
Dynamic Hadoop clusters on HPC scheduling systems

Michele Muggiri, Luca Pireddu*, Simone Leo, Gianluigi Zanetti

CRS4

August 27, 2013

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 1 / 37

Outline

1 Introduction

2 Hadoocca – Dynamic MapReduce allocation

3 Conclusion

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 2 / 37

Rising interest in Hadoop

Hadoop provides an effective and scalable way to process large
quantities of data
MapReduce suitable for many types of problems
Hadoop ecosystem also growing in other directions

e.g., fast DB-style queries on very large datasets
Growing number of applications
Success confirmed by the growing number of users

Image by Datamere

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 3 / 37

Hadoop’s goals

Hadoop has two main goals

scalable storage
scalable computation

Storage provided through Hadoop Distributed File System (HDFS)
Computation provided by Hadoop MapReduce and other systems

For the scope of this work, for computation we focus on MapReduce

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 4 / 37

Hadoop’s goals

Hadoop has two main goals

scalable storage
scalable computation

Storage provided through Hadoop Distributed File System (HDFS)
Computation provided by Hadoop MapReduce and other systems

For the scope of this work, for computation we focus on MapReduce

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 4 / 37

Hadoop’s goals

Hadoop has two main goals

scalable storage
scalable computation

Storage provided through Hadoop Distributed File System (HDFS)
Computation provided by Hadoop MapReduce and other systems

For the scope of this work, for computation we focus on MapReduce

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 4 / 37

Hadoop 1.x architecture

Two main subsystems, HDFS and MapReduce, each with a
master-slave architecture
HDFS has many DataNodes

store data blocks locally
MapReduce has many TaskTrackers

run computation locally
Image courtesy of mplsvpn.info

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 5 / 37

Hadoop 1.x architecture

Normally DataNodes and TaskTrackers are deployed together
Quite complementary resource requirements
Take advantage of data locality

Image courtesy of MSDN

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 6 / 37

Hadoop’s use of resources

Hadoop assumes it has exclusive and long-term use of its nodes
It has its own job submission, queueing, and scheduling system

This arrangement can make it complicated to adopt in some
circumstances
An important example: HPC centers, with shared clusters accessed
via batch systems

Probably still one of the most ways to access private computing
resources

Hadoop’s approach to resource acquisition is decidedly in contrast with
batch systems!

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 7 / 37

Adopting Hadoop

Large, committed, operations have possibility of deploying dedicated
clusters
Others may not have the resources for a Hadoop cluster
Some aren’t sure about investing in one

And what about experimenting?
Even setting up a temporary reasonably sized cluster

At worst will require sysadmin approval and intervention
At best will still require specific skills, which may not be easily
accessible

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 8 / 37

Example application: DNA sequencing

An example of a user who has a lot of data to process but may not have
Hadoop administration skills: bioinformatician!

Interesting application of Hadoop is in processing genomic data
Typical genomic processing workflow:

embarassingly parallel problems
mostly I/O bound
well suited for Hadoop

Increasing number of Hadoop-based software for this type of work

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 9 / 37

Example application: DNA sequencing

How much data?
Details depend on technology
e.g., one run on Illumina high-throughput platform
10 days ≈ 400 Gbases ≈ 4 billion fragments ≈ 1 TB of sequence data

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 10 / 37

CRS4

CRS4 sequencing center
CRS4 - largest sequencing center in Italy
capacity of generating 5 TBases/month

i.e., about 25 TB of raw data
Most processing performed with the Hadoop-based Seal toolkit

CRS4 computational capacity
3200 cores in its main HPC cluster
About 5 PB of storage, most of which in a shared GPFS volume
Managed with Grid Engine. Available to everyone at CRS4
Runs a lot of MPI and standard batch jobs

cluster cannot be entirely dedicated to Hadoop

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 11 / 37

Hadoop allocation strategies

How can we allow Hadoop to exist in such a typical HPC setting?

Various possible static and dynamic Hadoop allocation strategies
Some may provide a suitable solution

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 12 / 37

Static allocation

Partition cluster: allocated part to HPC and part to Hadoop

Works well if both partitions have regular, relatively high load
Provides a static/stable HDFS volume

But
not well suited for variable workloads

easily results in underutilization

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 13 / 37

Dynamic allocation

Only occupy nodes when needed
Seems more reasonable strategy in shared HPC environments

Not straightforward because HDFS uses node-local storage
HDFS cluster cannot be reduced in size easily

data needs to be transferred off the nodes to be freed – slow!
Number of nodes must always be sufficient to provide required
storage space

idle cluster still occupies nodes

Yet, there are various possible flavours of dynamic allocation

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 14 / 37

Hadoop-on-Demand (HOD)

Blocks of nodes allocated through a standard batch system
HDFS and MapReduce started on those nodes

HDFS volume is temporary, so only useful for intermediate/temporary
data

Desired size of cluster must be decided at allocation time
Cluster must be deallocated manually

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 15 / 37

Hadoop-on-Demand (HOD)

allocation strategy exposed to human factors
given overhead/latency in allocating cluster users may be tempted to
keep cluster allocated for longer than strictly necessary

0 5 10 15 20 25 30
0

5

10

15

20

25

C
PU

 u
sa

ge
, %

 to
ta

l

0 5 10 15 20 25
time (days)

2

4

6

8

10

M
EM

 u
sa

ge
, %

 to
ta

l

Fig : FIXME: fix scale on y-axis
luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 16 / 37

Alternative approach

Alternative approach: decouple Hadoop MapReduce and HDFS

MapReduce and HDFS may use different sets of nodes
can even choose to completely forego HDFS and use other storage
systems

More allocation strategies open up this way
Drawback: risk losing data-locality

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 17 / 37

HDFS allocation

Cluster-wide HDFS
Run HDFS daemons on all cluster nodes, alongside other task processes

Dedicated block of machines to host an HDFS volume
Can even recycle older machines whose CPUs or RAM size are no
longer competitive

No HDFS: use some other parallel shared storage
use whatever is already in place
in addition to HDFS, Hadoop can natively access any mounted file
system and Amazon S3

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 18 / 37

No HDFS

What’s the price of foregoing HDFS? YMMV

E7 −> E7 HDFS −> HDFS

Throughput per node

Copy direction

m
ea

n
M

B
/s

0
2

4
6

8
10

Use hadoop distcp to copy 1.1
TB of data
59 nodes, HDFS replication
factor of 2
Each bar is the mean of 3 runs

Warning!
HDFS scales to 1000s of nodes
This test only tests ∼ 60
Our nodes only have 1 disk

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 19 / 37

MapReduce allocation: per-job

Acquire nodes, start JobTracker and TaskTrackers, run job, shut
down and clean-up

Such a solution was implemented for SGE by Sun
Lack of a static JobTracker nodes is not very simple for users and will
not work with higher-level applications (e.g., Pig, Hive)

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 20 / 37

Static JobTracker, on-demand slaves

Static JobTracker, dynamic cluster
We’ve built a solution based on this strategy: Hadoocca

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 21 / 37

Outline

1 Introduction

2 Hadoocca – Dynamic MapReduce allocation

3 Conclusion

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 22 / 37

Hadoocca

Hadoop MapReduce natively supports dynamically adding and
removing slave nodes (Task Trackers)

a feature normally used to handle node failures
Keep a static JobTracker server
Monitor its queues

allocate task trackers as capacity as needed
Two main components: Load Monitor, Task Tracker manager

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 23 / 37

Load monitor

Monitors Hadoop JobTracker
Periodically polls it for its map and reduce task counts:

1 capacity
2 running
3 queued

Currently implemented using JobTracker’s command line interface
hadoop jobs program

Based on number of queued tasks decides how many task trackers to
launch

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 24 / 37

Scheduling formula

Scheduling decision is currently simple and intuitive
Calculate the number of nodes required to put all tasks in running
Try to allocate them, capping at a limit per scheduler iteration
Iterate again after a delay and repeat the process

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 25 / 37

Scheduling formula

Roughly boils down to the following:

map_nodes = ceil((n_map_tasks queued + n_map_tasks running)
/ n_map_tasks_per_node)

red_nodes = ceil((n_red_tasks queued + n_red_tasks running)
/ n_red_tasks_per_node)

total_nodes = max(map_nodes, red_nodes)
capped = min(node_limit, total_nodes)
new_nodes = capped - (nodes_running + nodes_queued)
to_allocate = min(new_nodes, max_nodes_per_iteration)

The system then queues to_allocate new nodes and sleeps until the
next iteration

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 26 / 37

Scheduling formula

Limiting the number of nodes requested per iteration slows down
growth
Play nice with neighbours and avoid flooding the cluster
Avoid starting nodes unless they’re really necessary

due to excessively quick tasks or errors causing crashes

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 27 / 37

Running task tracker nodes

When the Load Monitors tries to allocate a node, it actually queues a job
through the batch system.

The job, once it starts running performs these steps:
Verify that there are still tasks outstanding
Uses default hadoop mechanism to start task tracker
Keeps running, monitoring task tracker process
When no tasks are running on task tracker for some time, terminates
it

tell JobTracker node is to be excluded
use standard Hadoop tasktracker shutdown command
clean up scratch space

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 28 / 37

Running task tracker nodes

We don’t have a simple way to monitor the task tracker’s operations
Instead:

monitor daemon’s local scratch space
specific directories are created while a task is running
by seeing which paths exist we know which tasks are running

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 29 / 37

Deployment at CRS4

Use shared GPFS for storage
Job tracker web interface accessible to all users
Multi-user setup

use Hadoop’s own mechanism for running multi-user cluster
LinuxTaskController with accompanying setuid-root binary

Task processes with client’s EUID
Service daemons (JobTracker, TaskTrackers) run as a system user

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 30 / 37

Patches to Hadoop

Multi-user with GPFS required some small patches to Hadoop
Hadoop MapReduce uses staging directories on shared FS to pass job
info to task processes
Some code assumes Hadoop runs as super-user and has full access to
file system

enforces permissions that are too restrictive for Hadoop user and task
user to both access data

Patched Hadoop to relax those checks

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 31 / 37

Deployment layout

Cluster configuration and binaries
stored on a shared volume mounted on all cluster nodes
paths provided via environment variables loaded with “module”

e.g.,
$ module load hadoocca
$ hadoop jar MyJob.jar \

file:///home/pireddu/data/input \
file:///home/pireddu/data/output

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 32 / 37

Outline

1 Introduction

2 Hadoocca – Dynamic MapReduce allocation

3 Conclusion

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 33 / 37

Hadoocca

An allocation strategy for dynamic Hadoop MapReduce clusters
doesn’t require HDFS
analogous to Amazon’s EMR

Open source implementation
Suitable for HPC centres who

don’t want to dedicate portion of their cluster exclusively to Hadoop
are happy with a small- to medium-sized installation
have a suitable storage infrastructure

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 34 / 37

In production use

We’ve been using Hadoocca at CRS4 for about 8 months
Born as a prototype, but it’s still running!

Static JobTracker makes running Hadoop programs really easy
Compatible with Pig and Hive
Increased adoption of Hadoop at CRS4

With the addition of tools such as Pydoop script, it has become a
common way to write simple parallel programs

Without this type of solution it would have been quite difficult to
bring Hadoop as a steady fixture at CRS4

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 35 / 37

Future development

Release current prototype code
Rewrite

support for Hadoop 1.x and 2.x
generalized queuing code (maybe DRMAA)
modular scheduling

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 36 / 37

Thank you

Thank you!

Questions?

luca.pireddu@crs4.it (CRS4) Hadoocca August 27, 2013 37 / 37

	Introduction
	Hadoocca – Dynamic MapReduce allocation
	Conclusion

