
Point Cloud Manager: Applications of a Middleware for Managing Huge Point Clouds. O. Mures, A. Jaspe, E. Padrón, J. Rabuñal PRE-PRINT VERSION

Effective Big Data Management and Opportunities for Implementation. Eds. Manoj Kumar Singh and Dileep Kumar G. IGI Global. June 2016

Point Cloud Manager: Applications of a Middleware

for Managing Huge Point Clouds

Omar A. Mures

University of A Coruña, Spain

Alberto Jaspe

CRS4, Italy

Emilio J. Padrón

University of A Coruña, Spain

Juan R. Rabuñal

University of A Coruña, Spain

INTRODUCTION

Presently, acquisition technologies such as LIDAR (Laser Imaging Detection and Ranging) (Van

Genderen, 2011) have seen an unprecedented amount of advancements in terms of the quality and

precision of the acquisition hardware. These devices measure distance by using a laser to illuminate a

target and then analyzing the reflected light. This distance information is combined with different data

obtained from other techniques such as photogrammetry, radiometry, etc. These measurements are

repeated for all surfaces of the target reachable by the laser scanner, resulting in a set of points with

information about their position, color, reflectivity, etc. This acquisition procedure leads to high precision

georeferenced 3D scans of the real world with an exceptional amount of data, sometimes exceeding

billions of points. The processing and visualization of these datasets on commodity systems present

several challenges that can be addressed from a Big Data perspective by applying High Performance

Computing and Computer Graphics techniques (Yuan, 2012).

In order to manage these huge point clouds and perform operations seamlessly on them, we have

developed a middleware we have named Point Cloud Manager (PCM) (Jaspe, 2012) (Mures, 2014a). This

software package (Mures, Jaspe, Padrón, & Rabuñal, 2013) comprises a multiplatform library and a set of

tools around it that allows the management of massive point clouds with arbitrary attached data on

commodity hardware. The library provides an abstraction for an arbitrarily large point cloud stored in

secondary memory (HDD, SSD, NFS...), exposing a simple and clear API to get access to the dataset in

RAM or VRAM and perform out-of-core operations on CPU or GPU. The two main pillars behind PCM

are a multiresolution spatial structure and a hierarchy of software caches as can be seen in Figure 1.

Given the spatial nature of the point clouds datasets, the multiresolution structure used in PCM is strongly

inspired in the space subdivision techniques usually applied in 3D computer graphics. This structure is

exploited by PCM to provide interactive access to the dataset when needed, for example for visualization,

or an iterative computation based on the multiresolution levels, that is, converging towards a solution by

traversing the multiresolution structure with a certain threshold.

A hierarchy of two software caches is used for the transparent and efficient out-of-core access to the

dataset, a synchronous software cache in VRAM to exploit GPGPU capabilities or simply perform

advanced point-based rendering, and an asynchronous one in RAM to provide multi-thread support for

CPU(s). Thus, chunks of 3D point data are transferred when needed, as a response to the high level API

calls.

Hence, from low-level memory management to conversion and visualization of the point clouds, PCM

makes out-of-core point cloud operations easier and more efficient for the programmer. The usage of this

framework allows us to use datasets with unprecedented precision, since it is not necessary to decimate

clouds before processing them. This means that we can perform operations taking advantage of the high

precision of the scanners, sometimes even reaching micrometer precision. This can be especially relevant

in fields such as civil engineering, topography or architecture, where applications are usually forced to

decimate huge point clouds to be able to manage them and apply certain algorithms.

Point Cloud Manager: Applications of a Middleware for Managing Huge Point Clouds. O. Mures, A. Jaspe, E. Padrón, J. Rabuñal PRE-PRINT VERSION

Effective Big Data Management and Opportunities for Implementation. Eds. Manoj Kumar Singh and Dileep Kumar G. IGI Global. June 2016

Figure 1. System overview of PCM

This article shows in a didactic manner the application of the aforementioned techniques to real world

case studies.

BACKGROUND AND RELATED WORK

The first point-based rendering techniques appeared long ago (Levoy & Whitted, 1985), when datasets

were small and the main research effort was devoted to displaying points with the highest quality

possible. As years passed, the acquisition hardware improved greatly, leading to datasets with millions of

points, and causing research shifted towards achieving not only the best possible rendering results, but

also dealing with huge amounts of point data and the new issues it brings along. An example of this is

(Gobbetti & Marton, 2004), a simple point-based multiresolution structure that deals with the problems

associated with big point datasets. The multiresolution structure used in our system was strongly inspired

by this important work.

Novel approaches for point-based renderers such as (Elseberg, Borrmann, & Nüchter, 2013) focus on

memory efficiency and out-of-core rendering of big point sets. They use a memory efficient octree that

uses fixed depth and a minimum number of points in its construction. The acceleration structure is

employed for frustum culling, ray casting, nearest neighbor search and RANSAC (for plane detection).

Another recent work (Wenzel, Rothermel, Fritsch, & Haala, 2014b) is also based on an octree, in this case

allowing the creation of a dynamic spatial structure with on-demand management of memory for loading

and writing of points. This proposal is tested with a photogrammetric filtering algorithm in (Wenzel,

Rothermel, Fritsch, & Haala, 2014a).

Although the octree is maybe the most popular acceleration structure when working with point sets, other

spatial structures have also been used over the years. In (Kuder, Šterk, & Žalik, 2013) a quadtree is used

to render hybrid point-polygon models. This work does not address out-of-core rendering, but performs a

point cloud simplification that is eventually rendered by using triangle meshes and textures. Other

approaches use multi-way kd-trees as an acceleration structure such as (Goswami, Erol, Mukhi, Pajarola,

& Gobbetti, 2013). This type of structure is built with an out-of-core approach and applying a

multiresolution approach. It is based on a fast high quality point simplification method, which leads to a

balanced tree with uniformly sized nodes. Since memory efficiency is key, LZO compression is used to

minimize the memory footprint and an efficient visualization method based on a rendering budget is used

to display the points. This system is also capable of performing occlusion culling and back-face culling,

which will aid when dealing with huge datasets.

Point Cloud Manager: Applications of a Middleware for Managing Huge Point Clouds. O. Mures, A. Jaspe, E. Padrón, J. Rabuñal PRE-PRINT VERSION

Effective Big Data Management and Opportunities for Implementation. Eds. Manoj Kumar Singh and Dileep Kumar G. IGI Global. June 2016

None of the above approaches propose a general-purpose out-of-core multiresolution middleware like

PCM. PCM's out-of-core kd-tree has the main advantage of having dynamic logarithmic depth and a

multiresolution approach that will yield benefits when either visualizing the clouds or computing on it.

PCM pushes the boundaries of out-of-core point rendering even in low-end hardware, being able to work

with really huge datasets (more than 10 K Million points), increasing in an order of magnitude the number

of points tested in other approaches. All this exposing an interface oriented to the creation of new out-of-

core point cloud algorithms in an almost transparent way for the user/programmer.

MAIN FOCUS OF THE ARTICLE

This article focuses on showcasing how the above mentioned framework can be used to perform arbitrary

operations on massive point clouds, showing different real world applications built using PCM, in both

real-time and offline, render-oriented and computation-related operations as well. An insightful

description about PCM, the design decisions, how the implemented software caches work and the API

exposed to the programmers are the objectives of this chapter (Jaspe, Mures, Padrón, & Rabuñal, 2014).

How to perform common types of point cloud filtering, processing, visualization and object detection

using PCM will be shown. Employing PCM when working with huge point clouds will offer several

advantages that will be outlined in the following sections.

Point cloud filtering and processing

The first filter we have chosen is a statistical outlier filter, which is typically used to remove noise or

registration errors. Removing these outliers is good to facilitate further calculations, such as normal or

radius estimation. This example performs a statistical analysis of each point neighborhood, eliminating

those points that meet a certain criteria. Using PCM to implement such a simple filter as this one is quite

fast, since we do not have to worry about point cloud formats or implementing an acceleration structure

for neighborhood queries. In PCM the clouds are divided in chunks that are subsets of points, which make

dealing with these datasets easier for the programmer. The use of these artifacts not only helps the

programmer, but will allow the writing of pseudocode very similar to the actual implementation of these

algorithms using PCM in C++. For this purpose, we will start by computing the mean distance �̅� to each

point neighbor:

�̅� =
∑ ‖𝑝𝑗 − 𝑝‖𝑗

𝑘
, ∀𝑝𝑗 ∈ 𝒩𝑘(𝑝) (1)

Being 𝒩𝑘(𝑝) the neighbors of point 𝑝. Assuming that the resulting distribution will be Gaussian in nature,

it will have a mean and a standard deviation. Points that have a mean distance that does not fall in an

interval can be removed with confidence. This interval is given by the mean and standard deviation of all

the global distances. The mean is calculated with the following equation:

𝜇 =
∑ �̅�𝑗𝑗

𝑁
, ∀�̅�𝑗 ∈ 𝒟𝑁 (2)

Being 𝒟𝑁 the mean distances to the neighbors of each point. The next equation is used in the calculation

of the standard deviation:

𝜎 = √
∑ (�̅�𝑗 − 𝜇)2

𝑗

𝑁
, ∀�̅�𝑗 ∈ 𝒟𝑁 (3)

Point Cloud Manager: Applications of a Middleware for Managing Huge Point Clouds. O. Mures, A. Jaspe, E. Padrón, J. Rabuñal PRE-PRINT VERSION

Effective Big Data Management and Opportunities for Implementation. Eds. Manoj Kumar Singh and Dileep Kumar G. IGI Global. June 2016

Once these two values are known, we could use the following pseudocode to perform the filtration:

Initialize distances to 0

for each node of point cloud do

 Request point cloud chunk

 for each point of chunk do

 distances ← K mean distance to neighbors

 end for

 Free point cloud chunk

end for

for each distance of distances do

 sum ← sum + distance

 sumsquared ← sumsquared + distance * distance

end for

mean ← sum / N of points

variance ← (sumsquared - sum * sum / N of points) / (N of points - 1)

stddev ← sqrt(variance)

threshold ← mean + factor * stddev

for each node of point cloud do

 Request point cloud chunk

 for each point of chunk do

 if distance <= threshold then

 Store point

 else

 Discard point

 end if

 end for

 Free point cloud chunk

end for

Algorithm 1. The statistical outlier filtering algorithm using PCM

The second filter we have chosen as an example of application is a voxel grid filter. Even though PCM

can manage arbitrarily dense point clouds, as multiresolution layers are inherently being applied, we may

need to obtain less precise clouds, generating new lightweight datasets from our huge clouds by down

sampling them. This can be useful, if the datasets want to be used in other point cloud software that is not

able to deal with these vast amounts of points. We have implemented a voxelized grid approach in

conjunction with PCM to achieve this. This filter creates a 3D voxel grid from the cloud data,

approximating all the points within each voxel by its centroid. This results in a less dense cloud

depending on the filter parameters, and also in a more constant density in the point cloud, which is really

important for certain visualization applications. PCM makes it easy to obtain an efficient implementation

of this kind of filters. The first step to apply this filter is dividing the space in a set of 3D boxes (voxel

grid). Once the points 𝒱𝑁 that belong to a voxel are isolated, we can use the following equation to

compute the centroid of the voxel:

𝐶 =
∑ 𝑝𝑗𝑗

𝑁
, ∀𝑝𝑗 ∈ 𝒱𝑁 (4)

Point Cloud Manager: Applications of a Middleware for Managing Huge Point Clouds. O. Mures, A. Jaspe, E. Padrón, J. Rabuñal PRE-PRINT VERSION

Effective Big Data Management and Opportunities for Implementation. Eds. Manoj Kumar Singh and Dileep Kumar G. IGI Global. June 2016

Being 𝑝 the position of the corresponding point. In the above equation, we could substitute position for

color, normal or any other point attribute; to obtain the rest of the centroid data. The calculated centroid

will be the down sampled point corresponding to the voxel in the filtered cloud. The following

pseudocode shows how to implement this filter with PCM:

Initialize indexes to 0

minbb ← minimum point coordinate * inverse voxel size

for each node of point cloud do

 Request point cloud chunk

 for each point of chunk do

 coord ← point coordinate

 indexes ← coord * inverse voxel size - minbb

 end for

 Free point cloud chunk

end for

Sort indexes

total ← number of different values in indexes

for each index of indexes do

 Request point cloud chunk

 Request point

 centroid ← point coordinate

 Free point cloud chunk

 points ← 0

 while index is equal do

 Request point cloud chunk

 Request point

 centroid ← centroid + point coordinate

 Free point cloud chunk

 points ← points + 1

 end while

 centroid ← centroid / points

 Store centroid

end for

Algorithm 2. The voxel grid filtering algorithm using PCM

Since a point does not possess volume or area, points are not directly useable in normal 3D applications.

Because of this, another common necessity when trying to obtain a high quality visualization of a point

cloud, is the estimation of the point radius. This is another typical preprocessing step performed in a point

cloud. This can be used by the most advanced point-rendering techniques, to obtain a higher quality

visualization. This computation could be carried out applying a naive approach, but the massive size of

the clouds makes it difficult to perform this computation in a reasonable amount of time. By performing

this calculation using PCM, a dramatically reduction in both the computation time and the amount of

work needed to implement this operation is achieved. With this example, we also showcase the parallel

opportunities when using PCM, as we use a GPU kernel to achieve the desired result. In order to estimate

the point radii, its k-nearest neighbors 𝒩𝑘(𝑝) must be obtained first, this operation can be performed

using PCM. Next, a watertight surface is desirable, that is a surface bounding a closed solid; or even

better a closed manifold. This should be kept in mind when the point radii are estimated. When the point

normal is available, the following equation will be used:

𝑟 = max𝑗‖(𝑝𝑗 − 𝑝) − 𝑛𝑇(𝑝𝑗 − 𝑝)𝑛‖, ∀𝑝𝑗 ∈ 𝒩𝑘(𝑝) (5)

Point Cloud Manager: Applications of a Middleware for Managing Huge Point Clouds. O. Mures, A. Jaspe, E. Padrón, J. Rabuñal PRE-PRINT VERSION

Effective Big Data Management and Opportunities for Implementation. Eds. Manoj Kumar Singh and Dileep Kumar G. IGI Global. June 2016

Being 𝑝𝑗the neighbor position and 𝑛 the point normal. If the point normal is not available, we could use

the next equation:

𝑟 = max𝑗‖𝑝𝑗 − 𝑝‖, ∀𝑝𝑗 ∈ 𝒩𝑘(𝑝) (6)

Having these two equations in mind, the following algorithm can be used in conjunction with PCM to

perform this calculation using a GPU:

for each node of point cloud do

 Request point cloud chunk

 for each point of chunk do

 coord ← point coordinate

 Request point cloud neighboring chunks to GPU cache (VBOs)

 for each VBO of VBOs do

 Make VBO available in OpenCL

 Make coord available in OpenCL

 Launch kernel sorting by distances to neighbors in VBO

 k-neighbors ← read buffer with results

 Radius ← biggest distance to k-neighbors

 end for

 end for

 Set chunk write flag

 Free point cloud chunk

end for

Algorithm 3. The radii estimation algorithm using PCM

Point cloud rendering

The first approaches to point rendering like (Zwicker, Pfister, Van Baar, & Gross, 2001) were CPU based,

this was clearly not the right approach for real-time point rendering. To increase performance, the

massively parallel computing power of GPUs should be taken advantage of. In a similar fashion to how

triangle meshes are rendered nowadays, we will offload rendering to the graphics hardware freeing the

CPU to perform other tasks. This will provide much higher performance than a CPU based solution.

Figure 2. Screenshot of a visualizer that uses PCM

Obviously, having at one's disposal a visualization tool to manage even the hugest point clouds in real-

time is ideal in these areas, so an out-of-core visualizer implementing some of the most advanced point-

Point Cloud Manager: Applications of a Middleware for Managing Huge Point Clouds. O. Mures, A. Jaspe, E. Padrón, J. Rabuñal PRE-PRINT VERSION

Effective Big Data Management and Opportunities for Implementation. Eds. Manoj Kumar Singh and Dileep Kumar G. IGI Global. June 2016

based rendering techniques has been built using PCM (Mures, 2014). The software caches transparently

load the points in VRAM when needed; exploiting again the inherent multiresolution features in PCM,

and OpenGL is used to get a quality render with interactive frame rates. This application is also useful as

a GUI for applying other operations on the point clouds being managed. The next pseudocode will show

how a basic visualizer can be implemented using the software caches available in PCM as can be seen in

Figure 1.

while render do

 mvp ← model view projection matrix

 Bind shader program

 for each cloud of point clouds do

 Pass shader arguments

 chunks ← Query multiresolution structure

 list ← Request chunks to GPU cache

 for each node of list do

 for each VBO of node do

 Bind VBO

 Set attribute buffer data

 Enable attribute buffer

 Draw points in VBO

 Disable attribute buffer

 end for

 end for

 end for

 Release shader program

 Swap buffers

end while

Algorithm 4. The visualization algorithm using PCM

Architecture and civil engineering applications

Civil engineering, architecture and related areas are nowadays an important target for point cloud

applications and models. An example can be found in the building preservation and conservation field;

where measuring and testing the correctness of a built structure might be needed. This could be easily

achieved by coding a kernel on PCM to estimate the closest point-to-point or point-to-triangle distance,

just disposing a 3D model of the structure obtained from the CAD plans and a point cloud dataset of the

real structure, obtained from a LIDAR scanner, for example. When the minimum distance exceeds a

given threshold there is a high possibility that we have encountered a defect, so these points are marked to

alert the user about it. This technique could also be applied in industrial design for CAD based inspection,

obtaining a point cloud of a manufactured part and then use a similar process to compare the CAD design

with the real part. The out-of-core features in PCM allow us to take advantage of the full precision

available in the dataset, avoiding the need to decimate even the biggest point clouds.

In order to achieve the aforementioned objective, it will be necessary to be able to calculate a point-to-

point distance. This is easily achieved for points 𝑝1 and 𝑝2 with the following formula:

𝐷𝑝 = ‖𝑝1 − 𝑝2‖ (7)

Point Cloud Manager: Applications of a Middleware for Managing Huge Point Clouds. O. Mures, A. Jaspe, E. Padrón, J. Rabuñal PRE-PRINT VERSION

Effective Big Data Management and Opportunities for Implementation. Eds. Manoj Kumar Singh and Dileep Kumar G. IGI Global. June 2016

The point-to-triangle distance is a little harder to obtain. In this case, the minimum distance will be

computed using the squared-distance function for any point in a triangle 𝑡 to the point 𝑝:

𝐷𝑡(𝑢, 𝑣) = |𝑡(𝑢, 𝑣) − 𝑝|2 (8)

For the following 𝑢, 𝑣 values:

(𝑢, 𝑣) ∈ 𝑆 = {(𝑢, 𝑣) ∶ 𝑢 ∈ [0,1], 𝑣 ∈ [0,1], 𝑢 + 𝑣 ≤ 1} (9)

The goal will be to minimize 𝐷𝑡(𝑢, 𝑣) over 𝑆. Knowing that 𝐷𝑡 is a differentiable function, the minimum

will occur either in the boundary of 𝑆 or where the gradient ∆𝑆 = (0,0) (Eberly, 1999).

Taking all of this into account, PCM can now be used to compute the minimum point-to-point or point-to-

triangle distances for two 3D models, a point cloud against a triangle mesh or another point cloud. The

CPU version will be showcased since it is easier to understand, but it could also be implemented using a

GPU.

Initialize distances to 0

for each node of point cloud do

 Request point cloud chunk

 for each point of chunk do

 for each triangle of mesh do

 dist ← point-triangle distance

 if dist < distances then

 distances ← dist

 end if

 end for

 end for

 Free point cloud chunk

end for

Algorithm 5. The minimum distances algorithm using PCM

Figure 3. Result of RANSAC fitting of a line in a set of points that contain outliers and inliers

Another useful application of PCM in the fields of architecture and civil engineering could be object

detection in point clouds. By applying a RANSAC-like algorithm on top of PCM we can find planes,

cylinders and spheres easily and quickly in massive point clouds. RANdom Sample Consensus is an

Point Cloud Manager: Applications of a Middleware for Managing Huge Point Clouds. O. Mures, A. Jaspe, E. Padrón, J. Rabuñal PRE-PRINT VERSION

Effective Big Data Management and Opportunities for Implementation. Eds. Manoj Kumar Singh and Dileep Kumar G. IGI Global. June 2016

iterative method to estimate parameters of a mathematical model from a set of observed points which can

contain outliers. This is a non-deterministic algorithm, since we are not able to guarantee that it will

produce a correct result. The probability of reaching a reasonable result will improve as the number of

iterations increases. We showcase how this algorithm can be interactively used to detect the

aforementioned primitives in point clouds. This can aid architects in the creation of CAD floor plans from

point clouds, civil engineers in the documentation of existing structures, etc. For this purpose we will also

demonstrate how to export the estimated primitives in a CAD friendly format. This might seem trivial at

first, but since the estimated primitives are of parametric nature and some of them are not bounded, this is

not an easy task. It is also useful for interactively removing objects in the point clouds, since we are able

to perform primitive estimation in real-time.

To illustrate how this can be achieved using PCM, the use case of estimating a plane in a point cloud in

real-time is chosen. The first step, is selecting a subset of points in the dataset, this can be done by the end

user or randomly. Next, RANSAC is used to estimate the mathematical parameters of the plane. The basic

assumption is that the data contains inliers, though it may contain noise and outliers (Figure 3). Outliers

can appear because of errors or imprecise measurements, extreme values of noise, etc. RANSAC assumes

that for a given set of inliers, there should exist a procedure that can estimate the unknown parameters of

the plane model that will fit this data.

The essence of the basic RANSAC algorithm can be outlined in the following steps:

Step 1: Select randomly the minimum set of points to compute the model parameters.

Step 2: Solve for the parameters of the model (i.e. with a least squares method).

Step 3: Test how many points in the dataset fit the estimated model with a predefined tolerance 𝜖.

Step 4: If the fraction of inliers over the total number of points is enough, then the mathematical

model is re-estimated (since it was only estimated using the initial inliers).

Step 5: Finally, the model is evaluated by estimating the error against the inliers.

This procedure is repeated for a certain number of times, each time obtaining a new model which can be

rejected if too few points are classified as inliers or a better model with its corresponding error measure.

Figure 4. Hessian normal form of a plane

Once the parameters of the plane are obtained, since it is infinite, it will need to be bounded. This is

achieved calculating its intersection with the axis aligned bounding box (AABB) of the point cloud. This

means that a common ray-plane intersection test has to be performed for each edge. The result of this

Point Cloud Manager: Applications of a Middleware for Managing Huge Point Clouds. O. Mures, A. Jaspe, E. Padrón, J. Rabuñal PRE-PRINT VERSION

Effective Big Data Management and Opportunities for Implementation. Eds. Manoj Kumar Singh and Dileep Kumar G. IGI Global. June 2016

process will be a polyline directly exportable to a CAD format. The point of intersection in the plane can

be written as:

n̂ ∙ x = −p (10)

This is called the Hessian normal form of a plane (Figure 4). For the ray, it can be written as:

x = x0 + tv̂ (11)

Being x0 the origin of the ray, v̂ the direction and t:

t =
−(x0 ∙ n̂ + p)

v̂ ∙ n̂
 (12)

Once all the intersection points have been calculated, they are tested to check if they fall inside the

AABB. After this the vertices of the bounded plane are ready to be exported as a polyline. The

pseudocode necessary to implement this use case in PCM is showcased in the following code block.

selectedpoint ← get user selected intersection point

for each node of neighborhood do

 Request point cloud chunk

 for each point of chunk do

 dist ← distance between point and selectedpoint

 if dist <= sampledistance then

 samples ← point

 end if

 end for

 Free point cloud chunk

end for

coefficients ← segment plane from samples

Color plane coefficients in GPU point data

intpoints ← Compute intersection of the plane with cloud AABB

polyline ← Sort intpoints

Write polyline to CAD compatible file
Algorithm 6. The plane estimation algorithm using PCM

FUTURE RESEARCH DIRECTIONS

The current version of the software was designed for PCs with Linux/GNU, Windows or MacOS. Future

research could focus on making PCM compatible with mobile operating systems (Android, iOS, etc.), or

even better modern internet browsers using WebGL and decoupling it in a client-server approach. In order

to be able to utilize PCM in mobile platforms or browsers, it will need point streaming capabilities, this

will mean transferring clouds over a network.

Other future improvements could be improving the construction algorithm of the acceleration structure, so

points are distributed in a better manner between levels. Alternative acceleration structures could also be

explored, since the multiresolution structure is not the most optimal acceleration system for tasks not

related to visualization.

But certainly, one of the most innovative lines of research in point based rendering, is using virtual reality

headsets to visualize these datasets. It has incredible possibilities in the fields of architecture and civil

engineering, since it provides professionals with new tools to interact with clients or among them with an

unprecedented amount of detail and immersion.

Point Cloud Manager: Applications of a Middleware for Managing Huge Point Clouds. O. Mures, A. Jaspe, E. Padrón, J. Rabuñal PRE-PRINT VERSION

Effective Big Data Management and Opportunities for Implementation. Eds. Manoj Kumar Singh and Dileep Kumar G. IGI Global. June 2016

CONCLUSION

In this article, several applications of the out-of-core point management framework PCM were shown. It

was designed to deal with arbitrary size datasets; simplifying greatly programming tasks that involve

point clouds. From point cloud processing to real-time visualization, PCM is of great help and frees the

programmer from dealing with problems like point cloud formats, memory management, point cloud

manipulation, acceleration structures, etc. Additionally, the library also exploits the full potential of both

modern CPUs and GPUs, facilitating the use of parallel processing to reduce the computation time as

much as possible.

Furthermore, having a system that is able to manage such a huge amount of data, will let the user take

advantage of the full potential of datasets generated by cutting-edge 3D capture devices. These datasets

present great opportunities for a wide range of fields, but these new types of 3D models present a great

challenge because of the vast amounts of data they generate. Thanks to the techniques explained,

researchers or professionals will be able to manage these massive point clouds transparently using the

already mentioned framework.

ACKNOWLEDMENT

This work is financed by the CDTI, Enmacosa and partially supported with FEDER funds. The project in

which this work was developed is ToVIAS: Topographic Visualization, Interaction and Analysis System

(IDI-20120575). This research has also received funding from the DIVA Marie Curie Action of the

People programme of the EU FP7/2007- 2013/ Program under REA grant agreement 290227.

REFERENCES

Eberly, D. (1999). Distance between point and triangle in 3D. Magic Software, http://www.

magic-software. com/Documentation/pt3tri3. pdf.

Elseberg, J., Borrmann, D., & Nüchter, A. (2013). One billion points in the cloud–an octree for

efficient processing of 3D laser scans. ISPRS Journal of Photogrammetry and Remote

Sensing, 76, 76-88.

Gobbetti, E., & Marton, F. (2004). Layered point clouds: a simple and efficient multiresolution

structure for distributing and rendering gigantic point-sampled models. Computers &

Graphics, 28(6), 815-826.

Goswami, P., Erol, F., Mukhi, R., Pajarola, R., & Gobbetti, E. (2013). An efficient multi-

resolution framework for high quality interactive rendering of massive point clouds using

multi-way kd-trees. The Visual Computer, 29(1), 69-83.

Jaspe, A., Mures, O. A., Padrón, E. J., & Rabuñal, J. R. (2014). A Multiresolution System for

Managing Massive Point Cloud Data Sets. Technical Report. University of A Coruña.

Kuder, M., Šterk, M., & Žalik, B. (2013). Point-based rendering optimization with textured

meshes for fast LiDAR visualization. Computers & Geosciences, 59(0), 181-190. doi:

http://dx.doi.org/10.1016/j.cageo.2013.05.012

Levoy, M., & Whitted, T. (1985). The use of points as a display primitive: University of North

Carolina, Department of Computer Science.

Mures, O. A. (2014). ToView point cloud visualizer. from https://youtu.be/cyeOUs0PyNw

Van Genderen, J. (2011). Airborne and terrestrial laser scanning. International Journal of Digital

Earth, 4(2), 183-184.

Wenzel, K., Rothermel, M., Fritsch, D., & Haala, N. (2014a). FILTERING OF POINT CLOUDS

FROM PHOTOGRAMMETRIC SURFACE RECONSTRUCTION. ISPRS-International

http://www/
http://dx.doi.org/10.1016/j.cageo.2013.05.012

Point Cloud Manager: Applications of a Middleware for Managing Huge Point Clouds. O. Mures, A. Jaspe, E. Padrón, J. Rabuñal PRE-PRINT VERSION

Effective Big Data Management and Opportunities for Implementation. Eds. Manoj Kumar Singh and Dileep Kumar G. IGI Global. June 2016

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1,

615-620.

Wenzel, K., Rothermel, M., Fritsch, D., & Haala, N. (2014b). An out-of-core octree for massive

point cloud processing. Paper presented at the PROCEEDINGS, IQMULUS 1ST

WORKSHOP ON PROCESSING LARGE GEOSPATIAL DATA.

Yuan, C. (2012). High performance computing for massive LiDAR data processing with

optimized GPU parallel programming: THE UNIVERSITY OF TEXAS AT DALLAS.

Zwicker, M., Pfister, H., Van Baar, J., & Gross, M. (2001). Surface splatting. Paper presented at

the Proceedings of the 28th annual conference on Computer graphics and interactive

techniques.

KEY TERMS AND DEFINITIONS

Point cloud: Set of vertices or points in a three-dimensional coordinate system. These vertices are usually

positioned in 3D space and have a set of coordinates (x, y, z). These sets of points normally are

representative of the external surface of an object.

LiDAR: Remote sensing technology that measures distance to a target by illuminating it with a laser and

analyzing the reflected light.

Out-of-core: Type of algorithm that is designed to process data that is too large to fit into a computer's

main memory at one time. These algorithms must be optimized to efficiently fetch and access data stored

in slow secondary memory such as hard drives.

GPGPU: General-purpose computing on graphics processing units is the utilization of graphics

processing units (GPU), which typically handles computer graphics workloads, to perform computation in

applications traditionally handled by the central processing unit (CPU).

Multiresolution: A technique that allows you to break an image down into multiple levels (or layers) so

that every zoom level has good resolution.

Rendering: The process of generating an image or set of images from a 2D or 3D model, by means of

computer software.

Photogrammetry: The science of making measurements from photographs, especially for recovering the

exact positions of surface points.

