

9. Rusinkiewicz, Szymon and Levoy, Marc, QSplat: A Mul-
tiresolution Point Rendering System for Large Meshes, 343
- 352, Proceedings ACM SIGGRAPH (2000)

10. Grottel, S. and Reina, G. and Dachsbacher, C. and Ertl,
T., Coherent Culling and Shading for Large Molecular Dy-
namics Visualization, Number 3, Vol. 29, 953 - 962, Com-
puter Graphics Forum (Proceedings of EUROVIS) (2010)

11. Dachsbacher, Carsten and Vogelgsang, Christian and
Stamminger, Marc, Sequential Point Trees, Number 3, Vol.
22, ACM Transactions on Graphics, Proceedings ACM SIG-
GRAPH (2003)

12. Pajarola, Renato and Sainz, Miguel and Lario, Roberto,
XSplat: External Memory Multiresolution Point Visualiza-
tion, 628 - 633, Proceedings IASTED International Con-
ference on Visualization, Imaging and Image Processing
(2005)

13. Wimmer, Michael and Scheiblauer, Claus, Instant Points:
Fast Rendering of Unprocessed Point Clouds, 129 - 136,
Proceedings Eurographics/IEEE VGTC Symposium on
Point-Based Graphics (2006)

14. Gobbetti, Enrico and Marton, Fabio, Layered Point
Clouds, 113 - 120, Proceedings Eurographics/IEEE VGTC
Symposium on Point-Based Graphics (2004)

15. Wand, Michael and Berner, Alexander and Bokeloh,
Martin and Fleck, Arno and Hoffmann, Mark and Jenke,
Philipp and Maier, Benjamin and Staneker, Dirk and
Schilling, Andreas, Interactive Editing of Large Point
Clouds, 37 - 46, Proceedings Eurographics/IEEE VGTC
Symposium on Point-Based Graphics (2007)

16. Bettio,Fabio and Gobbetti, Enrico and Martio, Fabio and
Tinti, Alex and Merella, Emilio and Combet, Roberto, A
Point-based System for Local and Remote Exploration of
Dense 3D Scanned Models, 25 - 32, Proceedings Eurograph-
ics Symposium on Virtual Reality, Archaeology and Cul-
tural Heritage (2009)

17. Pauly, Mark and Gross, Markus and Kobbelt, Leif P., Ef-
ficient Simplification of Point-Sampled Surfaces, 163 - 170,
Proceedings IEEE Visualization (2002)

18. Bierbaum, Allen and Just, Christopher and Hartling,
Patrick and Meinert, Kevin and Baker, Albert and Cruz-
Neira, Carolina, VR Juggler: A Virtual Platform for Vir-
tual Reality Application Development, 89 - 96, Proceedings
IEEE Virtual Reality (2001)

19. Humphreys, Greg and Houston, Mike and Ng, Ren and
Frank, Randall and Ahern, Sean and Kirchner, Peter D.
and Klosowski, James T., Chromium: A Stream-Processing
Framework for Interactive Rendering on Clusters, Number
3, Vol. 21, ACM Transactions on Graphics, Proceedings
ACM SIGGRAPH (2002)

20. Eilemann, Stefan and Makhinya, Maxim and Pajarola,
Renato, Equalizer: A Scalable Parallel Rendering Frame-
work, Number 3, Vol. 15, 436 - 452, IEEE Transactions on
Visualization and Computer Graphics, May/June (2009)

21. Goswami, Prashant and Makhinya, Maxim and Boesch,
Jönas and Pajarola, Renato, Scalable Parallel Out-of-core
Terrain Rendering, 63 - 71, Eurographics Symposium on
Parallel Graphics and Visualization (2010)

22. Corea, Wegner.T and Klosowski, James T. and and Silva,
Claudio T., Out-of-core Sort-First Parallel Rendering for
Cluster-Based Tiled Displays, 63 - 71, Fourth Eurographics
Workshop on Parallel Graphics and Visualization (2002)

23. Hubo, Erik and Bekaert, Philippe, A Data Distribution
Strategy for Parallel Point-Based Rendering, 1 - 8, Pro-
ceedings International Conference on Computer Graphics,
Visualization and Computer Vision (2005)

24. Zhang, Yanci and Pajarola, Renato, Deferred Blending:
Image Composition for Single-Pass Point Rendering, Num-
ber 2, Vol. 31, 175 - 189, Computers & Graphics (2007)

25. Corrêa, Wagner T. and Fleishman, Shachar and Silva,
Cláudio T., Towards Point-Based Acquisition and Render-
ing of Large Real-World Environments, 59, Proceedings of
the 15th Brazilian Symposium on Computer Graphics and
Image Processing (2002)

26. Molnar, Steve and Cox, Michael and Ellsworth, David
and Fuchs, Henry, A Sorting Classification of Parallel Ren-
dering, Number 4, Vol. 14, 23 - 32, IEEE Computer Graph-
ics and Applications (1994)

27. MacQueen, J. B., Some Methods for classification and
Analysis of Multivariate Observations, 281 - 297, Proceed-
ings of 5th Berkeley Symposium on Mathematical Statistics
and Probability. University of California Press (1967)

28. Dasgupta, Sanjay, The hardness of k-means clustering,
CS2008-0916, Technical Report, Department of Computer
Science and Engineering University of California, San Diego
(2008)

