
Distributed stream processing for
genomics pipelines

Luca Pireddu*, Francesco Versaci and Gianluigi Zanetti
CRS4, Polaris, Ed. 1, I-09010 Pula, Italy

*luca.pireddu@crs4.it

Introduction
We built a scalable sequence alignment pipeline based on Apache
Flink and Kafka

• Flink framework for distributed stream-oriented processing

• Kafka is connector service: connect processes without

intermediate files
Our solution is:

• distributed and scalable (runs over computers, efficiently)

• robust (resists hardware failures)

NGS Alignment Pipeline

Motivation
• As it gets cheaper, sequencing can be a prime tool for

personalized medicine

• Population-wide applications require scalable analysis

- need to extract clinically relevant information from raw data

• Conventional processing workflows not scalable

- sequences of independent tools

- communicate by intermediate files on shared file system

Evaluation

We evaluated our pipeline's performance
and scalability

Equipment
• Amazon EC2, with up to 12 r3.8xlarge

nodes

- 32 virtual cores, 244 GB RAM, 4x1.9

TB SSD, 10 Gbit Ethernet

• Flink and HDFS over cluster nodes

• One Kafka broker

Dataset
• 1/4 multiplexed run from an Illumina

HiSeq 3000 (48 DNA samples; 48 GB)

Baseline
• Pipeline implemented with bcl2fastq2

and bwa-mem

• single r3.8xlarge node, multithreaded

1

2

4

6

8

10

12

S
p
e
e
d
-u
p

1 2 4 8 12
Number of nodes

Perfect scalability

Absolute scalability

Relative scalability

Scalability
Relative and absolute scalability of our pipeline w.r.t.

the number of computing nodesnodes time (minutes)

baseline 137

1 152
2 77
4 39.6
8 20.4

12 14.3

Running times
Running times of our pipeline and the baseline

On a single node, our pipeline is 11% slower

• due to Flink overhead
Our pipeline achieves near-optimal scalability

• Relative (compared to itself on 1 node):

10.6 on 12 nodes (88.3%)

• Absolute (compared to baseline):

9.5 on 12 nodes (79.2%)
Especially positive considering 14-min run time

• i.e., fixed-cost overheads take up a

significant portion of run time

Flink M1
- convert BCL
- filter
- demultiplex

Raw BCL data

Kafka
connector

Flink M2
- alignment

Aligned reads
in CRAM format

Data cached
in memory!

Future Work
• Fault tolerant Kafka brokers

• Interface with GATK4: full distributed

variant calling pipeline

Our pipeline is implemented as two Flink
modules connected by Kafka.

Module 1: preprocessor

• Reads raw Illumina data in BCL format

• Performs BCL conversion

• Filters based on base calling QC

• Demultiplexes reads
Module 2: aligner

• Integrates BWA-MEM through the Read

Aligner API (http://github.com/crs4/rapi)

• Aligns reads

• Formats CRAM output

Streaming
• Flink nodes process data as soon as it

arrives

• Not batch oriented!

• Operations run simultaneously, streaming

data from one to the next

• Strategy improves pipeline efficiency and

reduces overall time to result

Architecture can easily be extended

• chain more Kafka and operator nodes

Distributed
• Single Flink operations run over multiple

computers

• Data and work are spread automatically

• Scalability: more nodes = more speed

• Fault tolerant: if a node breaks, other

nodes complete the job

• Weakness: in our setup, Kafka is not

replicated; if the Kafka node breaks the

pipeline goes down




