
SSVDAGs: Symmetry-aware Sparse Voxel DAGs

Alberto Jaspe Villanueva
CRS4

Fabio Marton
CRS4

Enrico Gobbetti
CRS4∗

Figure 1: The PowerPlant scene voxelized to a 64K3 resolution and stored as a Symmetry-aware Sparse Voxel DAG (SSVDAG). The total non-empty voxel
count is nearly 6 billions, stored in less than 86MB at 0.123 bits/voxel. A sparse voxel octree would require 16.2GB without counting pointers, i.e. over 200
times more, while a Sparse Voxel DAG would require 167MB, i.e., nearly the double. Primary rays as well as hard shadow are raytraced directly in the SSVDAG
structure, and shading normals are estimated in screen space.

Abstract

Voxelized representations of complex 3D scenes are widely used
nowadays to accelerate visibility queries in many GPU rendering
techniques. Since GPU memory is limited, it is important that these
data structures can be kept within a strict memory budget. Recently,
directed acyclic graphs (DAGs) have been successfully introduced
to compress sparse voxel octrees (SVOs), but they are limited to
sharing identical regions of space. In this paper, we show that a more
efficient lossless compression of geometry can be achieved, while
keeping the same visibility-query performance, by merging subtrees
that are identical through a similarity transform, and by exploiting
the skewed distribution of references to shared nodes to store child
pointers using a variabile bit-rate encoding. We also describe how,
by selecting plane reflections along the main grid directions as sym-
metry transforms, we can construct highly compressed GPU-friendly
structures using a fully out-of-core method. Our results demonstrate
that state-of-the-art compression and real-time tracing performance
can be achieved on high-resolution voxelized representations of real-
world scenes of very different characteristics, including large CAD
models, 3D scans, and typical gaming models, leading, for instance,
to real-time GPU in-core visualization with shading and shadows of
the full Boeing 777 at sub-millimetric precision.

Keywords: sparse voxel octree, sparse voxel DAG, compression,
raycasting, GPU, massive models

Concepts: •Computing methodologies → Ray tracing;
•Information systems→ Data compression;

∗CRS4 Visual Computing, POLARIS Ed. 1, 09010 Pula, Italy
www: http://www.crs4.it/vic/
e-mail: {ajaspe|marton|gobbetti}@crs4.it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
I3D ’16„ February 27–28, Redmond, WA, USA
ISBN: 978-1-4503-4043-4/16/03
DOI: http://dx.doi.org/10.1145/2856400.2856420

1 Introduction

With the increase in performance and programmability of graphical
processing units (GPUs), GPU raycasting is emerging as an efficient
solution for many real-time rendering problems. In order to handle
large detailed scenes, devising compact and efficient scene represen-
tation for accelerating ray-geometry intersection queries becomes
paramount, and many solutions have been proposed (see Sec. 2).
Among these, sparse voxel octrees (SVO) [Laine and Karras 2011]
have provided impressive results, since they can be created from a va-
riety of scene representation, they efficiently carve out empty space,
with benefits on ray tracing performance and memory needs, and
they implicitly provide a levels-of-detail (LOD) mechanism. Given
their still relatively high memory cost, and the associated high mem-
ory bandwidth required, these voxelized approaches have, however,
been limited to moderate scene sizes and resolutions, or to effects
that do not require precise geometric details (e.g., soft shadows).
While many extremely compact representations for high-resolution
volumetric models have been proposed, especially in the area of
volume rendering [Balsa Rodriguez et al. 2014], the vast increase
in compression rates of these solutions is balanced by increased
decompression and traversal costs, which makes them hardly usable
in general settings. This has triggered a search for simpler scene
representations that can provide compact representations within
reasonable memory footprints, while not requiring decompression
overhead. Kämpe et al. [2013] have recently shown that, for typical
video-gaming scenes, a binary voxel grid can be represented orders
of magnitude more efficiently than using a SVO by simply merging
together identical subtrees, generalizing the sparse voxel tree to a
directed acyclic graph (SVDAG). Such a representation is compact,
as nodes are allowed to share pointers to identical subtrees, and
remains as fast as SVOs and simple octrees, since the tracing routine
is essentially unchanged.

Our approach In this work, we show that efficient lossless com-
pression of geometry can be combined with good tracing perfor-
mance by merging subtrees that are identical up to a similarity
transform, using different granularity at inner and leaf nodes, and
compacting node pointers according to their occurrence frequency.
The resulting structure, dubbed Symmetry-aware Sparse Voxel DAG
(SSVDAG) can be efficiently constructed by a bottom-up external-
memory algorithm that reduces an SVO to a minimal SSVDAG
by alternating different phases at each level. First, all nodes that
represent similar subtrees are clustered and replaced by a single rep-
resentative. Then, pointers to those nodes in the immediately higher
level are replaced by tagged pointers to the single representative,

http://dx.doi.org/10.1145/2856400.2856420

where the tag encodes the transformation that needs to be applied to
recover the original subtree from the representative. Finally, repre-
sentatives are sorted by their reference count, which allows for an
efficient variable-bit-rate encoding of pointers. We show that, by se-
lecting planar reflections along the main grid directions as symmetry
transform, good building and tracing performance can be achieved.

Contribution Our main contributions are:

• A compact representation of a Symmetry-aware Sparse Voxel
DAG that can losslessly represent a voxelized geometry of
many real-world scenes within a small footprint and can be
efficiently traced;

• An out-of-core algorithm to construct such representation from
a SVO or a SVDAG;

• A clean modification of standard GPU raycasting algorithm to
traverse and render this representation with small overhead.

Advantages and limitations Our reduction technique is based
on the assumption that the original scene representations is geomet-
rically redundant, in the sense that it contains a large amount of
subtrees which are similar with respect to a reflective transforma-
tion. Our results, see Sec. 6, demonstrate that this assumption is
valid for real-world scenes of very different characteristics, ranging
from large CAD models, to 3D scans, to typical gaming models.
This makes it possible to represent very large scenes at high res-
olution on GPUs, and to support precise geometric rendering and
high-frequency phenomena, such as sharp shadows, with a tracing
overhead of less than 15%. Similarly to other works on DAG com-
pression [Kämpe et al. 2013; Sintorn et al. 2014; Kämpe et al. 2015],
we focus in this paper only on geometry, and not on non-geometric
properties of voxels (e.g., material or reflectance properties), which
should be handled by other means.

2 Related Work

Describing geometry for particular applications and devising com-
pressed representation of volumetric models are broad research
fields. Providing a full overview of these areas is beyond the scope
of this paper. We concentrate here on methods that employ binary
voxel grids to represent geometry to accelerate queries in GPU algo-
rithms We refer the reader to a recent survey [Balsa Rodriguez et al.
2014] for a more general overview in GPU-friendly compressed
representations for volumetric data.

Starting from more general bricked representations proved success-
ful for semitransparent GPU raycasting [Gobbetti et al. 2008; Crassin
et al. 2009], Laine and Karras [2011] have introduced Efficient
Sparse Voxel Octrees (ESVOs) for raytracing primary visibility. In
their work, in addition to employing the octree hierarchical struc-
ture to carve out empty space, they prune entire subtrees if they
determine that they are well represented by a planar proxy called
contour. Storing the proxy instead of subtrees achieves considerable
compression only in scenes with many planar faces, and introduces
stitching problems as in other discontinuous piecewise-planar ap-
proximations [Agus et al. 2010]. Crassin et al. [2011] have shown
the interest of such approaches for secondary rays, computing ambi-
ent occlusion and indirect lighting by cone tracing in a sparse voxel
octree. Their bricked structure, however, requires large amounts of
memory, also due to data duplication at brick boundaries.

A number of works have thus concentrated on trying to reduce
memory consumption of such voxelized structures while maintaining
a high tracing performance. Crassin et al. [Crassin et al. 2009]
mentioned the possibility of instancing, but rely on ad-hoc authoring

for fractal scenes, rather than algorithmic conversions. Compression
methods based on merging common subtrees have been originally
employed in 2D for the lossless compression of binary cartographic
images [Webber and Dillencourt 1989], and extended to 3D by
Parker and Udeshi [2003] to compress voxel data. These algorithms,
however, are costly and require fully incore representations of voxel
grids. Moreover, since voxel content is not separated from voxel
attributes, only moderate compression is achieved.

High Resolution Sparse Voxel DAGs (SVDAG) [Kämpe et al. 2013]
generalize the trees used in Sparse Voxel Octrees (SVOs) to DAGs,
allowing the sharing of common octrees. They can be constructed
using an efficient bottom-up algorithm that reduces an SVO to a
minimal SVDAG, which achieves significantly reduced node count
even in seemingly irregular scenes. The effectiveness of the method
is demonstrated by ray-tracing high-quality secondary-ray effects
using GPU raycasting from GPU-resident SVDAGs. This approach
has later been extended to shadowing by voxelizing shadow vol-
umes instead of object geometry [Sintorn et al. 2014; Kämpe et al.
2015]. We improve over SVDAGs by merging subtrees that are
identical up to a similarity transform, and present an efficient encod-
ing and building algorithm, with an implementation using reflective
transformations. The idea of using self-similarity for compression
has also found application in point cloud compression [Hubo et al.
2008], where, however, the focus was on generating approximate
representations instead of lossless ones.

In addition to reducing the number of nodes, compression can be
achieved by reducing node size. As pointers are very costly in
hierarchical structures, a number of proposals have thus focused
on reducing their overhead. While pointerless structures based on
exploiting predefined node orderings have been proposed for offline
storage [Schnabel and Klein 2006], they do not support efficient run-
time traversal. The optimizations used for trees, such as grouping
children in pages and using relative indexing withing pages [Laine
and Karras 2011; Lefebvre and Hoppe 2007] are not applicable to
our DAGs, since children are scattered throughout the structure due
to sharing. By taking advantage of the fact that the reference count
distribution of shared nodes is highly skewed, we thus employ a
simple variable bit-rate encoding of pointers.

3 Overview

A 3D binary volumetric scene is a discretized space subdivided
in N3 cells called voxels, which can be empty or full. Since this
structure grows cubically for every subdivision, is is hard to achieve
high resolutions. SVOs compactify these representation using a
hierarchical octree structures of nodes arranged in a number of
levels (L), with N = 2L, and most commonly represented using a
children bitmask per node as well as up to eight pointers to nodes
in the next level. When one of those children represents an empty
area, no more nodes are stored under it, introducing sparsity and
thus efficiently encoding whole empty areas of the scenes. The
structure can be efficiently traversed on the GPU using stackless or
short-stack algorithms [Laine and Karras 2011; Beyer et al. 2015],
which exploit sparsity for efficient empty-space skipping.

SVOs and grids can be directly created from a surface representa-
tion of the scene through a voxelization process, for which many
optimized solutions have been presented (see, e.g., [Crassin and
Green 2012]). In this paper, we use a straightforward CPU algo-
rithm that builds SVOs using a streaming pass over a triangle soup,
inserting triangles in an adaptive octree maintained out-of-core us-
ing memory-mapped arrays. Using other more optimized solutions
would be straightforward.

SVDAGs optimize SVOs by transforming the tree to a DAG, using
an efficient bottom-up process that iteratively merges identical nodes

one level at a time and then updates the pointers of the level above.
The resulting structure is more compact than SVOs, and can be
traversed using the exact same ray-casting algorithm, since node
sharing is transparent to the traversal code.

The aim of this work is to obtain a more compact representation
of the volume, while keeping the efficiency in traversal and render-
ing. We do this by merging self-similar subtrees (starting from an
SVDAG or an SVO), and by reducing node size through an adaptive
encoding of children references.

Among the many possible similarity transformations, we have se-
lected to look for reflective symmetries, i.e. mirror transformations
along the main grid planes. We thus consider two subtrees similar
(and therefore merge them) if their content is identical when trans-
formed by any combination of reflections along the principal planes
passing through the node center. Such a transformation Tx,y,z has
the advantage that the 8 possible reflections can be encoded using
only 3 bits (reflection X,Y,Z), that the transformation ordering is
not important, as transformations along one axis are independent
from the others, and that efficient access to reflected subtrees, which
requires application of the direct transformation Tx,y,z or of its in-
verse T−1

x,y,z = Tx,y,z , can be achieved by simple coordinate (or
index) reflection. This leads to efficient construction (see Sec. 4.1)
and traversal (see Sec. 5). In addition, since the transformation has
a geometric meaning, the expectation, verified in practice, is to fre-
quently find mirrored content in real-world scenes (see a 2D example
in Fig. 2). The output of the merging process is a DAG in which
non-empty nodes are referenced by tagged pointers that encode the
transformation Tx,y,z that needs to be applied together with the child
index. Further compression is achieved by taking advantage of the
observation that not all subtrees are uniformly shared, i.e., some
subtrees are significantly referenced more than others. We thus use a
variable bit-rate encoding, in which the most commonly shared sub-
trees are references with small indexes, while less common subtrees
are referenced with more bits. This is achieved through a per-level
node reordering process, followed by a replacement of child pointers
by indices. The encoding process, as well as the resulting final
encoding is described in Sec. 4.2.

4 Construction and encoding

A SSVDAG is constructed bottom-up starting from a voxelized
representation (SVDAG or SVO). We first explain how a minimal
SSVDAG is constructed by merging similar subtrees, and then ex-
plain how the resulting representation is compactly encoded in a
GPU-friendly structure.

4.1 Bottom-up construction process

Constructing the SSVDAG requires to efficiently find reflectively-
similar subtrees. Since explicitly checking similarity in subtrees
would be prohibitively costly for large datasets, we use a bottom-up
process that iteratively merges similar nodes one level at a time.
This requires, however, some important modifications to the original
SVDAG construction method. In our technique, we start from an out-
of-core structure, maintained in memory-mapped external-memory
arrays that encodes, level-by-level the existing nodes using one array
per level. We start the construction process from the finest level
L− 1, and proceed up to the root at level 0.

Our construction code is capable to perform a transformation into a
DAG with or without symmetries, and works, for compatibility with
previous encoding methods, using a leaf size of 23. Grouping into
larger leaves is performed in post-processing during our encoding
phase (see Sec. 4.2). At each level, we first group the nodes into
cluster of self-similar nodes, then select one single representative

per cluster and associate to others the transformation that maps
them to the representative. The surviving nodes are reordered for
compact encoding (see Sec. 4.2) and stored in the final format. Child
pointers of nodes at the previous level are then updated to point to
the representatives, and the process is repeated for all levels up to
the root.

The matching process at the core of clustering is based on the concept
of reordering the nodes at a given level so that matching candidates
are stored nearby. Clustering and representative selection is then per-
formed during a streaming pass. Leaf nodes and inner nodes, must
use, however, different methods to compute ordering and perform
matching.

Leaf nodes clustering In order to efficiently match leaf nodes
in the tree, we must discover which representation of small voxel
grids remain the same when one of the possible transformations
is applied. Considering that each grid G can be represented by a
binary number B(G) by concatenating all the voxel occupancy bits
in linear order, we define a mapping of each possible grid G to an-
other grid G? = T ?

x,y,z(G), such that the canonical transformation
T ?
x,y,z = argmaxTx,y,z B(Tx,y,z(G)). G? is the canonical repre-

sentation of G, and represents, among all possible reflections of G,
the one with the largest integer value. Geometrically, it is the one
that attracts most of the empty space to the origin (see Fig. 3). This
transformation is precomputed in a table of 256 entries that maps all
the possible combinations of 23 voxels to the bitcode representing
the canonical transformation as well as to the unique canonical rep-
resentation (one of the 46 possible ones). Given this transformation,
two nodes are self-similar if their canonical representation is the
same. Clustering can thus be performed in a single streaming pass af-
ter sorting leaves using the canonical representation as a key. Nearby
nodes sharing the same canonical representation are merged into a
single representative, pointers at the upper level are then updated to
point to the representative, and pointer tags are computed so as to
obtain the original leaf from the representative.

Inner nodes clustering While for leaf nodes we can detect sym-
metries by directly looking at their bit representation, two inner
nodes n1 and n2 must be merged if they represent the exact same
subtrees when a transformation T is applied. The first trivial con-
dition to be checked is that child pointers must be the same. We
thus sort the inner nodes using the lexicographically sorted set of
pointers to children as key. Since after sorting all self-similar nodes
are positioned nearby, as they are among those that share the same
set of pointers, we perform merging by creating, during a stream-
ing pass, one representative per group of self-similar nodes. The
self-similarity condition must be verified without performing a full
subtree comparison. Given the properties of our reflective transfor-
mations, we have thus to verify that, when the two nodes n1 and
n2 are matched for similarity under a candidate transformation T ,
every tagged pointer (tag, p) of n1 is mapped to (T (tag), p) in
n2 if p is not invariant to the transformation T , or it is mapped to
(T (tag)

∨
¬T (tag), p) if it is invariant (see Fig. 4). This means,

for instance, that, when looking for a match under a left-right trans-
formation Tx, the left and right pointers must be swapped in n2

with respect to n1, and the pointed subtrees must be equal under a
left-right mirroring, The latter condition is verified if the pointed
subtree has a left-right symmetry, or if, for each matched pair of
tagged child pointers, the left-right transformation bit is inverted
while the other bits are the same. This process does the clustering
for one particular transformation T , and is repeated for each of the 8
possible reflection combinations, stopping at the first transformation
that generates a match with one of the currently selected representa-
tives, or creating a new representative if all tests are unsuccessful.
In order to efficiently implement invariance checks, we thus asso-

T
x

T
xy

Scene SVO SVDAG SSVDAG

Figure 2: Example 2D scene transformed into different structures. The Sparse Voxel Octree (SVO) contains 10 nodes. The Sparse Voxel Directed Acyclic Graph
(SVDAG) finds one match and then shares a node, meaning 9 nodes. The presented Symmetry-aware Sparse Voxel Directed Acyclic Graph (SSVDAG) finds
reflective matches in two last levels, and reduces the structure to 4 nodes.

T
y

T
x,y

T
x

T
x

T
y

-

-

-

-

-

-

-

T
x

T
y

T
x

T
x

T
y

T
xy

T
xy

T
y

T
xy
T
x

Figure 3: 2D example of canonical transformations of a small voxel grid
into a set of base representatives. The transformation maps clusters of
self-similar grids to a unique representative.

ciate three invariant bits (one for each mirroring direction) at each
of the leaves when computing their canonical representations, and
pull them up during construction at inner nodes by suitably com-
bining the invariant bits of pointed nodes at each merging step. For
instance, an inner node is considered invariant with respect to a
left-right transformation if all its children are invariant with respect
to that transformation, or the left children are the mirror of the right
ones.

T
x T

x

T
x

n
1

n
2

n
3

n
4

n
5 n

6
n
7 n

4
n
5

n
1

n
2

n
3

Invariant(T
x
)

Figure 4: On the left, during leaf clustering, references to leaf node n6 are
replaced by references to n5, which is identical, while references to n7 are
replaced with references to n4 transformed by transformation Tx. On the
right, inner node n3 is replaced with n2 through transformation Tx since
its left child n5 is invariant to transformation Tx and is identical to the right
child of n2, while its right child matches the left child of n2 through the
same transformation Tx.

4.2 Compact encoding

The outlined construction process produces a DAG where inner
nodes point to children through tagged pointers that reference a
child and encode the transformation that has to be applied to recover
the original subtree. We encode such a structure in a GPU friendly
format aimed at reducing the pointer overhead, while supporting
fast tracing without decompression. We achieve this goal through
leaf grouping, frequency-based pointers compaction, and memory-
aligned encoding.

0%..10% 10%..20% 20%..30% 30%..40% 40%..50% 50%..60% 60%..70% 70%..80% 80%...90%90%..100%
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Level 11
Level 12
Level 13
Level 14

Figure 5: Histograms of the references to nodes in the Powerplant dataset
voxelized at 64K3 resolution, with nodes sorted by reference counts. As we
can see, the distribution is highly skewed, and the most popular 10% of the
nodes account for most of the references.

Leaf grouping While 23 allow for an elegant construction method
using table-based clustering, such a level of granularity leads to a
high structure overhead, since rays have to traverse deep pointer
structures to reach small 8-voxel grids, and the advantage of clus-
tering is offset by the need to encode pointers to these small nodes.
For final encoding, we have thus decided to coarsen the construction
graph by one level, encoding as simple grids all the 43 grids, and to
store them in a single array of bricks, each occupying 64 bits. Note
that this decision does not require performing new matches on 43

leaves, since we just coarsen the graph obtained with the bottom-up
process described in Sec. 4.1, which uses a table-based matching on
23 leaves at level L− 1 to drive the construction of 43 inner nodes
at level L− 2.

Frequency-based pointer compaction We have verified that in
our SSVDAG the distributions of references to nodes is highly
skewed. This means that there typically is a small groups of node
referenced by a lot of parents nodes, while many others are refer-
enced much less. Fig. 5, for instance, shows the histogram of the
distribution of reference counts in the Powerplant dataset of Fig. 1,
where the most common 10% of the nodes is referenced by nearly
90% of pointers at level 14 (nearly 50% at level 11). We have thus
adopted an approach in which frequently used pointers are repre-
sented with less bits than more frequent ones. In order to do that,
for encoding, we reorder nodes at each level using the number of
references to it as a key, so that most referenced nodes appear first
in a level’s array. We then replace pointers with offsets from the
beginning of each level array, and chose for each offset the smallest
number of bits available in our encoded format (see below).

Memory aligned encoding While leaf nodes are all of the same
size (64 bits), the resulting inner node encoding produces variable-
sized records (which is true also for other DAG formats with variable
child count, e.g., SVDAG [Kämpe et al. 2013]). We have decided, in
order to simplify decoding, to use half-words (16 bits) as the basis
for our encoding. Our final encoding includes an indexing structure,
an array of inner nodes, and an array of leaf nodes. The indexing
structure contains the maximum level L and three 32-bits offsets in
the inner level array that indicate the start of each level. The layout
of inner-level nodes is depicted in Fig. 6. For each node, we store
in a 16-bit header a 2-bit code for each of the 8 potential children.
Tag 00 is reserved to null pointers, which are not stored, while the
other tags indicate the format in which child pointers are stored after
the header. Children of type 01 use 16 bits, with the leftmost 3 bits
encoding the transformation, while the remaining 13 bits encode the
offset in number of level-words from the beginning of the next level,
where a level-word is 2 bytes for an inner level and 8 bytes for the
leaf level. Thus, reflections and references to nodes stored in the
first 214 bytes of an inner level’s array or in the first 216 bytes of the
leaf level can be encoded with just two bytes. Less frequent children
pointers, associated to header tags 10 and 11, are both encoded using
32 bits, with the leftmost 3 bits encoding the transformation, and
the rightmost ones the lowest 29bits of the offset. The highest bit of
the offset is set to the rightmost bit of the header tag. We can thus
address more than 2GB into an inner level, and 8GB into leaves.

Figure 6: Layout of inner nodes in our compact representation.

5 Ray-tracing a SSVDAG

The SSVDAG structure can be efficiently traversed using a GPU-
based raytracer by slightly adapting other octree-based approaches
to apply the transformation upon entering a subtree.

In order to test several approaches within the same code base, we
have implemented a basic GPU-based raytracer in GLSL to traverse
both SVO, SVDAG, and our SSVDAG. While the structure alone,
similar to SVDAG [Kämpe et al. 2013], is mostly useful for visibility
queries and/or secondary rays effects, in order to fully test the struc-
ture in the simplest possible setting, we use the raytracer both from
primary rays (requiring closest intersections) and for hard shadows
for the view samples of a deferred rendering target. We focus on
these effects, rather than soft shadows and ambient occlusion, since
they are the ones where voxelization artifacts are most evident. The
normals required for shading are obtained by finite differences in
the frame buffer using a discontinuity preserving filter. While in
other settings other structures can be used for storing normals and
material properties (see, e.g., [Kämpe et al. 2013]), this approach
also shows a practical way to implement real-time navigation of very
large scenes from a compressed representation.

Our dataset is fully stored in two texture buffer objects, one for
the inner nodes, and one for the leaves. For large datasets that
exceed texture buffer objects addressing limits, we use 3D textures.
Similarly to previous work [Laine and Karras 2011; Kämpe et al.
2013], raycasting traverses the voxels intersected by the ray using a
depth-first visit of the octree based on a recursive digital differential
analyzer implemented using a full stack. Traversal stops when a
non-empty voxel is found or the ray span is terminated. The only
algorithmic modification to the regular approach occurs when the
algorithm needs follow child pointers, since children are stored in
our compact format using a variable-rate encoding, and every time
we enter a child we we must apply the transformation stored with
the pointer referencing it.

As in SVDAG [Kämpe et al. 2013], we must access the i-th children
pointer by computing an offset within the header equal to the size
of all pointers in the interval [0, i− 1], with the only difference that
in SVDAG the only two size possibilities are 0 and 4, while in our
case tagged pointers can be stored using 0, 2, and 4 bytes. This
computation is performed in our shader using a manually unrolled
loop.

Once the tagged pointer to the child is found, the associated transfor-
mation code is given by the 3 highest bits, and should be applied to
all the nodes in the subtree. We therefore maintain during traversal
a 3-bit transformation status, which indicates whether which reflec-
tions must be applied to the indices used to access child pointers
in inner nodes or voxel contents in lead nodes. The transformation
status is initialized at 0, is updated each time we descend in a child
by xor-ing it with the pointer’s reflection tag, and is pushed to the
stack together with the current node to be able to restore it upon
backtracking.

(a) Powerplant (b) Boeing 777

(c) Lucy (d) David 1mm

(e) San Miguel (f) Crytek Sponza
Figure 7: The scenes used in our experiments. All images are interactively
rendered using our raytracer from fully GPU-resident data using deferred
shading with screen-space normal estimation and hard shadows.

6 Results

An experimental software library, preprocessor and viewer appli-
cation have been implemented on Linux using C++, OpenGL and
GLSL shading language. All the processing and rendering tests
have been performed on a Desktop Linux PC equipped with an Intel
Core i7-3820, 64 GB of RAM and an NVIDIA GeForce 980 GTX
with 4GB of video memory.

6.1 Datasets

We have extensively tested our system with a variety of high resolu-
tion surface models. Here we present six models which have been
selected to cover widely different fields: CAD, 3D scans and video-
gaming (see Fig. 7). The CAD models, the Powerplant (12 MTri-
angles) and the extremely large and complex Boeing 777 (350M
triangles) have been chosen to prove the effectiveness of our method
with extremely high resolution datasets with connected interweav-
ing detailed parts of complex topological structure, thin and curved
tubular structures, as well as badly tessellated models that do not
always create closed volumes. The 3D Scans represent, Lucy (28M
triangles) and Michelangelo’s David 1mm (56M triangles), are rep-
resentatives of dense high resolution scans of man-made objects

with small details and smooth surfaces. The fourth and fifth model
are the San Miguel dataset (7.8M triangles) and the Crytek Sponza
dataset (282K triangles)), which are similar to what can be found on
a video-game settings, and, together with Lucy, also provide a direct
comparison point with the work on SVDAGs [Kämpe et al. 2013] .

Table 1: Compression performance reduction from SVDAGs to SSVDAGs.
Resolutions are stated in the top row. For each dataset, the first row is the
total time, and the second row is the count of non-empty voxels.

Dataset 2K3 4K3 8K3 16K3 32K3 64K3

Powerplant Time (s) 0.2 0.6 1.5 3.8 10.1 28.1
MVox 4 17 72 310 1336 5827

Boeing 777 Time s 1.2 5.0 23.2 86.3 356.0 1517.1
MVox 12 57 268 1242 5699 24633

Lucy Time s 0.5 1.8 7.5 31.4 121.5 399.1
MVox 6 25 99 395 1580 6321

David 1mm Time s 0.4 1.3 4.9 21.6 83.1 290.0
MVox 4 16 64 257 1029 4116

San Miguel Time s 0.3 1.2 4.4 15.9 52.7 176.7
MVox 12 46 187 750 3007 12045

Crytek Sponza Time s 0.5 1.6 4.7 15.1 45.5 124.7
MVox 40 160 641 2568 10276 41124

6.2 DAG reduction speed

The preprocessor transforms a 3D triangulation into a SVO stored
on disk and then compresses it using different strategies. Prepro-
cessing statistics for the various datasets at different resolutions are
reported in Table 1. For brevity, we report here timings relative to
the conversion from a SVDAG to SSVDAG. which corresponds to
the part related to node reduction by self-similarity and frequency-
based pointer encoding. As a comparison, Crassin et al. [2012]
report for the Crytek Sponza dataset a building time of 7.34ms for
the resolution 5123 on an NVIDIA GTX680 GPU, and Kämpe et
al. [Kämpe et al. 2013] report 4.5s for building an SVDAG from a
SVO at resolution 8K3 on an Intel Core i7-3930, i.e., similar to our
conversion from SVDAG to SSVDAG. Note that these approaches
assume that the the intermediate SVO, and the final DAG need to
fit into memory, while we implement an out-of-core approach. Re-
cently, Pätzold and Kolb [Pätzold and Kolb 2015] have presented
a scalable voxelization approach that builds SVOs from triangle
soups using external memory. Their code builds a 8K3 SVO for the
Crytek Sponza dataset in 98s. Our conversion times are thus similar
to previous node reduction works, and are in any case about an order
of magnitude faster than the first step required for creating an SVO
from the original dataset. About 4% of the time in our conversion is
due to the frequency-based pointer compaction step, which requires
a reordering of nodes performed in external memory.

6.3 Compression performance

Table 2 provides detailed information on processing statistics and
compression rates of all the test models. We compare our compres-
sion results to SVDAG [Kämpe et al. 2013], as well as to the point-
erless SVOs [Schnabel and Klein 2006], where each node consumes
one byte, a structure that cannot be traversed in random order but
useful for off-line storage. For a comparison with ESVO [Laine and
Karras 2011], please refer to the original paper on SVDAGs [Kämpe
et al. 2013]. It should be noted that the slight differences in number
of non-empty nodes in the SVO structure with respect to Kämpe et
al. [2013] is due to the different voxelizers used in the conversion
from triangle meshes.

Memory consumption obviously depends both on node size and
node count. We therefore include for our structure results using
uncompressed nodes (USSVDAG in Table 2), with the same encod-
ing employed for SVDAGs [Kämpe et al. 2013], as well as results

using our optimized layout (SSVDAG in Table 2). SVDAGs cost
8 to 36 bytes per node, depending on the number of child pointers.
Our uncompressed SSVDAGs have the same cost, since symmetry
bits are stored in place of padding bytes. On the other hand, our
compressed SSVDAGs cost 4 to 34 bytes per node, depending both
on the number of child pointers and their size, computed according
on the basis of a frequency distribution. In order to assess the relative
performance of our different optimizations, we also include results
obtained without including symmetry detection but encoding data
using our compact representations (ESVDAG).

As we can see, all the DAG techniques outperform the pointerless
SVO consistently at all but the lower resolutions, even though they
offer in addition full traversal capabilities. Moreover, our strate-
gies for node count and node size reduction prove successful. The
USSVDAG structure, on average, occupies at 64K3 resolution only
79.6% of the storage required by the SVDAG structure, thanks to
the equivalent reduction in the number of nodes provided by our
similarity matching strategy. An average reduction in size to about
52.4% of the SVDAG encoding is obtained by also applying the
frequency-based tagged pointer compaction strategy. Such a strat-
egy is particularly successful since, by matching more pointers,
increased opportunities for referencing highly popular nodes arise.
This is also proved by the results obtained by the ESVDAG tech-
niques, which uses our data structure but only matches sub-trees if
they are equal, as in the original SVDAG. The stronger compression
of SSVDAGs makes it possible, for instance, to easily fit all the Boe-
ing model into a 4GB graphics board (GeForce GTX 980) at 64K3

resolution. Since the Boeing 777 airplane has a length of 63.7m and
a wingspan of 60.9m, using a 64K3 grid permits to represent details
with sub-millimetric accuracy (see Fig. 8).

6.4 Rendering

Since our main contributions target compression, we have not op-
timized our raytracing implementation, focusing on verifying cor-
rectness of construction and relative performance of the methods
rather than absolute speed. We have thus implemented a generic
shader-based raytracer that shares general traversal code based for
the various DAG structures. The different structures are supported
by simply specializing the general code through structure-specific
versions of the routines that read a node structure, access a child
by following a pointer, and applies transformation to a ray (see
Sec. 5 for details), The SVDAG and USSVDAG version access
nodes by fetching data from a GL_R32UI texture buffer object,
while SSVDAG uses a GL_R16UI buffer because of the different
alignment requirements. 3D textures are used in place of texture
buffer objects when the data is so large to exceed buffer addressing
limits. This happens only for the Boeing at 64K3 resolution for
the results presented in this paper. The code does not use any other
acceleration or shading structure, and normals required for shading
are generated in screen space. This simple setup also shows that it is
possible to use such a terse structure to support interactive navigation
of very large models compressed to the GPU.

As illustrated in our accompanying video, we have obtained simi-
lar relative performances for all the models. For instance, for the
three sample viewpoints in Fig. 1 of the Powerplant model at 64K3

resolution, the overall view on the left is rendered at 74fps with
SSVDAG, 86fps with USSVDAG, and 87fps with SVDAG. The
results for the center image are, instead of 70fps for SSVDAG, 81fps
for USSVDAG, and 82fps for SVDAG. Finally, the results for the
right closeup image are, instead, of 36fps for SSVDAG, 42fps for
USSVDAG, 43fps for SVDAG. All images are rendered in HD
(720p) with screen-space normal estimation and hard shadows for
one point light. Rendering performance is thus similar for the three
implementations. demonstrating that the reduction in memory con-

Table 2: Comparison of compression performance for various data structures: our Symmetry-aware Sparse Voxel DAG (SSVDAG) is compared with the original
sparse voxel DAG (SVDAG), and the pointerless SVO. In order to evaluate the effects of the different optimizations, we also provide results for a version of
SSVDAG without pointer compression (USSVDAG) and without symmetry detection (ESVDAG). Resolutions are stated in the top row. On the left, we show the
total node count at 23 resolution. On the right, we show the total memory consumption of the resulting dataset. The last column states memory consumption per
non-empty cubical voxel in the highest built resolutions (64K3).

Total number of nodes in millions Memory consumption in MB bits/vox
Scene 2K3 4K3 8K3 16K3 32K3 64K3 2K3 4K3 8K3 16K3 32K3 64K3 64K3

Powerplant SSVDAG 0.1 0.2 0.4 1.0 2.3 5.4 0.7 2.0 5.2 13.3 33.8 85.8 0.123
12 MTri USSVDAG " " " " " " 1.6 4.0 9.7 23.1 54.9 130.5 0.188

ESVDAG 0.1 0.2 0.5 1.2 2.9 7.0 0.8 2.4 6.3 16.2 41.9 108.6 0.156
SVDAG " " " " " " 1.9 4.9 11.8 28.7 69.9 167.3 0.241
SVO 1.1 5.0 22.0 94.4 404.9 1741.0 1.1 4.8 20.9 90.05 386.2 1660.3 2.390

Boeing 777 SSVDAG 0.3 0.9 3.2 11.3 40.0 140.0 3.0 11.7 43.1 162.9 616.2 2314.4 0.788
350 MTri USSVDAG " " " " " " 6.9 24.8 83.8 295.0 1042.8 3671.5 1.250

ESVDAG 0.4 1.3 4.3 14.4 48.3 164.4 3.9 15.2 54.0 199.1 731.1 2740.7 0.933
SVDAG " " " " " " 9.2 33.8 112.9 376.7 1260.6 4307.9 1.467
SVO 3.3 15.6 72.8 341.0 1582.8 7282.0 3.1 14.9 69.4 325.2 1509.5 6944.6 2.365

Lucy SSVDAG 0.1 0.4 1.4 4.8 14.4 40.3 1.5 5.3 19.1 67.2 213.6 642.2 0.852
28 MTri USSVDAG " " " " " " 2.9 9.2 32.3 110.3 332.4 915.5 1.215

ESVDAG 0.2 0.5 1.7 5.7 18.3 52.9 2.1 6.8 24.0 86.5 295.1 896.5 1.190
SVDAG " " " " " " 4.0 11.3 36.8 127.3 419.0 1212.0 1.608
SVO 2.0 8.2 32.9 131.6 526.6 2106.8 2.0 7.8 31.3 125.5 502.2 2009.2 2.666

David 1mm SSVDAG 0.1 0.3 1.1 3.6 11.2 31.8 1.1 3.9 13.6 48.1 159.2 486.7 0.992
56 MTri USSVDAG " " " " " " 2.2 7.0 23.3 79.7 252.7 716.1 1.459

ESVDAG 0.1 0.4 1.3 4.2 13.8 41.5 1.5 5.0 17.1 61.3 214.3 683.3 1.393
SVDAG " " " " " " 3.0 8.8 27.3 91.8 308.0 938.6 1.913
SVO 1.3 5.4 21.5 85.9 343.2 1372.4 1.3 5.1 20.5 81.9 327.3 1308.8 2.667

San Miguel SSVDAG 0.1 0.3 0.9 2.6 7.7 21.6 1.0 3.3 10.3 31.9 98.7 295.9 0.206
7.8 MTri USSVDAG " " " " " " 2.1 6.9 21.3 61.8 181.1 509.8 0.355

ESVDAG 0.1 0.3 1.1 3.1 9.1 26.5 1.1 3.7 12.0 37.6 118.7 373.0 0.260
SVDAG " " " " " " 2.3 7.8 24.6 72.0 212.2 621.3 0.433
SVO 3.8 15.3 61.7 248.2 997.8 4004.4 3.6 14.6 58.9 236.7 951.6 3818.9 2.660

Crytek Sponza SSVDAG 0.1 0.4 1.1 2.9 7.6 19.7 1.7 5.2 15.1 42.1 115.7 315.3 0.064
282 KTri USSVDAG " " " " " " 3.4 9.7 25.8 67.4 172.3 436.8 0.089

ESVDAG 0.2 0.5 1.4 3.7 9.8 25.5 2.1 6.4 18.8 53.6 151.3 417.3 0.085
SVDAG " " " " " " 4.2 11.9 31.8 83.6 218.3 563.5 0.115
SVO 12.8 52.6 212.6 853.9 3421.5 13697.4 12.21 50.2 202.7 814.3 3263.0 13062.9 2.665

sumption does not come at the cost of much increased render times.
It should be noted that reflections impose a very little overhead,
since USSVDAG is only 1%-2% slower than SVDAG, while pointer
compresssion proves a little bit more costly, since SSVDAG has an
overhead of 14%-16% with respect to SVDAG. This is probably due
to the fact that, while the extra computation required for implement-
ing reflections is well hidden by memory latency, the more elaborate
memory layout of pointer compression is more costly. This aspect
leaves room for optimization.

Even with our unoptimized shader-based implementation, our
SSVDAG structure supports real-time performance for very complex
scenes. The Boeing 777 scene can be explored at 64K3 resolution
in HD (720p) with shading and shadows, at about the same perfor-
mance as the Powerplant model. Fig. 8 shows images taken from the
same closeup viewpoint rendered with various voxel resolutions. It is
evident how the small voxel dimensions enabled by our compression
let appreciate important details that are lost at lower resolutions. The
highest resolution is only possible with our SSDAG and USSDAG
methods, which are the only ones capable to fit the entire model
in-core in a 4GB board. We expect major speedups with a more
elaborate implementation, e.g., supporting beam optimization.

7 Conclusions and Future Work

We have shown that Symmetry-aware Sparse Voxel DAGs (SS-
DAGs), an evolution of Sparse Voxel DAGs, allow for an efficient
lossless encoding of voxelized geometry representations, in which
subtrees that are identical up to a similarity transformations appear

only once. Our results demonstrate that this sort of geometric re-
dundancy is common in all tested real-world scenes, ranging from
complex CAD models to 3D scans to gaming models, leading to
state-of-the-art lossless compression performance. The increased
node size with respect to SVOs and SDAGs is quickly balanced by
the good reduction in node count. Moreover, pointer overhead is
reduced by using fatter leaves and a simple entropy coding. The
resulting structure is compact and GPU-friendly, which makes it
possible to trace very large scenes while maintaining the visibility ac-
celeration structure fully resident in GPU memory. As the structure
can be efficiently constructed from external memory, the resulting
method is fully applicable to massive data sets.

Many interesting areas remain for future work. While the current
implementation uses reflections only, an interesting avenue for future
work would be to investigate other symmetries. Rearranging nodes
based on reference frequency has proven useful to reduce pointer
overhead. Such rearranging techniques could be further expanded,
for example to achieve a better encoding in low-sharing areas. While
in this work we have focused only on visibility query acceleration,
adding a material representation is also of great interest.

Acknowledgments

This work is partially supported by the EU FP7 Program under the
DIVA project (REA 290277) and by Sardinian Regional Authorities
under the VIGEC and HELIOS projects. Datasets are courtesy of
the University of North Carolina at Chapel Hill (Powerplant), Dave
Kasik and The Boeing Company (Boeing 777), the Stanford 3D

(a) 8K3 - 43MB (b) 16K3 - 163MB

(c) 32K3 - 617MB (d) 64K3 - 2331MB
Figure 8: Detail view of the Boeing scene at different resolutions. The compression performance of our method supports real-time rendering from GPU-resident
data even at 64K3 resolution, while SVDAG memory requirements exceed on-board memory capacity on a 4GB board (see Table 2).

Scanning and Digital Michelangelo Repositories (Lucy, David), G.
M. Leal Llaguno (San Miguel), and F. Meinl (Crytek Sponza). We
thank Ulf Assarsson and Erik Sintorn (Chalmers University) for
helpful discussions.

References

AGUS, M., GOBBETTI, E., IGLESIAS GUITIÁN, J. A., AND MAR-
TON, F. 2010. Split-Voxel: A simple discontinuity-preserving
voxel representation for volume rendering. In Proc. Volume
Graphics, 21–28.

BALSA RODRIGUEZ, M., GOBBETTI, E., IGLESIAS GUITIÁN, J.,
MAKHINYA, M., MARTON, F., PAJAROLA, R., AND SUTER, S.
2014. State-of-the-art in compressed GPU-based direct volume
rendering. Computer Graphics Forum 33, 6, 77–100.

BEYER, J., HADWIGER, M., AND PFISTER, H. 2015. State-of-the-
art in GPU-based large-scale volume visualization. In Computer
Graphics Forum. In press.

CRASSIN, C., AND GREEN, S. 2012. Octree-based sparse vox-
elization using the GPU hardware rasterizer. OpenGL Insights,
303–318.

CRASSIN, C., NEYRET, F., LEFEBVRE, S., AND EISEMANN, E.
2009. Gigavoxels: Ray-guided streaming for efficient and detailed
voxel rendering. In Proc. ACM I3D, 15–22.

CRASSIN, C., NEYRET, F., SAINZ, M., GREEN, S., AND EISE-
MANN, E. 2011. Interactive indirect illumination using voxel
cone tracing. In Computer Graphics Forum, vol. 30, 1921–1930.

GOBBETTI, E., MARTON, F., AND IGLESIAS GUITIÁN, J. A.
2008. A single-pass GPU ray casting framework for interactive
out-of-core rendering of massive volumetric datasets. The Visual
Computer 24, 7-9, 797–806.

HUBO, E., MERTENS, T., HABER, T., AND BEKAERT, P. 2008.
Self-similarity based compression of point set surfaces with ap-
plication to ray tracing. Comput. Graph. 32, 2 (Apr.), 221–234.

KÄMPE, V., SINTORN, E., AND ASSARSSON, U. 2013. High
resolution sparse voxel DAGs. ACM Trans. Graph. 32, 4, 101:1–
101:13.

KÄMPE, V., SINTORN, E., AND ASSARSSON, U. 2015. Fast,
memory-efficient construction of voxelized shadows. In Proc.
ACM I3D, 25–30.

LAINE, S., AND KARRAS, T. 2011. Efficient sparse voxel octrees.
IEEE Trans. Vis. Comput. Graph 17, 8, 1048–1059.

LEFEBVRE, S., AND HOPPE, H. 2007. Compressed random-access
trees for spatially coherent data. In Proc. EGSR, 339–349.

PARKER, E., AND UDESHI, T. 2003. Exploiting self-similarity in
geometry for voxel based solid modeling. In Proc. ACM Solid
Modeling, 157–166.

PÄTZOLD, M., AND KOLB, A. 2015. Grid-free out-of-core
voxelization to sparse voxel octrees on gpu. In Proc. High-
Performance Graphics, 95–103.

SCHNABEL, R., AND KLEIN, R. 2006. Octree-based point-cloud
compression. In Proc. SPBG, 111–120.

SINTORN, E., KÄMPE, V., OLSSON, O., AND ASSARSSON, U.
2014. Compact precomputed voxelized shadows. ACM Trans.
Graph. 33, 4 (July), 150:1–150:8.

WEBBER, R. E., AND DILLENCOURT, M. B. 1989. Compressing
quadtrees via common subtree merging. Pattern recognition
letters 9, 3, 193–200.

