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Abstract—We present a practical system to map and recon-
struct multi-room indoor structures using the sensors com-
monly available in commodity smartphones. Our approach
combines and extends state-of-the-art results to automatically
generate floor plans scaled to real-world metric dimensions and
to reconstruct scenes not necessarily limited to the Manhattan
World assumption. In contrast to previous works, our method
introduces an interactive method based on statistical indicators
for refining wall orientations and a specialized merging algo-
rithm for building the final rooms shape. The low CPU cost
of the method makes it possible to support full execution by
commodity smartphones, without the need of connecting them
to a compute server. We demonstrate the effectiveness of our
technique on a variety of multi-room indoor scenes, achieving
remarkably better results than previous approaches.
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I. INTRODUCTION

Acquiring and reconstructing the indoor built environment
is an important, but challenging, task in many real world
applications. Original blueprints are often hard to find,
especially for older buildings, and even where they exist,
they often do not represent the current layout. Recovering
the built structure often requires onerous manual modeling
sessions. Even though automated approaches exist for the
reconstruction of urban outdoor environments [3], [16], [22],
[29], and user-assisted methods have been successfully ap-
plied for facade modeling [12], [21], [25], the reconstruction
of interiors is complicated by a number of factors. For
instance, visibility reasoning is more problematic since a
floor plan may contain several interconnected rooms. More-
over, interiors have usually texture-poor walls that com-
plicate image-based processing. Current high-performance
approaches, which range from 3D laser scanning [13] to
image-based methods [2], [18], produce high resolution 3D
models which are often an overkill for a large branch of
applications, especially those focused on the structure of a
building rather than the details of the model. In practice,
contractors and interior designers use point-to-point laser
measurement devices to acquire a set of distance measure-
ments. Based on these measurements, CAD experts create a
floor plan that respects these measurements and represents
the layout of the building. There is now a growing interest
in semi-automatic methods that simplify the scene capture,
making it possible for casual users, and eliminate the manual

post-processing necessary for reconstructing the layout of
walls, making the process faster and cost-effective. The
use of modern mobile devices to create a 3D map of an
indoor environment is a growing and promising approach,
as highlighted by the recent presentation of Google Project
Tango [9]. In this context, we propose a method to enable
any user to reconstruct building interiors with the aid of
a mobile phone and without requiring the assistance of
computer experts, 3D modelers, or CAD operators. This
kind of multi-room mapping is useful in many real-world
applications, such as in the field of security management and
building protection, to enable non-technical people to create
models with enough geometric features for simulations or
enough information to support interactive visual tours [5],
[17].
Approach. Similarly to other recently introduced meth-
ods [15], [17], the user captures the scene by walking in
the indoor environment, acquiring 360 degrees videos of
each visited rooms. These videos are captured by target-
ing with the phone camera the intersection of the wall
with the floor or with the ceiling. In this process, we
store together with the video frames, all the data coming
from the inertial measurement unit (IMU). Unlike previous
work [15], [17], we don’t calculate the final room shape
only from this initial data, but we exploit it to automatically
build a coarse reconstruction of each room, estimating the
goodness of fit of each wall through statistical indicators.
We make then available to the user interface this coarse
room representation (Fig. 1 center), highlighting potential
unreliable wall estimations and asking the user to acquire a
specific orientation measurement for them (Fig. 2). Once the
interactive capture is completed, we automatically combine
the whole information through a specialized method, trying
to fit the best room shape that combines constrained corner
angles with the wall intersections. As a result, we obtain
rooms represented in metric coordinates with respect to each
room’s center. When the user moves through the rooms,
a graph of the interconnections between doors and rooms
is maintained. Once all room shapes are calculated, we
automatically assemble the floor plan exploiting the graph
information (Fig. 1 right).
Contributions. Our approach combines and extends state-
of-the-art results in order to support the acquisition on
an indoor environment using low-end mobile devices and



Figure 1. System pipeline. Left: Capturing of an indoor environment through a mobile device. Center: A coarse reconstruction of the room shape is
available to the user interface immediately, highlighting potential unreliable wall estimations (red lines). Right: as a final result a floor plan scaled to
real-word metric dimensions is returned.

reduces user interaction and editing time when building
multi-room models in a non-Manhattan world. We improve
over recent work on reconstruction of multi-room models
in a non-Manhattan world [15] by introducing a method
for exploiting the strong redundancy between samples and
images to evaluate the goodness of fit of each segment rep-
resenting a wall, completing the initial data with additional
orientation measurements in the case of uncertain results.
We also proposed an improved merging algorithm to recover
the definitive shape through the minimization of a custom
distance metric, achieving better results than in previous
approaches (see Sec. II).
Advantages and limitations. Our approach allows casual
users to rapidly acquire complex multi-room models in a
non-Manhattan world using only commodity devices. The
output of the system returns room shapes scaled to real-
world metric units and employs a fully automatic floor
merging step. Compared to similar approaches our method
overcomes some of their limits, being more effective in corri-
dors, big rooms and generally reducing the inevitable human
error associated with this type of measurement (Sec. V). The
method supports walls that do not intersect at right angles,
but, due the particular assumptions of the acquisition model,
the method doesn’t recover curved walls, sloped ceiling and
structures that don’t belong to the perimeter of the rooms.

II. RELATED WORK

Many approaches have been proposed to automatically
recover the architecture of an indoor scene, ranging from
3D laser scanning to image-based methods. Devices such
as laser scanners represent often the most effective but
also expensive solution for a fast and accurate acquisi-
tion [27], for this reason their use is often reserved to
specific applications such as in cultural heritage field. Start-
ing from the output of these devices the reconstruction
methods depend on the purpose, sometimes creating visually
realistic models [6], [7], [26], architectural floor plans [24]
or semantic 3D models [28]. Even though some of these
3D reconstruction algorithms extract planar patches from

data [1], [13], [23], these usually have the goal of find-
ing simplified representations of the models, rather than
identifying rooms, walls, ceilings, and floors. On the other
hand many 3D reconstruction methods based on images have
surfaced, whose accuracy compares to laser range sensor
systems at a fraction of the cost [18]. Furukawa et al. [8]
reconstruct the 3D structure of moderately cluttered interiors
by fusing multiple depth maps (created from images) using
the heavily constrained Manhattan World [4] assumption,
through the solution of a volumetric Markov Random Field.
These image-based methods have demonstrated potential,
but they tend to be computationally expensive and do not
work well on texture-poor surfaces such as painted walls,
which dominate interiors. Recently Cabral et al. [2] extend
the work of Furukawa et al. [8] by extracting depth cues
also from the single images and considering the floor plan
reconstruction as a shortest path problem on a specially
crafted graph, enforcing piecewise planarity and managing
simple cases of Non Manhattan World scenes. SLAM-based
reconstruction has been shown to work on smartphones by
Shin et al. [20], who used sensor data to model indoor
environments. Although limited to short-range indoor scan-
ning, Kim et al. [10] showed how to acquire indoor floor
plans in real-time, but under the constraints imposed by the
Manhattan World assumption. Their approach is hardware-
intensive, requiring the user to carry a Kinect camera, pro-
jector, laptop and a special input device while capturing data
around the house. The recent presentation of Google Project
Tango [9] confirms there is a growing interest in mobile
devices to recover 3D indoor scenes in an easy and cheap
way, with the goal of enabling non-technical users to obtain
a quick even if approximative reconstruction of an indoor
environment, just exploiting commodity devices. In this field
commercial solutions as MagicPlan [19] reconstruct floor
plans by marking floor corners visible from the room’s
center via an augmented reality interface. This approach
manages also non-Manhattan world scenes, but requires
manual editing for room assembly and is susceptible to error
when floor corners are occluded by furniture, requiring the



user to guess their positions. Systems as Locometric [11]
acquire the walls orientation by placing the smartphone
on the wall surface and tracking approximatively the user
position with a step tracker. The captured data is then
exploited to support a sketch-based framework to manual
edit and scale the floor plan. With an acquisition approach
similar to MagicPlan [19], Sankar et al. [17] reconstruct
individual room shapes geometrically calculated using only
the horizontal heading of the observer, assuming they must
be Manhattan-world shapes. The resulting rooms have arbi-
trary dimensions and need manual scaling and manual iden-
tification of correspondences between doors before the floor
plan can be assembled. Exploiting the redundancy between
the instruments available on modern mobile devices Pintore
et al. [15] obtain indoor building layouts non necessary
limited to non-Manhattan world assumptions and scaled
to metric dimensions. This approach has demonstrated to
be potential but lacks in accuracy in several environments
as corridors, big halls and generally when rooms have far
or dark corners. We enhance and extend this approach by
improving both the capture and reconstruction subsystems,
obtaining more accurate results (see Sec. V), and supporting
the reconstruction of environments where usually previous
methods fail, as big halls with dark corners, very narrow
rooms or corridors.

III. OVERVIEW

The method is implemented as a single mobile application
and it can be summarized in two blocks: interactive scene
capture and automatic scene processing.

A. Interactive scene capture

We capture the scene by walking between rooms, ideally
drawing the wall upper or lower boundary aiming the
phone camera at it. During the acquisition a video of the
environment is recorded and every frame spatially indexed
using the phone’s sensors data, storing angular measures
coupled with images for every room. Exploiting this initial
information a coarse 2D layout of the room is displayed on
the device screen, highlighting potential wrong estimations
of the walls position, according to statistical indicators (see
Fig. 1 center). An additional measure procedure is then
performed for the unreliable walls, as illustrated in IV-B.
When the single room acquisition is completed the user
moves to the next one aiming the phone camera to the exit
door while the application tracks his direction and updates
a graph with the interconnections between the rooms.

B. Automatic scene processing

We consider a 2D model of the floor plan where the center
of each room is the observer position, the walls coordinates
depend on the azimuth θ (defining the heading of the current
target point, Eq. 1) and d is the distance between the wall
and the observer (see Fig. 2 left). We calculate d from

the angle γ according to eq. 2 or, alternatively, we can
obtain this measurement directly from the mobile device
if the feature is supported (for instance with the Google
Tango device). By combining the acquired points and the
associated image data we estimate a 2D line for each wall
segment, obtaining an initial room representation. Due to
the model approximation and measurement error (mainly
human error during the acquisition) the shape produced
is still a coarse representation of the room. To improve
it we use a merging algorithm, introducing the corrected
orientation measurements stored at acquisition time and
iteratively refining the scale of the corner positions, ob-
taining as result a room shape already represented in real
world metric coordinates, without restricting the problem
space to the Manhattan World assumption. Exploiting the
interconnection graph generated during the scene capture we
calculate through doors matching all the transformations to
generate the whole floor plan, assuming as origin of the
coordinates system the room with the best fit values (see
Sec. IV-B).

IV. SYSTEM COMPONENTS

A. Scene acquisition

To capture the scene we adopt a model based on [15],
illustrated in Fig. 2 (left and center) and summarized as
follows. The first goal of this method is to obtain a set
of boundary points between the wall and the ceiling, from
which the wall position and the corner points can be
estimated. We assume that the observer’s position is the
origin of room’s coordinates and each targeted point p is
represented with metric Cartesian coordinates as

p(x, y) = (d ∗ cos θ, d ∗ sin θ) (1)

where the angle θ is the heading of the targeted point with
respect to the magnetic North and d the distance from the
observer to the wall. Assuming the height of the eye he and
the height of the wall hw are constant and known in metric
units, the distance d is estimated from the angle γ through
the equation

d =

{
(he/ sin γf ) ∗ cos γf

((hw − he)/ sin γc) ∗ cos γc
(2)

where γf is the tilt angle if the observer is aiming to
the intersection between wall and floor and γc is the tilt
angle if the observer is aiming to the intersection between
wall and ceiling (Fig. 2 center). Alternatively, since next
generation mobile devices are beginning to integrate depth
sensors exploiting computer vision techniques or dual cam-
era technologies to estimate the focus distance (e.g., Google
Tango [9], as well as some new smartphones such as the
HTC One M8 and other Android 4.4 devices), the value
d could be obtained directly without the need of Eq. 2.
However, at the time of this writing devices with depth



Figure 2. Left: top view of the acquisition model. When a wall is marked as unreliable (red line) we perform a further acquisition step to estimate its
orientation θw in respect to the Magnetic North. Center: side view of the acquisition model with γ = γc. As we can evince from eq. 2 the points can be
acquired indifferently aiming at the floor or at the ceiling, overcoming a typical problem of previous systems such as MagicPlan [19] which are prone to
considerable errors when corners on the floor are occluded. Right: unreliable walls are fixed through the easy procedure described in IV-A.

measurement capabilities are not on the market yet; further,
currently available devices return uncalibrated depth values
at short range (maximum 2 meters) and without a real
spatial reference. To acquire a room the observer rotates
360 degrees, following an ideal trajectory with the phone
camera with the goal of keeping boundary of the wall (upper
or lower) on the target in the middle of the screen (see
Fig. 1 left). During this phase we automatically store a
set of samples for each wall containing the angles θ, γ,
ρ, respectively the azimuth, tilt and roll identifying the
targeted point at each instant within the illustrated model,
and a time index expressed in milliseconds identifying the
corresponding frame in the video sequence. Once a room
corner or a door extremity is reached the user records the
event with a click on the screen (for doors, one click for each
extremity) storing its azimuth θ, then he proceeds acquiring
the next wall.

Unlike [15], after the user completes the entire perimeter
of the room a coarse reconstruction of the acquired layout
is displayed by the application interface (see Fig. 1 cen-
ter) highlighting potentially wrong wall representations (see
Sec. IV-B). The user is then invited to acquire a measurement
of the wall orientation θwi in respect to the magnetic North
by placing the smartphone on its surface (see Fig. 2 right).
Considering that the x axis in our room coordinates system
is also the heading of the magnetic North, for each wrong
wall segment W̃ ∗

i we store an additional angle

αwi = θwi − 90 (3)

expressed in degrees and representing the new orientation of
the wall with respect to the room coordinate system. This
information is stored together with the other measurements
and used for the final reconstruction (see Sec. IV-C). Once
the room is completely acquired the user moves to the next
one aiming the phone camera to the exit door. The passage
to the next room is automatically identified by tracking the
direction of the movement. This information is then stored
in a graph of rooms interconnections (see Sec. IV-D).

B. Coarse room reconstruction

We assume our room model is a closed polygon bounded
by a set of segments (walls) {W̃0 · · · W̃n}. Since we ac-
quired the wall boundaries by imposing a linear trajectory,
we expect the slope and position of each wall W̃i to be
identified by the 2D line that best fits the samples Si

= {s0 · · · sm}, which were acquired between two corner
angles θi−1 and θi (order of a thousand samples per
wall). Each sample sk is identified by its metric Cartesian
coordinates according to Eq. 1 and by a time index tk
identifying its associated image inside the video sequence.
As demonstrated in previous work [15], the exploitation
of the additional information provided by the image data
considerably improves the quality of the reconstruction. To
integrate this information in our system we adopt a weighted
linear regression method, calculating for each sample sk its
weight wk by considering the associated frame fk at the
instant tk as proposed in [15].

Once we have calculated the weights a linear equation

y(x) = a+ bx (4)

is recovered by the minimization of the following quantity:

χ2 =

m∑
i=0

wi(yi − a− bxi)2 (5)

The Cartesian coordinates of the samples si = (xi, yi)
are calculated from Eq. 1 and depend only on the inertial
measurement unit (IMU), while the weights wi are computed
from the edges detected in the associated images fi. Since
the residuals of the trajectory follow a normal distribution,
the goodness of fit can be computed by employing the
standard coefficient of determination R2 [14], defined as

R2 = 1− SSres

SStot
(6)

where SSres =
∑m

i=0 wi(yi−a−bxi)2 is the weighted sum
of residuals, while SStot =

∑m
i=0 wi(yi− ȳ) is the weighted



variance. According to this definition, values of R2 close to
1 indicate that a perfect linear fit has been recovered for
a given wall. Given the estimated walls {W̃0 · · · W̃n}, their
intersections {p̃0 · · · p̃n} identify the room’s corners. Each
wall is marked as reliable or unreliable according to the
following criteria:

W̃i

{
reliable R2(w̃i) >0.95
unreliable R2(w̃i) <0.95

(7)

If a wall is marked as unreliable, we follow the additional
measurement step illustrated in Sec. IV-A and define a new
corrected wall Wi by the line with direction αwi (Eq. 3) and
passing through the midpoint between p̃i and p̃i+1. On the
other hand, for reliable walls Wi ≡ W̃i.

Figure 3. Room shape optimization An example with the error intentionally
increased: the polygon P(δ,c5) starting from the corner c5 along the angle
δ 20 degrees. The last intersection results in the point p5 and an associated
angle φ5. In the ideal case the last intersection pi should almost coincide
with a starting point ci; likewise, the angle φ5 should coincide with the
angle φ∗5 .

C. Room shape refinement

Once we have calculated the set of walls {W0 · · ·Wn},
we use their intersection points {p0 · · · pn} to calculate their
relative corner angles {φ0 · · ·φn} (see Fig. 3). Since we
require that the system run almost in real-time on mobile
devices with limited resources we decided to employ a
fast custom method to recover the definitive shape of the
room. We consider all the possible closed polygons P (δ, ci),
starting from each ci corner (see Sec. IV-B) and having δ as
starting angle, with δ varying between 0 and 360 degrees.
Every polygon P (δ, ci) must have the angles {φ0 · · ·φn} as
internal constant angles; further, its corners must be on the
points of intersection with the constant rays ray(origin, θi)
– going from the room’s origin along the heading θi to
the point pi. We iterate for each ci ∈ {c0 · · · cn} and δ
between 0 and 360 degrees (i.e. 0.2 degree steps), tracing

the polygons intersecting the rays ray(origin, θi) with
segments along directions δ + φ (see example in Fig. 3),
searching for the polygon that minimizes the quantity

d(dc, φc) = (1− λ)dc + λ · φc (8)

where: dc = ‖pi − ci‖ is the distance between the current
starting point ci and its estimation after the last segment’s
intersection pi (in the ideal case it should coincide with the
starting point); φc is the difference between the angle φi
at the starting point ci and its estimation φi

∗ after closing
the candidate polygon; λ a weight factor balancing scale
error (each ci imposes its scale to the polygon) and angular
error (φi at the starting corner i ideally must close the room
shape). In our case we use λ = 0.25 (more weight on the
scale error).

D. Floor plan generation

Figure 4. Floor plan generation We choose the starting room r0 with
the best goodness of fit value (Eq. 6). We then align each other room to
r0, calculating the path to reach the starting room as a set of transforms
representing the passages encountered while moving from the aligned room
to r0.

For each connection (Fig. 4) stored in the acquisition
graph (see Sec. IV-A) we calculate the affine transform
Mj,j+1 representing the transform from the coordinates of
room rj+1 to room rj . A connection between two room is
defined as a pair of doors: the exit door from the previous
room (identified by tracking the movement direction) and
the entrance door to the next room (by convention, the
first one acquired). The user may happen to visit the same
room more than once (e.g., a corridor); for these cases,
we provided the acquisition application with an interface to
manually update the room id. Since a connection between



Table I
COMPARISON BETWEEN THE RECONSTRUCTION BASED ON SAMPLES AND IMAGES ONLY AND OUR FINAL RECONSTRUCTION.

Scene Samples and images only error Our method error
Type Area Rooms Area Corner Corner Area Corner Corner Unrel.

mq % angle max pos max % angle max pos max walls
Hotel F11 515 7 5.52 7.5 deg 85 cm 1.9 0.8 deg 20 cm 8

Residential 1 90 6 2.75 5.0 deg 22 cm 1.82 0.9 deg 8 cm 1
Residential 2 136 8 5.12 7.0 deg 27 cm 2.10 0.8 deg 12 cm 4

Office Block H 560 27 2.25 2.1 deg 36 cm 1.75 1.1 deg 15 cm 7
Office Block B 326 15 1.62 1.2 deg 42 cm 1.02 0.5 deg 10 cm 4

two rooms is defined as a pair of doors that are really
the same door expressed in different coordinates, we obtain
Mj,j+1 by applying a standard least squares method to the
corresponding door extremities. After selecting the starting
room r0 – chosen for having the best goodness of fit value
(Eq. 6) – we align the other rooms to it. For each aligned
room we calculate the path to r0 as a set of transforms
representing the passages encountered to reach r0 and the
whole transformation to the origin room coordinates. The
end result of the entire procedure is a floor plan that is
automatically aligned and scaled, without manual editing or
intervention.

V. RESULTS

We implemented the method as an Android application
(2.2 or higher compatible). To capture the scenes we em-
ployed an HTC One M8, with Quad-core 2.3 GHz CPU,
Qualcomm MSM8974AB Snapdragon 801 chipset, 2 GB
RAM, Adreno 330 GPU, 4 Mpixels dual camera. Even
though the HTC One M8 has innovative capabilities respect
to other commodity devices (i.e. dual camera, focus distance
estimation, etc.) we intentionally prefer to use only its stan-
dard features, currently available also on low-end devices,
such as accelerometer, magnetometer, gyroscope and single
camera. We present results for 5 building floors, distributed
between commercial and residential buildings (see Fig. 5 and
Table I), with both Manhattan World and Non-Manhattan
World scenes. We consider as ground truth the provided
blue prints and a manual measuring and modeling session
when they are not available, assuming the error illustrated in
Tab. I respect to these measures (actually the true measures
do not always coincide with the building layout supplied by
the architects. For the purpose of this work the difference
is negligible). We show in Tab. I a comparison between
the reconstruction based on an implementation of [15]
exploiting the samples and the images only (light blue) and
our method final result (blue). The area error is calculated
as the ratio of area incorrectly reconstructed to the total
ground truth area, the corners position maximum error is
the maximum depth error observed for each corner, whereas
the corner angle error is relative to the final result for
each room. In contrast to previous methods where uncertain
intersections between walls are approximated as Manhattan
World angles (90 degrees), our method never try to ap-

proximate the corner angles, overcoming the typical limits
of previous methods in presence of corridors, large halls
with dark corners, etc. We notice that a large part of the
error in the coarse reconstruction is due to the user handle
of the device. This error is fixed partially by the images
feedback and manly by the angle constraints imposed in
the final room shape reconstruction. Moreover since fixing
a wall orientation affects the coordinates of its extremities,
it adjusts also their heading θ (see model Fig. 2), correcting
the error that inevitably appears when a corner is manually
marked on the screen (see IV-A). Otherwise in previous
approaches as for example [17] this kind of error is not
managed, thus affecting the quality of the reconstruction.

As for other methods sloped ceilings, curved walls, struc-
tures that don’t belong to perimeter of the rooms are not
handled by our method as illustrated in Fig. 5, where the
room3 of the conference hall isn’t been reconstructed due to
a curved glass wall.

VI. CONCLUSION

We presented a mobile system to capture a built indoor
environment and automatically generate floor plans scaled
to their metric dimensions, without the need of heavy
Manhattan World constraints. Without specialized training
or equipment, our system can produce a 2D floor plan
(and eventually an extruded 3D model) just exploiting the
redundancy of the instruments commonly available on com-
modity smartphones. Our solution extends previous state-of-
the-art approaches to achieve more accurate results and to
overcome some of their limits. The results obtained can be
useful in many real-world applications, as for example those
focused on the structure of a building rather than the details
of the model, or as support for an interactive image-based
navigation. Since the trend for the future is the integration
of even more instruments on mobile devices, such a kind
of system can be extended to capture and manage more
complex features, allowing any user to real-time capture,
render and elaborate a 3D indoor environment just exploiting
commodity tools as smartphone and tablet.
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Figure 5. Comparison between blue prints/ground truth (right), a reconstruction based only on IMU measurements and images (light blue - center) and
our method (blue - left). Top: office floor with corridors and 15 rooms. Center: Residential building with 8 rooms and a long corridor. Bottom: Hotel
conference room. The acquisition covers the rooms accessible to visitors and attenders. We manage the corridor turn splitting it in two separated rooms,
considering the split line as a door in order to align correctly the two parts. We intentionally highlight the limits of our method showing as room3 isn’t
been reconstructed due to a curved glass wall.


