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INTRODUCTION 

Presently, acquisition technologies such as LIDAR (Laser Imaging Detection and Ranging) (Van 

Genderen, 2011) have seen an unprecedented amount of advancements in terms of the quality and 

precision of the acquisition hardware. These devices measure distance by using a laser to illuminate a 

target and then analyzing the reflected light. This distance information is combined with different data 

obtained from other techniques such as photogrammetry, radiometry, etc. These measurements are 

repeated for all surfaces of the target reachable by the laser scanner, resulting in a set of points with 

information about their position, color, reflectivity, etc. This acquisition procedure leads to high precision 

georeferenced 3D scans of the real world with an exceptional amount of data, sometimes exceeding 

billions of points. The processing and visualization of these datasets on commodity systems present 

several challenges that can be addressed from a Big Data perspective by applying High Performance 

Computing and Computer Graphics techniques (Yuan, 2012). 

 

In order to manage these huge point clouds and perform operations seamlessly on them, we have 

developed a middleware we have named Point Cloud Manager (PCM) (Jaspe, 2012) (Mures, 2014a). This 

software package (Mures, Jaspe, Padrón, & Rabuñal, 2013) comprises a multiplatform library and a set of 

tools around it that allows the management of massive point clouds with arbitrary attached data on 

commodity hardware. The library provides an abstraction for an arbitrarily large point cloud stored in 

secondary memory (HDD, SSD, NFS...), exposing a simple and clear API to get access to the dataset in 

RAM or VRAM and perform out-of-core operations on CPU or GPU. The two main pillars behind PCM 

are a multiresolution spatial structure and a hierarchy of software caches as can be seen in Figure 1. 

 

Given the spatial nature of the point clouds datasets, the multiresolution structure used in PCM is strongly 

inspired in the space subdivision techniques usually applied in 3D computer graphics. This structure is 

exploited by PCM to provide interactive access to the dataset when needed, for example for visualization, 

or an iterative computation based on the multiresolution levels, that is, converging towards a solution by 

traversing the multiresolution structure with a certain threshold. 
 
A hierarchy of two software caches is used for the transparent and efficient out-of-core access to the 

dataset, a synchronous software cache in VRAM to exploit GPGPU capabilities or simply perform 

advanced point-based rendering, and an asynchronous one in RAM to provide multi-thread support for 

CPU(s). Thus, chunks of 3D point data are transferred when needed, as a response to the high level API 

calls. 

 

Hence, from low-level memory management to conversion and visualization of the point clouds, PCM 

makes out-of-core point cloud operations easier and more efficient for the programmer. The usage of this 

framework allows us to use datasets with unprecedented precision, since it is not necessary to decimate 

clouds before processing them. This means that we can perform operations taking advantage of the high 

precision of the scanners, sometimes even reaching micrometer precision. This can be especially relevant 

in fields such as civil engineering, topography or architecture, where applications are usually forced to 

decimate huge point clouds to be able to manage them and apply certain algorithms. 
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Figure 1. System overview of PCM 

 

This article shows in a didactic manner the application of the aforementioned techniques to real world 

case studies. 

BACKGROUND AND RELATED WORK 

The first point-based rendering techniques appeared long ago (Levoy & Whitted, 1985), when datasets 

were small and the main research effort was devoted to displaying points with the highest quality 

possible. As years passed, the acquisition hardware improved greatly, leading to datasets with millions of 

points, and causing research shifted towards achieving not only the best possible rendering results, but 

also dealing with huge amounts of point data and the new issues it brings along. An example of this is 

(Gobbetti & Marton, 2004), a simple point-based multiresolution structure that deals with the problems 

associated with big point datasets. The multiresolution structure used in our system was strongly inspired 

by this important work. 

 

Novel approaches for point-based renderers such as (Elseberg, Borrmann, & Nüchter, 2013) focus on 

memory efficiency and out-of-core rendering of big point sets. They use a memory efficient octree that 

uses fixed depth and a minimum number of points in its construction. The acceleration structure is 

employed for frustum culling, ray casting, nearest neighbor search and RANSAC (for plane detection). 

Another recent work (Wenzel, Rothermel, Fritsch, & Haala, 2014b) is also based on an octree, in this case 

allowing the creation of a dynamic spatial structure with on-demand management of memory for loading 

and writing of points. This proposal is tested with a photogrammetric filtering algorithm in (Wenzel, 

Rothermel, Fritsch, & Haala, 2014a). 

 

Although the octree is maybe the most popular acceleration structure when working with point sets, other 

spatial structures have also been used over the years. In (Kuder, Šterk, & Žalik, 2013) a quadtree is used 

to render hybrid point-polygon models. This work does not address out-of-core rendering, but performs a 

point cloud simplification that is eventually rendered by using triangle meshes and textures. Other 

approaches use multi-way kd-trees as an acceleration structure such as (Goswami, Erol, Mukhi, Pajarola, 

& Gobbetti, 2013). This type of structure is built with an out-of-core approach and applying a 

multiresolution approach. It is based on a fast high quality point simplification method, which leads to a 

balanced tree with uniformly sized nodes. Since memory efficiency is key, LZO compression is used to 

minimize the memory footprint and an efficient visualization method based on a rendering budget is used 

to display the points. This system is also capable of performing occlusion culling and back-face culling, 

which will aid when dealing with huge datasets.  
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None of the above approaches propose a general-purpose out-of-core multiresolution middleware like 

PCM. PCM's out-of-core kd-tree has the main advantage of having dynamic logarithmic depth and a 

multiresolution approach that will yield benefits when either visualizing the clouds or computing on it. 

PCM pushes the boundaries of out-of-core point rendering even in low-end hardware, being able to work 

with really huge datasets (more than 10 K Million points), increasing in an order of magnitude the number 

of points tested in other approaches. All this exposing an interface oriented to the creation of new out-of-

core point cloud algorithms in an almost transparent way for the user/programmer. 

MAIN FOCUS OF THE ARTICLE 

This article focuses on showcasing how the above mentioned framework can be used to perform arbitrary 

operations on massive point clouds, showing different real world applications built using PCM,  in both 

real-time and offline, render-oriented and computation-related operations as well. An insightful 

description about PCM, the design decisions, how the implemented software caches work and the API 

exposed to the programmers are the objectives of this chapter (Jaspe, Mures, Padrón, & Rabuñal, 2014). 

How to perform common types of point cloud filtering, processing, visualization and object detection 

using PCM will be shown. Employing PCM when working with huge point clouds will offer several 

advantages that will be outlined in the following sections. 

Point cloud filtering and processing 

The first filter we have chosen is a statistical outlier filter, which is typically used to remove noise or 

registration errors. Removing these outliers is good to facilitate further calculations, such as normal or 

radius estimation. This example performs a statistical analysis of each point neighborhood, eliminating 

those points that meet a certain criteria. Using PCM to implement such a simple filter as this one is quite 

fast, since we do not have to worry about point cloud formats or implementing an acceleration structure 

for neighborhood queries. In PCM the clouds are divided in chunks that are subsets of points, which make 

dealing with these datasets easier for the programmer. The use of these artifacts not only helps the 

programmer, but will allow the writing of pseudocode very similar to the actual implementation of these 

algorithms using PCM in C++. For this purpose, we will start by computing the mean distance �̅� to each 

point neighbor: 

�̅� =
∑ ‖𝑝𝑗 − 𝑝‖𝑗

𝑘
, ∀𝑝𝑗 ∈ 𝒩𝑘(𝑝)  (1) 

 
Being 𝒩𝑘(𝑝) the neighbors of point 𝑝. Assuming that the resulting distribution will be Gaussian in nature, 

it will have a mean and a standard deviation. Points that have a mean distance that does not fall in an 

interval can be removed with confidence. This interval is given by the mean and standard deviation of all 

the global distances. The mean is calculated with the following equation: 

 

𝜇 =
∑ �̅�𝑗𝑗

𝑁
, ∀�̅�𝑗 ∈ 𝒟𝑁  (2)  

 
Being 𝒟𝑁 the mean distances to the neighbors of each point. The next equation is used in the calculation 

of the standard deviation: 

 

𝜎 = √
∑ (�̅�𝑗 − 𝜇)2

𝑗

𝑁
, ∀�̅�𝑗 ∈ 𝒟𝑁  (3) 
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Once these two values are known, we could use the following pseudocode to perform the filtration: 

 

Initialize distances to 0 

for each node of point cloud do  

    Request point cloud chunk 

    for each point of chunk do 

        distances ← K mean distance to neighbors 

    end for 

    Free point cloud chunk 

end for 

for each distance of distances do 

    sum ← sum + distance 

    sumsquared ← sumsquared + distance * distance 

end for 

mean ← sum / N of points 

variance ← (sumsquared - sum * sum / N of points) / (N of points - 1) 

stddev ← sqrt(variance) 

threshold ← mean + factor * stddev 

for each node of point cloud do  

    Request point cloud chunk 

    for each point of chunk do 

        if distance <= threshold then 

            Store point 

        else 

            Discard point 

        end if  

    end for 

    Free point cloud chunk 

end for 

Algorithm 1. The statistical outlier filtering algorithm using PCM 

 

 
The second filter we have chosen as an example of application is a voxel grid filter. Even though PCM 

can manage arbitrarily dense point clouds, as multiresolution layers are inherently being applied, we may 

need to obtain less precise clouds, generating new lightweight datasets from our huge clouds by down 

sampling them. This can be useful, if the datasets want to be used in other point cloud software that is not 

able to deal with these vast amounts of points. We have implemented a voxelized grid approach in 

conjunction with PCM to achieve this. This filter creates a 3D voxel grid from the cloud data, 

approximating all the points within each voxel by its centroid. This results in a less dense cloud 

depending on the filter parameters, and also in a more constant density in the point cloud, which is really 

important for certain visualization applications. PCM makes it easy to obtain an efficient implementation 

of this kind of filters. The first step to apply this filter is dividing the space in a set of 3D boxes (voxel 

grid). Once the points 𝒱𝑁 that belong to a voxel are isolated, we can use the following equation to 

compute the centroid of the voxel: 

 

𝐶 =
∑ 𝑝𝑗𝑗

𝑁
, ∀𝑝𝑗 ∈ 𝒱𝑁  (4) 
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Being 𝑝 the position of the corresponding point. In the above equation, we could substitute position for 

color, normal or any other point attribute; to obtain the rest of the centroid data. The calculated centroid 

will be the down sampled point corresponding to the voxel in the filtered cloud. The following 

pseudocode shows how to implement this filter with PCM: 

 

Initialize indexes to 0 

minbb ← minimum point coordinate * inverse voxel size 

for each node of point cloud do  

    Request point cloud chunk 

    for each point of chunk do 

        coord ← point coordinate  

        indexes ← coord * inverse voxel size - minbb 

    end for 

    Free point cloud chunk 

end for 

Sort indexes 

total ← number of different values in indexes 

for each index of indexes do 

    Request point cloud chunk 

    Request point 

    centroid ← point coordinate 

    Free point cloud chunk 

    points ← 0 

    while index is equal do 

        Request point cloud chunk 

        Request point 

        centroid ← centroid + point coordinate 

        Free point cloud chunk 

        points ← points + 1 

    end while 

    centroid ← centroid / points 

    Store centroid  

end for 

Algorithm 2. The voxel grid filtering algorithm using PCM 
 

  
Since a point does not possess volume or area, points are not directly useable in normal 3D applications. 

Because of this, another common necessity when trying to obtain a high quality visualization of a point 

cloud, is the estimation of the point radius. This is another typical preprocessing step performed in a point 

cloud. This can be used by the most advanced point-rendering techniques, to obtain a higher quality 

visualization. This computation could be carried out applying a naive approach, but the massive size of 

the clouds makes it difficult to perform this computation in a reasonable amount of time. By performing 

this calculation using PCM, a dramatically reduction in both the computation time and the amount of 

work needed to implement this operation is achieved. With this example, we also showcase the parallel 

opportunities when using PCM, as we use a GPU kernel to achieve the desired result. In order to estimate 

the point radii, its k-nearest neighbors 𝒩𝑘(𝑝) must be obtained first, this operation can be performed 

using PCM. Next, a watertight surface is desirable, that is a surface bounding a closed solid; or even 

better a closed manifold. This should be kept in mind when the point radii are estimated. When the point 

normal is available, the following equation will be used: 

 

𝑟 = max𝑗‖(𝑝𝑗 − 𝑝) − 𝑛𝑇(𝑝𝑗 − 𝑝)𝑛‖, ∀𝑝𝑗 ∈ 𝒩𝑘(𝑝)  (5) 
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Being 𝑝𝑗the neighbor position and 𝑛 the point normal. If the point normal is not available, we could use 

the next equation: 

 

𝑟 = max𝑗‖𝑝𝑗 − 𝑝‖, ∀𝑝𝑗 ∈ 𝒩𝑘(𝑝)  (6) 

 
Having these two equations in mind, the following algorithm can be used in conjunction with PCM to 

perform this calculation using a GPU: 

 

for each node of point cloud do 

    Request point cloud chunk 

    for each point of chunk do 

        coord ← point coordinate 

        Request point cloud neighboring chunks to GPU cache (VBOs) 

        for each VBO of VBOs do 

            Make VBO available in OpenCL 

            Make coord available in OpenCL 

            Launch kernel sorting by distances to neighbors in VBO 

            k-neighbors ← read buffer with results 

            Radius ← biggest distance to k-neighbors 

        end for 

    end for 

    Set chunk write flag 

    Free point cloud chunk 

end for 

Algorithm 3. The radii estimation algorithm using PCM 

 

Point cloud rendering 
 

The first approaches to point rendering like (Zwicker, Pfister, Van Baar, & Gross, 2001) were CPU based, 

this was clearly not the right approach for real-time point rendering. To increase performance, the 

massively parallel computing power of GPUs should be taken advantage of. In a similar fashion to how 

triangle meshes are rendered nowadays, we will offload rendering to the graphics hardware freeing the 

CPU to perform other tasks. This will provide much higher performance than a CPU based solution. 

 

 
Figure 2. Screenshot of a visualizer that uses PCM 

 

 

Obviously, having at one's disposal a visualization tool to manage even the hugest point clouds in real-

time is ideal in these areas, so an out-of-core visualizer implementing some of the most advanced point-
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based rendering techniques has been built using PCM (Mures, 2014). The software caches transparently 

load the points in VRAM when needed; exploiting again the inherent multiresolution features in PCM, 

and OpenGL is used to get a quality render with interactive frame rates.  This application is also useful as 

a GUI for applying other operations on the point clouds being managed. The next pseudocode will show 

how a basic visualizer can be implemented using the software caches available in PCM as can be seen in 

Figure 1. 

 

while render do 

    mvp ← model view projection matrix 

    Bind shader program 

    for each cloud of point clouds do 

        Pass shader arguments 

        chunks ← Query multiresolution structure 

        list ← Request chunks to GPU cache 

        for each node of list do  

            for each VBO of node do 

                Bind VBO 

                Set attribute buffer data 

                Enable attribute buffer 

                Draw points in VBO 

                Disable attribute buffer 

            end for 

        end for 

    end for 

    Release shader program 

    Swap buffers 

end while 

Algorithm 4. The visualization algorithm using PCM 

Architecture and civil engineering applications  
 

Civil engineering, architecture and related areas are nowadays an important target for point cloud 

applications and models. An example can be found in the building preservation and conservation field; 

where measuring and testing the correctness of a built structure might be needed. This could be easily 

achieved by coding a kernel on PCM to estimate the closest point-to-point or point-to-triangle distance, 

just disposing a 3D model of the structure obtained from the CAD plans and a point cloud dataset of the 

real structure, obtained from a LIDAR scanner, for example. When the minimum distance exceeds a 

given threshold there is a high possibility that we have encountered a defect, so these points are marked to 

alert the user about it. This technique could also be applied in industrial design for CAD based inspection, 

obtaining a point cloud of a manufactured part and then use a similar process to compare the CAD design 

with the real part. The out-of-core features in PCM allow us to take advantage of the full precision 

available in the dataset, avoiding the need to decimate even the biggest point clouds. 

 

In order to achieve the aforementioned objective, it will be necessary to be able to calculate a point-to-

point distance. This is easily achieved for points 𝑝1 and 𝑝2 with the following formula: 

 

𝐷𝑝 = ‖𝑝1 − 𝑝2‖   (7) 
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The point-to-triangle distance is a little harder to obtain. In this case, the minimum distance will be 

computed using the squared-distance function for any point in a triangle 𝑡 to the point 𝑝: 

  
𝐷𝑡(𝑢, 𝑣) = |𝑡(𝑢, 𝑣) − 𝑝|2   (8) 

 
For the following 𝑢, 𝑣 values: 

 

(𝑢, 𝑣) ∈ 𝑆 = {(𝑢, 𝑣) ∶ 𝑢 ∈ [0,1], 𝑣 ∈ [0,1], 𝑢 + 𝑣 ≤ 1}   (9) 
 
The goal will be to minimize 𝐷𝑡(𝑢, 𝑣) over 𝑆. Knowing that 𝐷𝑡 is a differentiable function, the minimum 

will occur either in the boundary of 𝑆 or where the gradient ∆𝑆 = (0,0) (Eberly, 1999). 

 

Taking all of this into account, PCM can now be used to compute the minimum point-to-point or point-to-

triangle distances for two 3D models, a point cloud against a triangle mesh or another point cloud. The 

CPU version will be showcased since it is easier to understand, but it could also be implemented using a 

GPU. 

 

Initialize distances to 0 

for each node of point cloud do  

    Request point cloud chunk 

    for each point of chunk do 

        for each triangle of mesh do 

            dist ← point-triangle distance 

            if dist < distances then 

                distances ← dist 

            end if 

        end for  

    end for 

    Free point cloud chunk 

end for 

Algorithm 5. The minimum distances algorithm using PCM 
 

 

 
Figure 3. Result of RANSAC fitting of a line in a set of points that contain outliers and inliers 

 
Another useful application of PCM in the fields of architecture and civil engineering could be object 

detection in point clouds. By applying a RANSAC-like algorithm on top of PCM we can find planes, 

cylinders and spheres easily and quickly in massive point clouds. RANdom Sample Consensus is an 
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iterative method to estimate parameters of a mathematical model from a set of observed points which can 

contain outliers. This is a non-deterministic algorithm, since we are not able to guarantee that it will 

produce a correct result. The probability of reaching a reasonable result will improve as the number of 

iterations increases. We showcase how this algorithm can be interactively used to detect the 

aforementioned primitives in point clouds. This can aid architects in the creation of CAD floor plans from 

point clouds, civil engineers in the documentation of existing structures, etc. For this purpose we will also 

demonstrate how to export the estimated primitives in a CAD friendly format. This might seem trivial at 

first, but since the estimated primitives are of parametric nature and some of them are not bounded, this is 

not an easy task. It is also useful for interactively removing objects in the point clouds, since we are able 

to perform primitive estimation in real-time. 

 

To illustrate how this can be achieved using PCM, the use case of estimating a plane in a point cloud in 

real-time is chosen. The first step, is selecting a subset of points in the dataset, this can be done by the end 

user or randomly. Next, RANSAC is used to estimate the mathematical parameters of the plane. The basic 

assumption is that the data contains inliers, though it may contain noise and outliers (Figure 3). Outliers 

can appear because of errors or imprecise measurements, extreme values of noise, etc. RANSAC assumes 

that for a given set of inliers, there should exist a procedure that can estimate the unknown parameters of 

the plane model that will fit this data. 

 
The essence of the basic RANSAC algorithm can be outlined in the following steps: 

 

Step 1: Select randomly the minimum set of points to compute the model parameters. 

Step 2: Solve for the parameters of the model (i.e. with a least squares method). 

Step 3: Test how many points in the dataset fit the estimated model with a predefined tolerance 𝜖. 

Step 4: If the fraction of inliers over the total number of points is enough, then the mathematical 

model is re-estimated (since it was only estimated using the initial inliers). 

Step 5: Finally, the model is evaluated by estimating the error against the inliers. 

 

This procedure is repeated for a certain number of times, each time obtaining a new model which can be 

rejected if too few points are classified as inliers or a better model with its corresponding error measure. 

 
Figure 4. Hessian normal form of a plane 

 

Once the parameters of the plane are obtained, since it is infinite, it will need to be bounded. This is 

achieved calculating its intersection with the axis aligned bounding box (AABB) of the point cloud. This 

means that a common ray-plane intersection test has to be performed for each edge. The result of this 
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process will be a polyline directly exportable to a CAD format. The point of intersection in the plane can 

be written as: 

n̂ ∙ x = −p   (10) 

This is called the Hessian normal form of a plane (Figure 4). For the ray, it can be written as: 

x = x0 + tv̂   (11) 

Being x0 the origin of the ray, v̂ the direction and t: 

t =
−(x0 ∙ n̂ + p)

v̂ ∙ n̂
   (12) 

Once all the intersection points have been calculated, they are tested to check if they fall inside the 

AABB. After this the vertices of the bounded plane are ready to be exported as a polyline. The 

pseudocode necessary to implement this use case in PCM is showcased in the following code block. 

 

selectedpoint ← get user selected intersection point 

for each node of neighborhood do  

    Request point cloud chunk 

    for each point of chunk do 

        dist ← distance between point and selectedpoint 

        if dist <= sampledistance then 

            samples ← point 

        end if 

    end for 

    Free point cloud chunk 

end for 

coefficients ← segment plane from samples 

Color plane coefficients in GPU point data 

intpoints ← Compute intersection of the plane with cloud AABB 

polyline ← Sort intpoints 

Write polyline to CAD compatible file   
Algorithm 6. The plane estimation  algorithm using PCM 

 

FUTURE RESEARCH DIRECTIONS 

The current version of the software was designed for PCs with Linux/GNU, Windows or MacOS. Future 

research could focus on making PCM compatible with mobile operating systems (Android, iOS, etc.), or 

even better modern internet browsers using WebGL and decoupling it in a client-server approach. In order 

to be able to utilize PCM in mobile platforms or browsers, it will need point streaming capabilities, this 

will mean transferring clouds over a network. 

Other future improvements could be improving the construction algorithm of the acceleration structure, so 

points are distributed in a better manner between levels. Alternative acceleration structures could also be 

explored, since the multiresolution structure is not the most optimal acceleration system for tasks not 

related to visualization. 

But certainly, one of the most innovative lines of research in point based rendering, is using virtual reality 

headsets to visualize these datasets. It has incredible possibilities in the fields of architecture and civil 

engineering, since it provides professionals with new tools to interact with clients or among them with an 

unprecedented amount of detail and immersion.  
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CONCLUSION 

In this article, several applications of the out-of-core point management framework PCM were shown. It 

was designed to deal with arbitrary size datasets; simplifying greatly programming tasks that involve 

point clouds. From point cloud processing to real-time visualization, PCM is of great help and frees the 

programmer from dealing with problems like point cloud formats, memory management, point cloud 

manipulation, acceleration structures, etc. Additionally, the library also exploits the full potential of both 

modern CPUs and GPUs, facilitating the use of parallel processing to reduce the computation time as 

much as possible. 

 

Furthermore, having a system that is able to manage such a huge amount of data, will let the user take 

advantage of the full potential of datasets generated by cutting-edge 3D capture devices. These datasets 

present great opportunities for a wide range of fields, but these new types of 3D models present a great 

challenge because of the vast amounts of data they generate. Thanks to the techniques explained, 

researchers or professionals will be able to manage these massive point clouds transparently using the 

already mentioned framework.  
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KEY TERMS AND DEFINITIONS 

Point cloud: Set of vertices or points in a three-dimensional coordinate system. These vertices are usually 

positioned in 3D space and have a set of coordinates (x, y, z). These sets of points normally are 

representative of the external surface of an object. 

 

LiDAR: Remote sensing technology that measures distance to a target by illuminating it with a laser and 

analyzing the reflected light. 

 

Out-of-core: Type of algorithm that is designed to process data that is too large to fit into a computer's 

main memory at one time. These algorithms must be optimized to efficiently fetch and access data stored 

in slow secondary memory such as hard drives. 

 

GPGPU: General-purpose computing on graphics processing units is the utilization of graphics 

processing units (GPU), which typically handles computer graphics workloads, to perform computation in 

applications traditionally handled by the central processing unit (CPU). 

 

Multiresolution: A technique that allows you to break an image down into multiple levels (or layers) so 

that every zoom level has good resolution. 

 

Rendering: The process of generating an image or set of images from a 2D or 3D model, by means of 

computer software. 

 

Photogrammetry: The science of making measurements from photographs, especially for recovering the 

exact positions of surface points. 

 


