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We present a simple, fast and robust complete framework for 2D/3D registration capable to align in a semi-automatic or
completely automatic manner a large set of unordered images to a massive point cloud. Our method converts the hard to
solve image-to-geometry registration task in a Structure-from-Motion (SfM) plus a 3D/3D alignment problem. We exploit a
SfM framework that, starting just from an unordered image collection, computes an estimate of the camera parameters and
a sparse 3D geometry deriving from matched image features. We then coarsely register this model to the given 3D geometry

by estimating a global scale and absolute orientation using two solutions: a minimal user intervention or a stochastic global
point set registration approach. A specialized sparse bundle adjustment (SBA) step, that exploits the correspondence between

the sparse geometry and the fine input 3D model, is then used to refine intrinsic and extrinsic parameters of each camera.
Output data is suitable for photo blending frameworks to produce seamless colored models. The effectiveness of the method is
demonstrated on a series of synthetic and real-world 2D/3D Cultural Heritage datasets.
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1. INTRODUCTION

Modern 3D acquisition systems are able to rapidly digitize an object geometry with high accuracy and
resolution, producing massive digital models with billions of samples. Such highly detailed models
are extremely well suited for Cultural Heritage (CH), where both dense and extensive sampling is
required. Just a dense geometry is, however, not enough for all CH needs: additional color information
plays a key role in reconstructing a high-quality digital model.

Many approaches exist to obtain object color. Some range scanners also acquire color, but their color
resolution and quality are often insufficient for CH purposes. Moreover, some of them lack this ca-
pability at all. One possible and automatic solution is a calibrated camera rigidly mounted on the
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scanner. Unfortunately, the different position of the range sensor and image sensor results in pos-
sible occlusions, so that the color in some portions of the geometry will probably be missed. Even
when these alignment problems can be solved, this simultaneous acquisition approach has too many
limitations. For example, lighting conditions need often to be different between 3D scanning and pho-
tographic campaigns, and the photographic dataset is often required to be modified at a later time, e.g.,
to evaluate the effects of restoration. Some modern high resolution scanners do not even provide the
possibility to attach additional cameras for color acquisition (e.g., Minolta Range7 [Minolta/Range7
2013]). Moreover, although the presence of a mounted camera makes the coarse alignment straight-
forward, by simply including those images into the SfM framework presented in Pintus et al. [2011c],
it won’t work with a general 2D signal. Multi-spectral (MS) acquisitions (e.g., Far Ultra-Violet, Far
Infra-Red Thermal images) are very important in Cultural Heritage preservation and restoration, and
they could contain very different appearance features, due to the different absorption and transmit-
tance properties of these wavelengths, which are far from the visible spectra. Since these signals are
hardly comparable, a multi-view approach that includes both them and RGB data will be more likely
to fail. This kind of capture is typically performed using devices that are not available in modern scan-
ners, and in general they cannot be mounted on them. Moreover, the different acquisition times and
hardware setups in the 3D and MS acquisitions make these two pipelines difficult to be performed
simultaneously.

Recent powerful sensors allow us to effectively measure color with off-the-shelf cameras. Mapping
acquired images requires the solution of a 2D/3D registration problems. Several approaches have been
proposed that cope with the image to 3D geometry registration problem, ranging to reliable but time-
consuming manual approaches to more effective (semi-)automatic techniques, which are, however, typ-
ically applicable only to limited object classes (see Sec. 2).

Our main contribution is a practically useful, robust method for simultaneously registering a un-
ordered collection of photographs to a 3D geometry. Our method converts the hard to solve image-
to-geometry registration task to a Structure-from-Motion (SfM) plus a 3D/3D alignment problem. We
exploit a SfM framework that, starting just from an unordered image collection, computes an estimate
of the camera parameters and a sparse 3D geometry deriving from matched image features. We then
use this data to compute a coarse 2D/3D registration by aligning the 3D point cloud produced by the
SFM to the geometry of the object. Finally, a specialized sparse bundle adjustment (SBA) step, that
exploits the correspondence between the sparse geometry and the fine input 3D model, refines intrinsic
and extrinsic parameters of each camera.

This work is a significantly extended version of our VAST2011 contribution [Pintus et al. 2011c].
Besides supplying a more thorough exposition, we provide here significant new material. Our main
novel contributions are the following:
• a completely automatic solution for estimating a coarse image-to-geometry alignment by using a

GPU-based global affine 3D point set stochastic registration approach (Section 6.2); the method
complements our previous semi-automatic technique. Besides its comparable quality in registra-
tion accuracy, the automatic approach opens the door to the more interesting implementation of
unattended alignment and mapping services;

• a robustified and adaptive method, using robust statistics to cope with outliers and adaptive local
tolerances based on sample spacing to manage non-uniformly sampled 3D geometry; the method is
therefore more general and robust with respect to our previous solution and does not require the
hand-tuning of tolerance parameters (Section 7);

• an extensive quantitative and qualitative evaluation of our method on a series of synthetic and
real-world 2D/3D CH datasets (Section 8).
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Our results demonstrate that this registration pipeline provides high quality results and consistent
color mapping all over the surface of 3D models.

2. RELATED WORK

Our system extends and combines state-of-the-art results in a number of technological areas. In the
following, we only discuss the approaches most closely related to our novel contributions. We refer the
reader to the classic survey of Hantak and Lastra [2006] for a general verview of registration results
in terms of different information-theoretic metrics. This paper focuses on the registration step of the
colorization pipe-line. Coloring the model starting from registration data is an orthogonal problem.
Results presented here are based on our color blending pipe-line [Pintus et al. 2011b; 2011a].

2.1 2D/3D Registration

Manual 2D/3D correspondence selection. The classic photo-mapping approach requires users to
manually define correspondences between the image and the 3D model, typically using a point-and-
click interface [Dellepiane et al. 2008], which are then refined through error minimization. Since this
straightforward approach is tiring and time-consuming, research has focused on reducing or simplify-
ing manual operations, e.g., by assisting the user by showing possible feature matches between photos
and rendered model [Borgeat et al. 2009], or reducing the manual effort by exploiting both matches
between image and geometry, and correspondences between pixels in different images [Franken et al.
2005]. These manual methods are robust, but easily become hard to apply to large image sets. Our
method automatically computes 2D/3D alignment and remains suitable even if the image set size
grows (hundreds of photos).

Automatic 2D/3D feature detection and matching. Feature-based techniques match 3D features
with image features to solve the image-to-geometry problem in a completely automatic framework.
This problem is in general very complex, since photographs and geometric models have a very different
appearance. For these reasons, methods in this area are limited to some specific models (e.g., architec-
tural models with sharp edges in 3D and high contrast features in 2D). A class of methods [Kaminsky
et al. 2009; Stamos and Alien 2001] rely on the presence, in outdoor and indoor scenes from 3D LI-
DAR scanning, of linear edges in the geometry, and straight lines in images of maps and/or floor plans.
Methods exploiting silhouette information to find the camera poses by minimizing the error between
the contours of the rendered input 3D model and the object in the input images [Lowe 1991; Brunie
et al. 1992; Lensch et al. 2000] typically need to have the whole object visible in each image and a
good separation between foreground and background. Other approaches rely on linear or circular 3D
features [Stamos et al. 2008], orthogonality constraints [Liu and Stamos 2005], edge intensity [Neuge-
bauer and Klein 1999], clusters of vertical and horizontal lines [Liu et al. 2006], or viewpoint-invariant
patches with strong geometric features [Wu et al. 2008]. We do not rely on particular geometrical fea-
tures defined a priori, such as lines, orthogonal planes, circular features. As a SfM-based approach, the
proposed method works in the general case of a moderate presence of any kind of geometrical and/or
texture features, which is normally required by any classical SfM algorithms. Our method is more gen-
erally applicable, since we do not rely on finding similarities between images and geometry, but only
among images, which is a much simpler problem.

Semi-automatic 2D/3D statistical registration. Intensity-based registration techniques rely on global
measures such as photo- consistency and mutual information [Viola and Wells 1997], avoiding feature
extraction. Correlation is maximized between image content and some measure present in the range
maps, such as normals [Viola and Wells 1997], intensity of the reflected laser beam [Williams et al.
2004; Hantak and Lastra 2006], reflectance [Ikeuchi et al. 2007], or LIDAR elevation and probability
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of detection [Mastin et al. 2009], and simulated renderings [Cleju and Saupe 2007; Corsini et al. 2013].
These approaches require, however, a manual camera pose initialization to converge to the right solu-
tion, and attributes used for correlation purposes are not always available. Again, our method is more
generally applicable, since it does not depend on any additional attribute and does not require manual
camera pose initialization.

Geometric multi-view reconstruction and matching. Robust multi-view reconstruction techniques de-
rive both a global coarse estimation of camera poses and a sparse point cloud from images, correspond-
ing to triangulated feature points. The alignment of the dense input geometry with the computed
sparse point cloud implicitly solves the original 2D/3D registration problem. Zhao et al. [2005] recover
relative camera positions and a point cloud from a video sequence using motion stereo. The user has to
manually register only two frames with the 3D model to obtain absolute orientation and global scale.
Instead of being limited to dense and ordered frame sequences, our method deals with unordered sets
of sufficiently overlapping photos. It then refines camera parameters during 3D/3D registration, and
does not require user intervention. Although a uniform image sampling might be a good starting point,
eventually some complex regions must be acquired with an adaptive number of frames, which depends
on the number and the nature of surface occlusions. This will produce in practice an unordered im-
age sequence, with an ordered sequence as one of its possible subsets. Further, adopting unordered
frame sequences results in two main advantages: besides the constraints given by the SfM algorithm
(i.e., sufficient overlap between images), we do not properly require a dense image sampling, saving the
memory footprint of the 2D dataset; we do not even rely on known ordered captures, coping with a more
general and more common case in the Cultural Heritage field. Moreover, it will be possible to merge ad-
ditional photographic datasets acquired in the future with different capture strategies. Similarly to our
approach, Li and Low [2009] apply SfM to an image set. However, their refinement step depends on the
presence of artificially textured planes in the geometry, obtained by projecting special light patterns.
Further, their cost function mixes measures in both world (point-to-plane distances) and pixel (re-
projection errors) coordinates, weighting these terms with a heuristic parameter, that heavily depends
on the object geometry/extent, and requires manual tuning. Conversely, our energy function contains
only squared error measurements in image space and does not require any additional parameter. The
most closely related works in this area are the method proposed by Banno and Ikeuchi [2010], and
our VAST2011 contribution [Pintus et al. 2011c]. They presented similar semi-automatic techniques
that requires some user-defined parameters and a minimal amount of user manual operations. After
the initial manual alignment they launch a refinement step based on robust minimization. They differ
in the used image dataset and in the error metric employed in the minimization; the former employs
spherical stereo images and an object space distance, while the latter uses a more general unordered
image sequence and a cost function that relies on a 2D distance proportional to vertex re-projection er-
rors. Pintus et al. [2011c] proposes an optimization procedure in order to refine the image-to-geometry
registration based on a multi-view reconstruction and matching, but it is only applicable to uniformly
sampled 3D models. Compared with these previous works, here we do not require user-defined pa-
rameters, we remove the user intervention with a fully automatic coarse registration, we provide the
possibility to deal with non-uniformly sampled models, and we improve the robustness of the registra-
tion refinement by modifying the error cost function that drives the minimization. Recently, Corsini et
al. [2013] proposed a closely related automatic method, exploiting an extension of the 4 Point Congru-
ent Set (4PCS) algorithm [Aiger et al. 2008] for 3D/3D coarse alignment between the 3D model and
the sparse point cloud resulting from SfM, and refining it using mutual information. Their image-to-
geometry pipeline is general, robust and its main advantage is that it doesn’t require any particular
assumption regarding the objects, being capable of dealing with small and big geometry of any topol-
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ogy. Here we propose an orthogonal approach that automatically computes the coarse registration with
a stochastic global method and performs refinement with a sparse bundle adjustment framework. In
contrast to Corsini et al. [2013], we do not require a heavy preprocessing for cloud densification.

2.2 3D/3D registration

The 3D/3D registration step in our method must align the point cloud resulting from SfM with the
3D model by estimating relative scale, translation, and orientation. Point cloud registration has long
been studied, and we refer the reader to the survey of Tam et al. [2013] for a very up-to-date coverage
of the state-of-the-art. While the Iterative Closest Point (ICP) algorithm [Besl and McKay 1992; Chen
and Medioni 1992] constitutes a gold standard for local alignment tasks, i.e., when a rough alignment
already exists, efficiently finding an initial pose is still a very active area of research.

Classic techniques, such as the generalized Hough transform [Hecker and Bolle 1994], geometric
hashing [Wolfson and Rigoutsos 1997], and pose clustering [George and Stockman 1987] are guaran-
teed to find the optimal solution (at least in the rigid case), but are limited to very small and noise-free
point clouds. Noisy measurements are often handled through robust statistics, such as general maxi-
mum likelihood estimation [Granger and Pennec 2002], kernel correlation [Tsin and Kanade 2004], or
mixture of Gaussians [Jian and Vemuri 2005]. Instead of using one-to-one correspondences, these ap-
proaches work with multiple, weighted correspondences. Although this significantly widens the basin
of convergence, the computational cost limits the applicability to very small point clouds (hundreds of
samples) [Tamaki et al. 2010].

The most common approaches for point cloud registration rely on local geometric descriptors, such
as spin images [Johnson and Hebert 1999], or integral volume descriptors [Gelfand et al. 2005], which
are detected in both clouds and then matched. Our problem, is, however, characterized by a strong
asymmetry and large presence of outliers, since the point cloud derived from SfM is too sparse to
reliably compute local descriptors and the overlap between photo-captured environment and 3D model
is widely variable. The 4PCS method [Aiger et al. 2008] achieves robustness by combining a non-local
descriptor (four coplanar points) with a generate-and-test RANSAC scheme. The method has been
extended to Corsini et al. [2013] for the estimation of different scale between the point clouds to align.
This approach, however, requires coarse point cloud densification, as well as a partitioning into planar
regions of the two point clouds, which is achieved through variational shape approximation [Cohen-
Steiner et al. 2004], and could fail if the SfM point cloud is too sparse.

As an alternative to combinatorial optimization based on feature matching, pose estimation can be
attacked by minimizing a cost function with a global optimizer. For small datasets, rigid alignment al-
gorithms have been proposed by using deterministic branch-and-bound methods [Breuel 2003; Olsson
et al. 2009], or Lipschitz global optimization [Li and Hartley 2007]. Papazov and Burschka [2011] re-
cently proposed a stochastic global optimization approach for rigid robust point set registration, based
on Bilbro and Snyder’s tree annealing algorithm [1991]. It is a stochastic sampling method which
uses a generalized Binary Space Partitioning (BSP) tree and allows for minimizing nonlinear scalar
fields over complex shaped search spaces like the space of rotations. As a result, the method is ro-
bust and outlier resistant. In our work, we extend this approach to similarity transforms, and combine
the pure stochastic sampling approach with a more domain-specific method that locally solves abso-
lute orientation problems. Outliers are handled by employing a robust and adaptive pruning strategy,
and efficiently solving absolute orientation through iteratively re-weighted least square solution. This
approach is made possible by harnessing the power of GPUs [Cayton 2010] to rapidly compute corre-
spondences between the two point clouds during optimization.
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3. TECHNIQUE OVERVIEW

Our technique is outlined in Fig. 1. We take as input a dense 3D model and a set of n photographs. The
photographic dataset can cover the complete surface of the 3D object, only a part of it, or a larger area.
No constraints are placed on the nature of the input dense geometry; it could be either a triangle mesh
or a point cloud, and we don’t need particular geometric attributes (e.g., normals or influence radii) or
the presence of known geometric features (e.g., lines).

Our 2D/3D calibration is performed in three main stages: SfM, semi-automatic or completely au-
tomatic coarse alignment, and fine registration. In the first stage, we apply a SfM algorithm for un-
ordered image collection to self-calibrate images and obtain an initial sparse 3D reconstruction of the
part of the model covered by the photographic campaign (Sec. 5). This provides us a sparse 3D model
derived from matched image features, all camera poses in a common reference frame, and the intrinsic
parameters of each camera.

In the second stage, the SfM model, reconstructed up to an unknown scale-factor, is coarsely aligned
in a semi-automatic or automatic manner to the dense input 3D model (Sec. 6). In the semi-automatic
pipeline the user manually selects correspondences between a small subset of photos (typically just
one) and the detailed model. These matches and the camera parameters are used to solve for the affine
transformation that maps the SfM world to the dense model. In the latter case we reach the same
result with a completely automatic stochastic global optimization approach, by exploiting the power of
modern GPU devices.

In the final stage, a SBA calculates the final registration in a non-rigid deformable manner, con-
straining the features detected in the images to lie on the fine 3D model, (Sec. 7).

The output data (camera parameters) can then be used, together with the n photos and the dense
model, to blend the texture data on the geometry to produce a globally coherent colored model.

Fig. 1. Pipeline. Given the image set, a SfM algorithm computes a sparse point cloud and related camera poses. In a semi-
automatic (minimal user intervention) or automatic (stochastic global optimization) manner we coarsely register the SfM and
the input model. The final registration, refined with a specialized SBA, can be used to obtain a globally coherent colored model,
blending all registered photos together on the input point cloud.

4. PHOTO CAPTURE

Besides avoiding to take images with excessive blur or noise, and under- or over-exposed regions,
our pipeline does not impose particular constraints on the image set, since SfM algorithms exist to
cope with challenging data, such as images that exhibit large variations in illumination, viewpoint,
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zoom, resolution, and contain outliers and clutters. For a description of typical SfM capabilities and
limitations see the work of Snavely et al. [Snavely et al. 2008]. Further, techniques exist which perform
texture blending for producing seamless colored models with such non-ideal color information [Pintus
et al. 2011b; 2011a]. For both methods, we only need sufficient overlap among images. A good practice
is to have the same feature being visible in, at least, three or four photos.

5. STRUCTURE FROM MOTION RECONSTRUCTION

The first step of our pipeline is the self-calibration of the image collection, independently from the
dense 3D geometry. This task is performed using a robust SfM algorithm suitable to align unordered
large image collections [Snavely et al. 2006]. For each image, the method computes several thousand
image features [Lowe 2004] and, then, it matches the features from different images by using ap-
proximate nearest neighbors [Arya et al. 1998] and RANSAC [Fischler and Bolles 1981]. Then, a SfM
algorithm recovers camera poses and sparse geometry by minimizing a non-linear energy function
proportional to the re-projection error of 3D points into original image features. Given NC photos, the
output is a list of NC estimations of intrinsic (i.e., focal length and distortion coefficients) and extrinsic
(i.e., rotation and translation) camera parameters C = [c1, c2, ..., cNC

], a list of N triangulated 3D points
Q = {q1, ...,qN}, and pixel coordinates si,j of the projection of a sparse point qj in the ith input image
(i.e., key point location for that 3D point).

6. COARSE ALIGNMENT

After the SfM stage, we have two geometric representations of the scene with different scales, reference
frames and resolutions: the dense model point set P = {p1, ...,pM}, provided as input, and the sparse
point set Q = {q1, ...,qN}, deriving from SfM, which contains the triangulated image features. In
order to position cameras into the reference frame of the detailed input model, we need to find the
affine transformation T that determines the scale, rotation and translation, which best aligns Q with
P. Applying the same transformation T to the cameras will then allow us to project acquired colors to
the original model.

Here, we present two possible solutions: a practical fast semi-automatic procedure with little human
intervention, useful in the conventional 3D acquisition pipeline, and a novel completely automatic
registration method, useful, for instance, for the creation of remote 2D/3D registration services.

6.1 Semi-automatic coarse alignment

The user has to align one (or a few) image to the fine model by graphically selecting few matches
(i.e., typically from 7 to 12) between 3D points in the fine model and image pixels. Using the intrinsic
parameters computed by SfM, we can estimate the pose of the selected camera in the reference frame of
the fine model by minimizing re-projection error, i.e. the sum of squared distances between the picked
image points and the projection of the selected object points. Optionally, the process can be repeated
independently for two or three images, chosen so that the mutual distances between camera pairs
are as large as possible, minimizing error drift. It should be noted that this procedure assumes that
the SfM pipeline is capable to produce a model which is approximately correct and does not contain
major geometric errors, especially systematic ones. If this is not the case, e.g., in the presence of large
drifts possibly generated by sequential SfM approaches, coarse alignment may fail. In our experience,
such failure case occurs very rarely in practice. Moreover, drift-related problems can be mitigated by
using more robust multi-stage SfM pipelines [Gherardi et al. 2010; Sinha et al. 2012] or by manually
splitting the input image dataset, applying our technique to each obtained subset, and merging the
results before refinement.
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Using the intrinsic and extrinsic parameters estimated for that small set of cameras, we build a
set of correspondences between points in the dense and sparse SfM models. For each feature in the
chosen image subset, which already corresponds with a point in the sparse 3D from SfM, we cast a
ray to find the corresponding point in the detailed model. At the end of this process, we obtain two
sparse point clouds that are subsets of the two 3D geometries with known correspondences. We then
find the global scale factor and a rigid alignment of these point-sets (i.e., rotation and translation)
by applying a well-known absolute orientation algorithm [Horn 1987]. We implemented it in a robust
weighted RANSAC-based framework to remove possible outliers due to the non-complete overlapping
among datasets [Chum et al. 2003]. Each point-to-point match in the absolute orientation algorithm
is weighted proportionally to the inverse of the pre-computed local density of the fine 3D model. This
affine transformation is then applied to the SfM model to approximately register the sparse geometry
and all the cameras in the same reference frame of the dense model.

6.2 Automatic coarse alignment

Aligning the coarse point cloud Q with P requires the solution of a global optimization problem to
determine the optimal affine transformation T of the form T (q) = sRq+ t for a rotation matrix R and
a translation vector t. By parameterizing the transformation with a vector x, and defining a corre-
spondence function C(q) which selects, for each point in Q, the closest (corresponding) point in P, the
optimal registration is given by minimizing over x:

x = argmin
x

E(x) :=

N
∑

i

ǫ(‖Tx(qi)− C(Tx(qi))‖) (1)

where ǫ(d) is a robust kernel for M-estimation, i.e., a fitting criterion that is not as vulnerable as least
squares to unusual data. For this paper, we use the Huber kernel [Huber and Ronchetti 2009],

ǫ(d) =

{

d2

2
d ≤ k

kd− k2

2
d > k

(2)

where k is a tuning constant. We set k = 1.345σ, where σ is the estimated standard deviation of the
alignment errors, in order to produce 95% efficiency when the alignment errors are normal, and still
offer protection against outliers when no information about outliers is available [Huber and Ronchetti
2009]. We find the solution of Eq. 1 through a problem-aware stochastic search of the parameter space.
The value of σ is set by default to 20 times the average sample spacing of the dense model.

6.2.1 Parametrization. Our parameter vector x has 7 parameters: 1 scalar for the scaling factor s, 3
for the translation vector, t, and 3 for a the three angles (φ, ψ, θ) ∈ [0, 2π)× [0, π]× [0, π] necessary to de-
fine a redundant-free rotation space parametrization based on the axis-angle representation of SO(3)
(i.e., φ and ψ for the spherical coordinate representation of the rotation axis, and θ for the rotation
amount around this axis). This rotation parametrization has already been used in other stochastic
minimizers in the rotation space [Papazov and Burschka 2011], as it leads to simple techniques for
achieving uniform sampling and equal volume bisection of the parameter space. For further details
about space parametrization, search space structure and advantages in using this representation,
see Section 4.1 in Papazov and Burschka [2011] for a use related to the proposed method, and see
Kanatani’s book [Kanatani 1990] for a generic treatment of the topic.

6.2.2 Parameter range estimation. Given the point clouds P and Q, it is trivial to determine the
bounds for translation and rotation parameters that ensure that at least a minimal overlap between
the point clouds exists. Setting bounds for scaling, however, requires some knowledge, e.g., to avoid
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(a) One original photo (b) Screen probability (c) Depth probability

(d) Overall probability (e) Pruned point cloud

Fig. 2. Outlier removal for scaling estimation. (a) one original photo from the input image set; (b) and (c) are respectively
the screen and depth probabilities related to the single image (a); (d) is the per-point overall probability, obtained by accumulat-
ing the probabilities from all the input images; (e) the resulting point cloud after the pruning based on the computed probability.
We use a color map where high values are depicted in red while yellow values represent low probabilities. Fountain dataset
courtesy of Strecha et al. [2008; 2011].

the trivial solution of a null scaling factor and to restrict the search range. We cannot assume that the
two point clouds have perfect overlap, since the sparse point cloud Q computed by the SfM algorithm
will certainly contain many points belonging to the object, but also a possibly large number of out-
liers from the surroundings. These points lead to potential problems in the estimation of the feasible
scale range for the stochastic global optimization routine. Thus, in order to automatically determine
a good scaling range, we use an heuristic to extract from the coarse point cloud a subset of points
belonging to the object of interest. We assume that during the photo capture process, the acquired
images will typically have the object of interest as the main photographic subject in the foreground,
and the whole environment surrounding it as background. So, for each camera image, we estimate a
per point foreground probability value, which represents the probability that a point in qi ∈ Q appear-
ing in the image belongs to the foreground object. This probability is the mixture of depth-based and
screen-based Gaussians. The depth-based value is determined with a Gaussian function centered at z
eye coordinate of the nearest 3D sparse point, with a variance proportional to the median of all z eye
coordinates for that camera. The screen-space weight is computed instead with a Gaussian function
with the peak at the image center, and the variance equal to a quarter of the image width. We then
loop for all images, accumulating the probabilities (see Fig. 2). Finally, we sort the points in Q based on
their probabilities and keep the top 50% of them for scale estimation. Once we have this subset, with
high probability clean of background objects, we assume that the reduced cloud Q̃ cannot be much
larger/smaller than the model point cloud P. In our implementation, we set as default limits for scal-
ing 0.1-10 times the ratio between the two bounding spheres. Since this approach is an heuristic, it is
possible to find situations where this automatic scale initialization fails. A wrong determination of the
scaling range would lead to a longer computational time (if range is valid but too big), or, worse, an
unsuccessful coarse alignment (if too restrictive). The default limits are very conservative and proved
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effective for all the test cases used in this paper. It should be noted that it is also easy to override these
values in an application by asking the user to coarsely initialize the relative scale.

6.2.3 Stochastic optimization process. The optimal affine transform A is found with a method that
effectively combines a stochastic exploration of the multidimensional parameter space with a local
improvement scheme. Similarly to the purely stochastic method of Papazov and Burschka [2011], we
use a generalized BSP to represent our 7-dimensional search space, and exploit it to adaptively add
more detail to promising regions in the search space. Each tree node contains the number of times it
has been visited, the parameter bounds and the best parameter value and cost function value evalu-
ated in the subtree. At the end of the procedure, the parameter values associated to the root is taken
as solution. In contrast to previous work, however, instead of simply constructing the tree by guided
random sampling, we exploit the problem structure by improving the solution by solving absolute ori-
entation problems at each new search point and pushing the values to the structure. More specifically,
the overall procedure proceeds as follows:

(1) Initialize the root of the tree with the entire search space as bounds. Generate a uniformly sampled
parameter value as position, compute the correspondences, evaluate the cost function value, and
store its value as current best. Define the maximum number of iterations Tmax.

(2) Select a “promising” leaf according to a probabilistic scheme driven by a cooling schedule. The leaf
is identified by taking left/right decision at each node. On iteration t = 0, left/right branches are
selected with equal probability, while when t = Tmax, the branch corresponding with the lowest
cost function value is selected (see Papazov and Burschka [2011] for details).

(3) Bisect the selected leaf and create new children, reassigning the old values to the child that con-
tains the old sampling location; in contrast to previous work, we split nodes at longest edge rather
than randomly choosing split planes. The longest edge is identified as the parameter that causes,
within the bounds defined by the node, the largest motion of the coarse point cloud.

(4) Generate a new random sampling point x in the leaf that does not contain the old sampled value.
Find correspondences C at x between point clouds using a GPU-accelerated method [Cayton 2010].
Evaluate the cost function value ex = E(x), and store its value as current best in the new node
interval. Propagate bottom up the new parameter and function values so that each internal node
contains the best parameter location and function value in both children.

(5) Exploit the computed correspondences by finding a new parameter location x and function value
ex = E(x) through the solution of an absolute orientation problem.

(6) Locate the node containing the newly created position through a top-down visit. If x can be sepa-
rated by bisecting the selected node into equal parts, create children and insert it, otherwise replace
the currently present state if the value is worse than ex. Propagate bottom up the new parameter
and function values so that each internal node contains the best parameter location and function
value in both children.

(7) If the stopping criterion is not met, increment iteration count t and go to step 2, otherwise termi-
nate the algorithm. In this paper, we use as stopping criterion t = Tmax, or the alignment within
tolerance of at least 95% of the pruned point cloud (Sec. 6.2.2).

If a successful alignment is not found within the current iteration budget, we re-execute the align-
ment process by doubling the budget, until a maximum amount of time is exceeded.

6.2.4 Local refinement through iteratively reweighted least squares. Our procedure, similarly to
other alignment procedures, alternates between finding correspondences given a parameter value,
evaluating the error using those correspondences, and using the result to move to other more promising
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parameter values. Since the most costly solution is finding correspondences, we accelerate it through
an approximate GPU-accelerated method [Cayton 2010], and exploit them not just for error evaluation
but also for error minimization. Given the correspondences, we obtain the minimum of E using a
iteratively reweighted least-squares (IRLS) [Holland and Welsch 1977] modification of Horn’s method
of absolute orientation with Euclidean distances [Horn 1987]. This is achieved by calculating weights
wi = ǫ′(ri)/ri, where ri is the current residual and ǫ′(d) is the derivative of ǫ(d) (see eq.2), by solving
the weighted least squares problem using the analytical absolute orientation method of Horn, and
by re-solving again until convergence. Since this process is included as a refinement step in a higher
level global refinement method, we just iterate for a fixed number of times (four for the results in this
paper).

7. FINE ALIGNMENT

After the coarse alignment stage, we have a good initial configuration of the camera poses and their in-
trinsic parameters, obtained by applying the transformation T found by our global registration method
to the cameras attached to the coarse model. However, these stages do not fully exploit the amount of
accurate geometrical data present in the dense model. In fact, SfM reconstruction is completely inde-
pendent from the fine 3D and it produces a list of camera parameters and 3D points consistent only in
the domain of images. To improve the current registration, we should link this result with the dense
geometry, putting some constraints on the sparse 3D points; more precisely, it is desirable that the
SfM geometry fits as much as possible the fine model. To obtain a fully consistent model, we should
formulate our fine alignment in a non-rigid manner, jointly moving the sparse points towards the
dense 3D and accordingly tuning the parameters of each camera independently. We thus need to refine
a camera model consisting in intrinsic parameters (i.e., focal length, principal point and the first two
radial distortion coefficients) and extrinsic parameters (i.e., the rotation-translation map). Similarly to
our previous work [Pintus et al. 2011c], we obtain this fine registration with an optimization process.
Our approach improves over previous work by employing a more robust optimization method that also
works with variable sampling rates, without the need for user-prescribed global tolerances.

Fig. 3. Fine registration. A coarse registration between the original (white dots) and the SfM geometry (gray dots) is given.
The fine registration jointly tunes camera parameters and sparse point positions qj to make the SfM geometry fit as much as
possible the fine model; it minimizes the error between image key points sk and the re-projections of correspondences C(q) in
the dense model. An outlier removal strategy is employed, based on the local density of the reference 3D model.
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Since the method starts with an already coarse aligned sparse point cloud, before applying fine
minimization we prune the sparse point cloud by removing clear outliers. The pruning process is based
on how much they are close to the dense model, i.e., we find a locally adaptive “closeness” threshold that
defines a volume containing inliers. This value is computed locally, and is conservatively proportional
to a small multiple of the inverse of the fine geometry local density. We show the limits of the inlier
region in Fig. 3 as dotted lines.

In order to find the optimal camera parameters, we perform this task only on inlier points, and we
minimize a cost function that aims at jointly reducing the difference between detected image features
point and the 2D projection of the corresponding sparse point (as in classic bundle adjustment), and
the distance between the 3D sparse point and the given 3D model surface. However, the 3D distance
depends on object coordinates and it is not directly comparable with an image domain term. Since a
scalar that weights these two errors is hard to globally estimate, we convert, as shown in Fig. 3, the
3D distance measure to an image-space distance through a projection process. Thus, for each sparse
3D point qj (green dots in Fig. 3), we compute correspondence C(qj) (black dots) in the dense model P
(white dots) and we find optimal camera parameters K and 3D points Q, by minimizing the following
cost function:

E(K,Q) =

Nq
∑

j=1

NC
∑

i=1

vijw (qj)
(

‖Π(Ki,qj)− si,j‖
2
+ ‖Π(Ki, C (qj))− si,j‖

2

)

(3)

where the term vij is a visibility factor, that is equal to 1 if the point qj is visible in the image i,
otherwise is 0, w (qj) is a per-point weight, si,j is the key point image coordinate (see Sec. 5) and
Π(K,q) is a function that projects a 3D point q into an image given the camera parameters K. The
cost function has two error terms. The first term, which was not included in our previous work [Pintus
et al. 2011c], aims at reducing the squared difference in pixel coordinates between the image feature
point and the 2D projection of the corresponding sparse point. The second term takes into account
the distance between the sparse and dense point clouds by converting the object space distance in an
image space measurement. For each sparse point q, we compute the correspondence on the original
model (C(q)), and estimating a re-projection error in the image domain. This error strictly depends
on the fine geometry, forcing the configuration of the cameras to be consistent with it. As for coarse
registration, correspondences are computed by finding a fixed number k of nearest neighbors in the
dense cloud (k=8 in this paper), and projecting the point q on a plane fit by PCA. Compared with
the cost function in the previous approach [Pintus et al. 2011c], here the formulation is more robust,
since it considers the errors between the image features and both the triangulated points and the
points in the original dense model. The big circle in Fig. 3 highlights how, by moving the point qj

and/or the camera K2, we modify the distance between Π(K2,qj) (and Π(K2, C (pj)))) and s2,j , as
shown by the arrows. This is done jointly and in a non-rigid manner on all sparse points and all
cameras. The refinement is formulated as a weighted non-linear least squares minimization problem
on the 3D structure and viewing parameters. The technique presented in Pintus et al. [2011c] made
the assumption of a uniform distribution of vertices in the dense model. Here, conversely, in order
to deal with non-uniformly sampled geometries, we use the inverse of the local density estimation as
a per-point weight w (qj) for the errors. Thus, we assign a high uncertainty to points aligned to low
density regions of the reference geometry. Since the coarse alignment produces a good initial estimate
of the camera parameters, we can perform a local minimization to find the final solution using the
Levenberg-Marquardt algorithm [Nocedal and Wright 2006], which, thanks to its effective damping
strategy, converges quickly from a wide range of initial guesses.
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(a) 48 Images (1920x1080) (b) 170Kpoints (c) Rough alignment (d) Final result

(e) 11 Images (3072x2048) (f) 13Mpoints (g) Rough alignment (h) Final result

(i) 8 Images (3072x2048) (j) 18Mpoints (k) Rough alignment (l) Final result

Fig. 4. Experimental ground truth datasets: In each row we present the details of a ground truth 2D/3D registration
dataset used for testing, respectively (top to bottom): Armadillo (courtesy of the Stanford 3D Scanning Repository [Levoy et al.
2005]), Fountain-P11 (courtesy of Strecha et al. [2008; 2011]), and Herz-Jesu-P8 (courtesy of Strecha et al. [2008; 2011]). For
each model we show (left to right) the input image set, the original model, the rough alignment between the original model and
the sparse point set from SfM, and the final colored result.

8. RESULTS

Our technique was implemented on Linux using C++. The SfM software used for our tests is Bundler

[Snavely et al. 2006; Snavely 2013]. For the minimization problem in the refinement step, we employ a
C/C++ package for generic SBA based on the Levenberg-Marquardt algorithm, developed by Lourakis
and Argyros [2009]. Approximate nearest neighbors are computed with the GPU-accelerated RBC
library [Cayton 2010]. The user interface to manually calibrate input photos is built using OpenGL
and Qt tools. Our benchmarks were executed on a PC with 12 Intel Core i7-3930K 3.2 CPU Processor,
32GB RAM,and a NVidia GeForce GTX 560. We use this method in our production pipe-line, that has
been applied to many acquisition campaigns. All the results presented in the following sub-sections
are obtained using the new proposed automatic stochastic approach for coarse alignment.
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(a) 49 Images (1936x1296) (b) 5Mpoints (c) Rough alignment (d) Final result

(e) 132 Images (3872x2592) (f) 13Mpoints (g) Rough alignment (h) Final result

(i) 21 Images (1936x1296) (j) 3Mpoints (k) Rough alignment (l) Final result

Fig. 5. Experimental CH datasets: In each row we present the details of a CH 2D/3D registration dataset used for testing,
respectively (top to bottom): Church, Archer and Grave. For each model we show (left to right) the input image set, the original
model, the rough alignment between the original model and the sparse point set from SfM, and the final colored result.

8.1 Evaluation Datasets

Here we present some experimental results on selected datasets (Fig. 4 and 5).
Armadillo. This synthetic dataset contains a 170K point geometry from Stanford 3D Scanning Repos-
itory [Levoy et al. 2005] and 48 perfectly aligned Full HD images computed using a rendering pipeline
with known camera parameters, ambient occlusion lighting and dark background.
Fountain-P11. This model is a ground truth test from the datasets in the multi-view evaluation
repository by Strecha et al. [2008; 2011]. Fountain-P11 data is provided with all the detailed in-
formation about extrinsic and intrinsic ground truth camera parameters for each photo. The image
dataset contains eleven 6Mpixel images acquired with a Canon D60 digital camera. The geometry size
is 13Mpoints with a resolution of 3mm, and it was captured with a Zoller-Frölich LIDAR laser scanner.
Herz-Jesu-P8. This is another ground truth model from the multi-view evaluation repository by
Strecha et al. [2008; 2011]. Its 18M point geometry has a resolution of 4mm. The eight input photos,
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with a size of 3072x2048, and the dense geometry are acquired with the same devices as Fountain-P11.
For each photo extrinsic and intrinsic ground truth camera parameters are included either.
Church. This CH dataset is a good test for our algorithm in terms of noise sensitivity and robustness,
since it is a non-uniformly sampled model with a high percentage of outliers (see also Fig. 6). These
points arise from the complexity of the input image set (e.g., reflections on mirrors and specular high-
lights), or belong to object parts not acquired with the time-of-flight scanner. It represents a part of
the left nave in the Romanesque San Saturnino Basilica in Cagliari (Italy). It was acquired using a
time-of-flight laser scanner Leica ScanStation2, and the 5Mpoints geometry, resulting from geometric
reconstruction [Cuccuru et al. 2009], has a resolution of 2mm. The photographic dataset was acquired
with a Nikon D200 camera and is composed by 49 2.5Mpixel images.
Archer. This is an example of sculpture acquisition. It is an item from the Mont’e Prama collection of
37 statues[Bettio et al. 2013; Marton et al. 2014]. The geometry was acquired with a Minolta Vivid9i
Laser scanner at a quarter-millimeter resolution. The 132 images composing the dataset are captured
using a Nikon D200 camera, and have a size of 3872x2592.
Grave. This CH dataset has been chosen because its geometry has a lot of smooth regions that don’t
contain well defined planes or straight lines. It is the digital model of an archaeological site (grave from
a prehistoric necropolis) [Pintus et al. 2012]. The 2D/3D dataset is made up of 21 images (1936x1296),
and a geometry of 3Mpoints with a 2mm resolution. It was acquired using a time-of-flight laser scanner
Leica ScanStation2, and a Nikon D200 camera.

In each column of Fig. 4 and 5 we present respectively the input photo dataset, the rendering of
the dense geometry, the alignment between the dense geometry and the pruned sparse point cloud
(red points), and the registered images finally blended over the dense model by applying the photo
blending framework of Pintus et al. [2011b; 2011a].

Fig. 6. Outliers. Registration of sparse (red) and dense (white) geometries of a Church’s Detail. SfM geometry contains a lot of
outliers. Our method proves to be robust in this non-ideal case, without requiring more user intervention. Here the sparse point
cloud is shown not pruned from outliers.
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Table I. Time statistics (all times in minutes).
Dataset #Images #Points SfM Manual Coarse Auto Coarse Fine Total Total

Reg. Reg. Reg. Semi-Auto Auto

Armadillo 48 170K 6 5 12 1 12 19
Fountain-P11 11 13M 11 4 121 8 24 140
Herz-Jesu-P8 8 18M 7 4 33 5 16 45

Church 49 5M 59 8 80 17 84 156
Archer 13 13M 360 6 29 27 393 416
Grave 21 3M 9 5 119 1 15 129

8.2 Time

Table I shows the time necessary for semi-automatic or fully automatic alignment. The Structure-from-
motion task takes from few minutes to hours, depending on the number and the size of input photos,
and on matching complexity. In the semi-automatic approach, for all the presented datasets, the user
manually aligned only one photo to the geometry. This operation took on average about five min-
utes, a time comparable to per-image manual alignment times presented in Franken et al. [2005]. The
completely automatic method replaces manual alignment with stochastic global optimization, which
has always succeeded for all the test dataset. Computational times are higher than semi-automatic
alignment, but they are competitive with previous fully automatic alignment pipe-lines [Corsini et al.
2013]. For instance, the processing time to align the reconstructed point cloud to the input model for
the Herz-Jesu dataset is 60 minutes for Corsini et al. and 33 minutes for our method. It should be
noted that it is in general not possible to infer performance characteristics from timings obtained on
different 3D models, because the computational effort varies not only with the number of vertices or
images, but mostly on the complexity of surface shape. For more details about geometric and topologi-
cal dependency, see [Corsini et al. 2013]. Our final refinement step typically converges in few minutes.
The main advantage of the fully automatic pipeline is the possibility of using it in a completely un-
supervised manner, e.g., as a web service for color mapping, similarly to what done for automated 3D
reconstruction services [Vergauwen and Van Gool 2006].

(a) Photo (b) Model (c) Photo detail (d) Model detail (e) Absolute difference

(f) Photo (g) Model (h) Photo detail (i) Model detail (j) Absolute difference

Fig. 7. Visual Quality Evaluation: Comparison between original photos (a)(f) and the rendering of the colored model from
the same view point (b)(g). The last columns show these results for a smaller region of the datasets, and their relative absolute
differences. Original datasets courtesy of Strecha et al. [2008; 2011].
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Table II. Position, orientation, and re-projection error.
Dataset Average camera Position Orientation Re-projection
Name distance (cm) error (cm) error (degree) error (pixels)

[Corsini et al. 2013]/Our [Corsini et al. 2013]/Our [Corsini et al. 2013]/Our

Armadillo 82 N.A./1.35 N.A./0.40 N.A./3.77
Fountain-P11 658 10.92/3.19 0.27/0.26 21.28/5.19
Herz-Jesu-P8 765 15.40/11.33 0.56/0.09 4.91/5.57

8.3 Visual Quality Evaluation

The estimation of 2D/3D registration quality is not straightforward at all. To our knowledge there is
no standard way to measure the alignment accuracy, so, to make a comparison between our method
and the state-of-the-art works we adopt the two kinds of evaluation proposed in Corsini et al. [2013]:
visual quality and quantitative evaluation.

In this section we are going to show some results that help us analyzing our algorithm in terms
of visual similarity between original photos and the rendering of the colored 3D digital model. For
this purpose, we projected the aligned images onto the geometry by using a robust photo blending
framework by Pintus et al. [2011b; 2011a]. The color is assigned to the geometry with a per-vertex
strategy; redundant information is weighted based on a per-pixel image quality estimation. Please see
the original paper for a detailed description of the seamlessly blending algorithm.

The quality of our registration is evaluated in a visual manner by rendering the colored model from
the same viewpoint of the original photo. In fig. 7 we compare the original photo (first column) of Herz-

Jesu-P8 and Fountain-P11 with their rendered 3D colored models. The last columns show the high
quality result of the proposed method in a restricted part of our datasets, and their relative absolute
differences.

8.4 Quantitative Evaluation

As stated above, in order to quantitatively validate our contribution, we have tested the algorithm
with ground truth datasets: Armadillo, Fountain-P11 and Herz-Jesu-P8. We used the last two models
to compare the results of our techniques with those in Corsini et al. [2013]. In order to have a strong
consistency in the numerical comparison between the registration quality of our approach and that
presented in Corsini et al. [2013], we used fine aligned datasets provided by Corsini, and all the results
reported in Tables II and III are computed using the same algorithm.

In Table II we evaluate the accuracy of the camera parameters estimation. We compute the following
errors: the median position error, i.e., Euclidean distance between the camera position and the ground
truth position; the median orientation error, i.e., the angle between the optical axis of the ground
truth cameras and the estimated one; the median re-projection error, i.e., the distance in pixel between
the re-projected vertex computed using ground truth and estimated extrinsic and intrinsic camera
parameters. While Corsini et al. [2013] use the average error, we evaluate our and their registrations
by computing median values, which are more robust to outliers. In the Armadillo model, the position
error is less than 2% of the average distance between camera positions, and the re-projection error
of about 4 pixels is less than the 0.4% of the image height. Compared to Corsini et al. [2013], in the
Fountain-P11 dataset we decreased the re-projection error by more than 15 pixels, while the accuracies
in the registration of Herz-Jesu-P8 are comparable.

Another way to measure the quality of a 2D/3D registration is to compute the squared standard de-
viation of the re-projected color, assuming that for a diffuse environment under constant illumination
the same point looks similar from all point of views. This kind of evaluation, also applied by Corsini et
al. [2013] does not require a ground truth data. For each vertex we compute the variance of the pixel re-
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Table III. Quality of the 2D/3D registration.
Dataset Ground Truth Registration Registration
Name Quality (QC) Quality (QC) Quality (QC)

[Corsini et al. 2013] Our

Armadillo 49.86 N.A. 629.36
Fountain-P11 (43.80, 40.25, 52.81) (114.68, 104.02, 136.91) (46.9927, 42.148, 55.2615)
Herz-Jesu-P8 (101.25, 99.93, 128.87) (102.40, 100.85, 129.59) (107.895, 110.074, 140.9)

Church N.A. N.A. (1277.29, 1153.07, 1000.57)
Archer N.A. N.A. (468.31, 426.64, 373.13)
Grave N.A. N.A. (213.25, 206.89, 203.78)

flectance values that contribute to its final color across the image dataset, and we report the resulting
median variance from all vertices. We perform this computation for each channel, resulting in a final
3-component vector of median squared standard deviations as a quality measure. As before, rather
than computing average values as in Corsini et al. [2013], we evaluate the median values. Table III
illustrates the quality measure for all datasets, and confirms the results in Table II. The re-projection
quality of our algorithm is comparable to the one achieved by Corsini et al. [2013] in the Herz-Jesu-

P8 dataset, while is much better in the Fountain-P11 colored model. The performances in the case of
the Armadillo dataset and the other CH datasets in Table III are similar. In general, when a vertex
belongs to a silhouette in a particular image, and the color gradient is high across the silhouette (e.g.,
when foreground and background are very different), even a single pixel mis-alignment will produce a
high error. This is the case of the Armadillo, a bright object on a dark background (see Fig. 4a), which,
despite an extremely high registration quality, has non negligible errors in color re-projection (see Ta-
ble II). On the other hand, the registration quality of the Grave is higher than the others, because the
color gradient in the image dataset is low, so small errors in the alignment do not produce high errors
in color re-projection. Another important element that affect the re-projection error is the image sam-
pling. The quality of the Church dataset is worse than the Archer because 49 low resolution images
(2.5Mpixels) were used for a bigger object, while for the Archer (a 2 meter statue) 132 10Mpixel images
are employed.

Finally, we measure how the proposed algorithm is able to converge to a good alignment while start-
ing from an initial, coarse registration. In the first row of Fig. 8 we project onto one image the sparse
points before (green crosses) and after (blue crosses) the refinement, and we mark as red crosses the
image features corresponding to the sparse points. As it is easy to see in the zoomed image, the re-
finement algorithm reduces the total re-projection error, recovering the initial severe misalignment.
Further comparisons are presented in the last two rows, where we plot the camera position and orien-
tation errors before (green bins) and after (orange bins) fine alignment, and we show the contribution
of fine alignment in the case of Camera #2. In this case, the camera position error is similar, but we
decrease the orientation error by about one degree; the resulting visual improvement in terms of color
re-projection is clearly visible by superimposing the original photo and the dense geometry (third row),
both with coarse (left) and refined (right) registration.

Moreover we use ground truth information from the Fountain-P11 dataset to compare the perfor-
mances of the proposed algorithm and our previous approach [Pintus et al. 2011c]. In Fig. 9 we show
for each camera its position error obtained by applying the method in Pintus et al. [Pintus et al. 2011c]
(blue bins) and our technique (red bins). The figure shows how the more robust approach presented
here reduces maximum errors, while making the average camera position error decrease by about
1.5cm with respect to our previous approach [Pintus et al. 2011c], and by over 7cm with respect to the
method of Corsini et al. [2013] (see Table II).
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(a)

(b)

(c)

Fig. 8. Coarse vs Fine alignment: (First row) Re-Projection of the sparse points before (green crosses) and after (blue crosses)
refinement. Red crosses are image features corresponding to the sparse points. (Second row) Camera position and orientation
errors before (green bins) and after (orange bins) fine alignment. (Third row) Comparison between coarse (left) and fine (right)
registration of camera #2, obtained by superimposing the rendered geometry and the original photo. Dataset courtesy of Strecha
et al. [2008; 2011].

9. CONCLUSIONS AND FUTURE WORK

We have presented an efficient, fast and robust technique for registering a set of images with a 3D
geometry. Our approach minimizes or eliminates the user intervention and is generally applicable to
different kinds of 3D models.
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Fig. 9. Camera position error - Fountain-P11: For each of the eleven cameras we show the position error computed with
the algorithm of Pintus et al. [2011c] (blue bins) and the proposed one (red bins). The average camera position error is decreased
by over 1.5cm.

Compared to state-of-the-art stochastic optimization approaches [Papazov and Burschka 2011], and
image-to-geometry alignment methods [Pintus et al. 2011c], our improved automatic coarse registra-
tion proved to be more robust and reliable in terms of noise sensitivity and presence of outliers. Further,
compared to the state-of-the-art, good alignment results are presented in a variety of cases, including a
series of real-world Cultural Heritage 2D/3D datasets. These input datasets range from synthetic data
to real 3D geometries from different types of scanning technology, different level of noise and resolu-
tion, different size of 3D and 2D datasets, and different amount of outliers both in the images and in
the 3D models (see Fig. 2 and Fig. 6). However, a quantitative evaluation of the algorithm robustness,
as a study of the dependency function between the quality of coarse registration and the final align-
ment, is out of the scope of this paper, and it would be a very interesting topic and a possible direction
for future developments and investigations. Finally it proved to be suitable to produce a good input
data for photo blending framework.

Of course, the image resolution and the accuracy of the SfM also play an important role in this
automatic process, by strongly affecting the reconstruction of the 3D sparse point cloud. With a higher
2D sampling of the scene and a more precise multi-view stereo approach, the better quality of the
sparse geometry will result in a more likely speed-up of the stochastic optimization process, and an
increased chance of its success. In the future, we are planning to investigate different SfM solutions to
improve the robustness and quality in reconstructing the point cloud from images, e.g., by employing
hierarchical SfM algorithms [Farenzena et al. 2009]. Further, a speed up in the multi-view stereo will
allow us to use higher resolution images. These elements will produce a more accurate and detailed 3D
reconstruction with less outlier points, and result in an improvement of the coarse and fine alignment.
We will also study a way to relax the constraints on the estimation of the scaling range in the stochastic
search space, e.g., by employing an error metric that will properly take into account and avoid extreme
cases, as the trivial solution of a null scaling.
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