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Abstract

We propose a novel pipeline and related software tools for processing the multi-light image
collections (MLICs) acquired in different application contexts to obtain shape and appearance
information of captured surfaces, as well as to derive compact relightable representations of
them. Our pipeline extends the popular Highlight Reflectance Transformation Imaging (H-RTI)
framework, which is widely used in the Cultural Heritage domain. We support, in particular,
perspective camera modeling, per-pixel interpolated light direction estimation, as well as light
normalization correcting vignetting and uneven non-directional illumination. Furthermore, we
propose two novel easy-to-use software tools to simplify all processing steps. The tools, in addi-
tion to support easy processing and encoding of pixel data, implement a variety of visualizations,
as well as multiple reflectance-model-fitting options. Experimental tests on synthetic and real-
world MLICs demonstrate the usefulness of the novel algorithmic framework and the potential
benefits of the proposed tools for end-user applications.

Keywords: Multi Light Image Collections, Highlight Reflectance Transformation Imaging,
Photometric Stereo, Image Enhancement

1. Introduction1

Multi-light image collections (MLICs) are an effective mean to gather detailed information2

on the shape and appearance of objects. They are, thus, widely used in many application contexts.3

The basic idea of the approach is to visually characterize objects by capturing multiple im-4

ages of the surface of interest from a fixed point of view, changing the illumination conditions5

at each shot. The acquired data is then processed to extract shape and material information.6

While some techniques exist for general variable environmental illumination [1, 2], the most7

widespread approach in most application fields, including Cultural Heritage (CH) [3], medical8

interventions [4, 5], and underwater data gathering [6], considers a single calibrated camera tak-9

ing multiple images of a scene illuminated by a single moving light. A large variety of efficient10

computational tools have been devised in this context to extract information from the captured11

image stack in order to effectively solve different problems, such as feature detection and en-12

hancement, reconstruction of normals and 3D shapes, and creation of relightable images.13
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Photometric Stereo (PS) is probably the most widely known technology based on MLICs.14

It exploits priors on reflectance functions to derive local normals and global 3D shapes [7]. Re-15

flectance Transformation Imaging (RTI) [8, 9, 10, 11] extends the PS idea by interpolating MLIC16

reflectance data with parametric functions (Polynomial Texture Maps, PTM; Hemispherical Har-17

monics, HSH; Discrete Modal Decomposition, DMD), which can be used to estimate and display18

images relighted from arbitrary angles and incorporating other image enhancements for visually19

revealing surface details not detectable from a single view [10, 12, 13]. Other techniques try,20

rather, to improve understanding by highlighting specific making surface and material proper-21

ties. For instance, Raskar et al. [14] exploited multi-light images to extract depth edges with a22

simple heuristics and used the result to create non-photorealistic rendering methods, while Fattal23

et al. [15] used them to generate enhanced images emphasizing shape and surface detail.24

RTI is possibly the most widely applied MLIC technique. This kind of imaging has rapidly25

become a widely used solution for the documentation, recording and decoding of Cultural Her-26

itage (CH) objects, as it supports an offline analysis of the artifacts, supporting and going beyond27

simulated raking light analysis, and allows the estimation of image enhancements emphasizing28

details [16, 17]. Furthermore, the reflectance interpolation coefficients derived from MLIC pro-29

cessing, or the image features extracted from the image stack, can be used to characterize and30

classify materials, as shown in a number of works [18, 19, 20].31

The widespread use of RTI for visual surface characterization, especially in the CH domain,32

is also due to the fact that it can be performed with a low-cost, flexible, and easy to use setup33

based on freehand light positioning and highlight-based light direction estimation (H-RTI) [3].34

In the H-RTI image-capture technique, the reflection of the light source on one or more reflective35

spheres visible in each shot enables the processing software to calculate the light direction for36

each image, providing great robustness and flexibility in subject size and location.37

The classic H-RTI acquisition setup and processing pipeline, however, are based on strong38

assumptions on lights (ideally constant in direction and intensity) and camera model (ortho-39

graphic), not necessarily matching typical acquisition conditions [3, 21]. In particular, due to the40

lack of uniformity in illumination intensity and direction, the results obtained with this simple41

setup may vary widely between acquisitions, and may be unsuitable for quantitative analyses,42

which include normal estimation, roughness or material segmentation/classification, as well as43

monitoring over time. Exploitation of H-RTI data is thus often limited to rough qualitative anal-44

ysis of single acquisitions.45

In this article, we revise the H-RTI approach, presenting a novel practical setup and a set46

of tools that relax the aforementioned strong assumptions. Our solution offers a better support47

for qualitative analysis of MLICs and enables the addition of quantitative analysis on top of the48

classic RTI method. Our main contributions are the following:49

• a novel practical setup and processing pipeline that can cope with the effects of perspective50

camera distortion, non-point lights, spatially varying illumination, variable light distance,51

as well as camera vignetting. Per-pixel light directions are estimated from highlights on52

multiple reflective spheres, taking into account perspective correction and performing di-53

rection interpolation, while illumination variations are compensated by an algorithm ex-54

ploiting light intensity measured on matte white targets positioned around the object of55

interest.56

• An easy to use tool to perform/control all the processing pipeline, not requiring to rely57

on external image processing applications and storing reordered pixel information with58
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associated light directions in a dedicated structure that can be effectively used for post-59

processing (e.g. Photometric Stereo, RTI, feature detection, and visualization).60

• An easy to use tool to complete the pipeline with enhanced visualizations, as well as with61

shape and material information recovery operations.62

Our novel combination of several flexible auto-calibration techniques into a single framework63

aims to provide a significant step towards a practical quantitative and repeatable analysis using64

simple and low-cost free-form acquisition strategies.65

The paper is organized as follows. Sec. 2 provides a quick overview of existing RTI ac-66

quisition setups and light calibration approaches, while in Sec. 3 our algorithmic contribution67

is described. The tools that implement the proposed approach are presented in Sec. 4. Sec. 568

demonstrates, with experimental tests, the advantages of our improved pipeline, as well as the69

potential advantages of its use for practical applications.70

2. Related work71

Multi-light acquisition, processing, and analysis are broad research subjects, and a full review72

is out-of-scope for this article. We concentrate here only on the most-related methods to perform73

RTI acquisition and processing. For a wider coverage, we refer the reader to established surveys74

in surface reflectance capture [22], multi-light computational frameworks [7], digital modeling75

of material appearance [23], and geometric analysis in cultural heritage [24].76

A wide variety of RTI acquisition setups exist, ranging from low-cost and transportable77

kits [21] to different sizes of fixed light domes[21, 25, 26]. Recently, some dome solutions have78

been presented that use both visible and invisible light wavelengths [27, 28]. Dome solutions al-79

low for pre-calibration of lights, but they are, in general, expensive and not flexible, thus limiting80

the potential changes in light numbers, positions and types, and the size of captured surfaces.81

Our goal is, rather, to improve the classic hand-held light capture, which is low-cost, simple82

to implement, and allows for a more flexible choice of the number and the positions of the light83

sources; these factors are very important, for example, when dealing with non-Lambertian, shiny84

materials. Moreover, it is easy to extend the presented pipeline to the multi- or hyper-spectral85

domain at a much lower cost than multiple-light setups, which can easily require hundreds of86

illuminators or filters.87

Free-form hand-held setups are widely used in the Cultural Heritage domain as powerful88

Computational Photography tools by many end users, especially to create relightable images and89

for detail enhancement. This large diffusion is mainly due to publicly available packages such as90

RTIBuilder and RTIViewer [21], which employ the H-RTI capture setup and use manual annota-91

tion of reflective spheres and highlight-based light direction estimation. However, these tools rely92

on limiting assumptions about lighting and camera, i.e., uniform and far point light (collimated93

rays) and orthographic camera with an ideal lens. Since the computation of surface attributes94

leads to significant errors and provides variable results for each acquisition, the applications of95

this method for geometrical reconstruction, material acquisition, and quantitative analysis are96

limited. Conversely, we want to adopt here more realistic lighting and camera models, taking97

into account optical effects such as vignetting, non-uniform light emission, and light attenuation98

with distance.99

The calibration of real illumination is a well-known topic in Computer Vision, and, specif-100

ically, in the Photometric Stereo (PS) field [7]. While some methods try to implicitly consider101
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real light sources within the particular PS framework [29, 30], others are more focused on the ex-102

plicit calibration of various lighting properties. Some methods make assumptions on light form103

factor, e.g., near point light [31] or linear light source [32], and try to exploit the illuminated104

scene to extract the light position and direction. For instance, Ahmad et al. [31] exploit diffused105

maxima regions in the framed model, and derive from them the light directions. Others perform106

calibration by sampling light on calibration targets of known shape and albedo (e.g., reflective107

spheres or diffuse targets). Corsini et al. [33] use high-dynamic range images of two reflective108

balls to acquire the spatially-varying illumination of a real-world scene, and it focuses more on109

the environment light effect rather than of the computation of a per-pixel light direction and in-110

tensity. Ackermann et al. [34] present a study and validation through error statistics of both a111

forward and backward geometric point light source calibration by using sets of different num-112

bers of reflective spheres. Although it proposes a very simple and robust way to compute light113

direction, it considers a point light model without taking into account non-uniform light inten-114

sity. Other methods strongly rely on a specific, fixed light form factor (e.g., LED light [35, 36],115

and model the intensity with the corresponding fall-off due to both distance and angle to the light116

principal axis. Xie et al. [36] also consider vignetting effects. Unfortunately, those methods are117

not applicable to the case of a general variable illumination due to non-ideal lamps or lenses.118

Some works thus try to cope with non-uniform intensity without imposing an analytical light119

model [37, 38]. Similarly to us, they use a flat reference object with known albedo to sample an120

arbitrary lighting vector field and to calibrate it using a flat-fielding approach. They don’t use121

polynomial interpolation, but they exploit measured spatially-varying intensities to compensate122

the input images, and to convert the problem into a standard collimated case. Differently to our123

work, they require different acquisitions for the calibration step and the actual capture; this is124

possible only with a fixed light configuration, but it is not applicable to a more general free-form,125

hand-held multi-light acquisition. In our approach, we use multiple spheres to estimate a light126

direction field, and use measures on a planar white target to estimate the intensity of each light127

ray, infilling missing data with a low-degree interpolation, thus reconstructing an approximation128

of the entire light field illuminating the scene.129

The pipeline presented here was preliminarily proposed in our previous conference papers [39,130

20]. The pipeline improves the classical highlight-based RTI capture framework by estimating131

per-pixel interpolated light direction and creating intensity-corrected images simulating constant132

illumination on a reference plane. We here provide a more thorough exposition, but also sig-133

nificant new material, including the support for a non-orthographic camera model, a new orga-134

nization of data that facilitates processing and display, the presentation of easy-to-use software135

interfaces to perform all the processing steps and novel experiments to demonstrate the advan-136

tages of the proposed methods. Finally, we have attempted to further clarify the steps in our137

methods to facilitate their implementation and to make the transfer between abstract concepts138

and actual code as straightforward as possible.139

3. Improved Highlight RTI pipeline140

Our complete acquisition and processing pipeline is shown in Fig. 1. We acquire and take141

as input a Multi-Light image collection. Light information may be in principle known for each142

image if coming from a calibrated system (light dome). If lights are not known and calibrated, as143

in hand-held light acquisition, the classical solution is to assume uniform intensity and direction144

and use a reflective sphere for estimating light direction from highlight position (H-RTI).145
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Figure 1: The proposed MLIC processing pipeline.

Our first contribution is a more complete setup (Fig. 2(a)) to characterize lights directly from146

images, improving H-RTI. This setup includes, in addition to several (typically four) reflective147

spheres, a matte white planar frame around the object being captured. The multiple spheres148

are used to derive a more accurate per pixel interpolated direction, while the frame is used to149

estimate a correction for light non-uniformity and vignetting, as described in Sec. 3.4. Several150

instantiations of this concept are possible. In particular, if an object is captured in a typical151

laboratory setup, the white frame can be replaced by a Lambertian surface covering the plane152

supporting the object. Moreover, in outdoor acquisitions of large objects, spheres at the corner153

of the visual fields and multiple co-planar Lambertian targets on the acquisition reference plane154

could be placed, as well, and used for the subsequent calibration procedures. In order to simplify155

generic on-site acquisitions, we realized a modular frame building set, which combines 3D-156

printed supports for spheres with aluminum bars of different lengths covered by approximately157

Lambertian coating (Fig. 2(b)). This allows the creation of rigid frames that can be placed in158

horizontal, vertical or arbitrary orientations. The current version holds 5cm wide spheres, but we159

plan to realize sets of different sizes.160

Before the acquisition, we assume that we have already (and once) calibrated the inter-161

nal characteristics of the camera, in order to obtain the radiometric response function and the162

lens parameters. The capture process outputs an image stack, which is preprocessed and semi-163

automatically annotated with custom software (see Sec. 4) to find the position of the spheres and164
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(a) Setup (b) Scene

Figure 2: Capture setup. (a) The acquisition setup consists in a stationary DSLR digital camera, a hand-held light
source, some calibration targets (a Lambertian white background/frame and four black reflective spheres), and the object
being acquired positioned on a planar support perpendicular to the camera axis. (b) Camera view of the scene.

rectangular regions of the white frame (Fig. 3). From the positions of highlights, the incident165

light direction is estimated at the highlight location and interpolated across the whole image.166

Then, illumination intensity is corrected at each pixel location. This is done by multiplying the167

local value by the factor that would make the locally interpolated white frame intensity match a168

reference value multiplied by the cosine of the local light direction elevation angle.169

After that, each pixel is associated with a calibrated reflectance profile (appearance profile),170

coupled with calibrated light parameters. Those are used to provide the user with an interactive171

data visualization, and to perform various processing operations on reflectance data. For instance,172

as in typical RTI settings, we fit reflectance data to a low-dimensional analytic representation, in173

order to extract a small set of coefficients that can compactly describe the image stack at each174

pixel. Then, we use this information to relight the object, to compute geometric attributes (e.g.,175

normal maps or 3D surface reconstruction), or to extract meaningful appearance features and176

descriptors for material classification and recognition.177

All the procedures can be controlled by two software tools that will be described in detail178

in Sec. 4: one dedicated to the preprocessing and reorganization of pixel data (RTITool), one to179

reflectance data fitting, normals estimation, visualization and analysis (APTool).180

In the rest of this section, we provide details on the major pipeline components: preprocess-181

ing to prepare data for further elaboration (Sec. 3.1), perspective light direction estimation from182

highlight on a single sphere (Sec. 3.2), reconstruction of lper-pixel light direction by interpola-183

tion of results on multiple detected highlights (Sec. 3.3), light intensity correction by exploiting184

interpolated directions and measures on a matte planar target (Sec. 3.4), storage of the calibrated185

per-pixel information in a 3D appearance profile array (Sec. 3.5), and, finally, basic processing186

of appearance profile data to recover shape and reflectance parameters (Sec. 3.6).187

3.1. Preprocessing188

Image preprocessing consists mainly in the removal of ambient light and undistortion. These189

two transformations are applied to all the images in the collection before they are fed to the light190
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direction estimation step. The ambient light is captured by acquiring an extra image of the scene191

with the handheld light source turned off. The undistortion is performed according to the intrinsic192

camera parameters estimated a priori with a standard calibration procedure. Auxiliary to the193

annotation of the black reflective spheres and the white Lambertian frame, stand the maximum194

image and respectively, the minimum image estimation. The maximum of the image collection195

discards the shadow around the spheres, hence improving the visual acuity, while the minimum196

image maps the projected shadows areas that should be avoided when selecting consistent highly197

reflective regions (Fig. 3).198

Figure 3: Snapshots of the RTITool interface during the annotation of reflective spheres (left) over the maximum image
estimated from the MLIC stack, and the annotation of the Lambertian frame performed on the minimum image estimates
from the stack (right).

3.2. Perspective Light direction estimation199

In the general case of free-form RTI acquisition without known lights, we compute the200

highlight-based light direction by releasing the orthographic projection hypothesis used in pre-201

vious classic solutions [3] and implemented in the well-known RTIBuilder package. This allows202

the computation of light direction when the reflective spheres are at the margin of the image and203

appear relevantly distorted (elliptical) in the image.204

In the current algorithm and implementation, we assume known intrinsic parameters of the205

camera: optical center, ~ox, ~oy, pixel size, ~sx, ~sy, and focal length ~f . They are loaded from files206

in the software tool. However, if we have a scene with multiple reflective spheres, we could, in207

principle, exploit them also to calibrate the camera including distortion parameters [40]. We plan208

to include this feature in future version of the package.209

Once we have identified the projected sphere outline, that is an ellipse, we can easily locate210

the extrema of the major axes, with known coordinates in camera frame ~p = ((px − ox)sx, (py −211

oy)sy, f ) and ~q (Fig. 4). Note that the knowledge of the pixel size ~sx, ~sy is not necessary. We can212

only add knowledge of aspect ratio s to the focal length expressed in pixels. From ~p and ~q, we213

can easily compute the direction of the vectors ~a, ~b pointing to the corresponding tangent points214

on the sphere ~P, ~Q215

~a = (~p − ~O)/‖~p − ~O‖
216

~b = (~q − ~O)/‖~q − ~O‖

This also allows us to estimate the unit vector ~w pointing to the center of the sphere ~C:217

~w = (~a + ~b)/‖~a + ~b‖
7



Figure 4: Light direction can be easily computed also assuming releasing the orthographic projection constraint.

The triangle ~O ~C~P has known angles arcsin(~a · ~w), arccos(~a · ~w), π/2) and a known side R. We218

can, thus, estimate the distance D of the sphere center from the camera center, and the coordinates219

of the sphere center in camera coordinates C = D~w.220

Since we have multiple spheres on a plane, we can then estimate the plane orientation/position221

from the estimated centers with a simple fit.222

Once we estimate the position of the projected highlight ~h, we can solve for the 3D highlight223

position and the light direction estimation, by computing the view unit vector224

~v = (~o − ~h)/‖~o − ~h‖

and the equation of the line from the origin to the highlight225

~X = −t~v

Solving the equation system that combines this equation and the sphere equation226

(X1 −C1)2 + (X2 −C2)2 + (X3 −C3)2 = R2

we can find two intersections. The one closest to the origin is the highlight position in 3D ~H.227

The unit normal in the point is then228

~n = ( ~H − ~C)/‖ ~H − ~C‖

and reflecting ~v with respect to ~n we can estimate the light direction ~l.229

In our tool, we implemented this algorithm coupled with a simple ellipse detector based on230

local image binarization and ellipse fitting obtained with OpenCV implementation of Fitzgib-231

bon’s method[41].232
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3.3. Multiple spheres setup and light direction interpolation233

By putting a sphere at the margin of the image, we reduce the odds that it casts shadow on the234

object. The perspective model allows us to do this even in non-ideal conditions and wide field of235

views.236

For most light sources, in addition, the assumptions of a parallel and uniform beam across the237

entire scene is also far from being fulfilled, and errors introduced in this case are not negligible,238

as shown in the experimental section. We, therefore, strive to obtain, when possible, a better239

per-pixel light direction estimation by using multiple (typically four) spheres placed close to240

image corners, estimating directions for the various highlight positions, and linearly interpolating241

estimated light direction across the image.242

If this configuration is chosen, rather than just estimate and store a light direction for each243

image, we estimate for each image the coefficients of a linear interpolation of the directions that244

are later used to recover per pixel light direction values. Coefficients are saved in our special-245

ized data structure (appearance profile array, APA) and used to support a better estimation of246

reflectance parameters.247

(a) (b) (c)

(d) (e)

Figure 5: Intensity correction procedure of image with only white background: from the annotated planar frame (not
visible in the cropped image) at the border of the original image (a), a polynomial estimate of the illumination in the
whole image is performed (b), and used to estimate a corrected image (c). Intensity profiles along the central line and
column in the original and corrected images are compared in (d),(e).

3.4. Light intensity correction248

The non-uniformity of the beam intensity can be reasonably corrected with a solution that249

can be applied in many practical acquisition scenarios. The idea, here, is to place a planar frame250

around the object of interest, with an approximately Lambertian coating. By detecting the region251

in the images where the target is illuminated, excluding the parts that can be shadowed in some252

images, we can use the measured pixel values on the target to calibrate the pixel values on the253

acquired objects, in order to simulate an acquisition made with a truly constant light intensity,254

at least on the plane of the frame. Ideally, for a Lambertian surface, the brightness of the region255

should be constant (if the light direction is constant). In practice, we measure a non-negligible256

non-uniformity using common lights and cameras, due to non-uniformity of the light beam, as257

well as to vignetting effects of the lenses.258
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Figure 6: Appearance profile visualization using Delaunay Triangulation based interpolation of the intensity values at
the pixel location in the lx, ly plane.

By fitting a polynomial function of the light direction over the brightness estimated in the259

frame regions, we can compute a correction factor for the estimated light, making the image260

illuminated as if the light intensity has a standard reference value, and the local light direction261

estimated at each pixel location (we obtain this by weighting the expected Lambertian reflectance262

of paper by the actual local cosine factor). This light normalization can correct different non-263

uniformity causes. Of course it assumes that the light intensity is not changing with depth in264

the region of interest. Since beam variations are expected to be smooth, we use a quadratic265

interpolation of the reflectance to extend the reference illumination to the entire plane of interest266

starting from the reference values on the target. It should be noted that even if the current software267

fits a quadratic model, a more complex function will be investigated in the future. Fig. 5 shows268

the effect of the correction procedure in an image with only a planar diffusive surface (spheres269

and calibration frames were outside the cropped region of interest). The procedure successfully270

flattens the intensity profiles due to spotlight shape and vignetting.271

3.5. Appearance profile array files storage272

In order to simplify data processing steps, we store the data stack after in a reorganized273

array structure, where all the per-pixel information is represented sequentially to allow model274

fitting or pixel processing without the necessity of loading all the data in memory or to allocate275

large array in processing software. The file structure used (appearance profile array, APA) is276

composed of a header and data section. The header describes the encoding choices (8 or 16 bits,277

RGB or chromaticity+luminance, constant or interpolated light directions) and the light direction278

information (vector elements or interpolation coefficients). The data section stores pixel values279

in a 3D array. Fig. 6 shows the information encoded in appearance profile: all the brightness280

information of a pixel location is stored together and can be represented in lx, ly coordinates and281

interpolated for a better display. The shape of the resulting function is characteristic of both shape282

and material properties. We tested both Delaunay Triangulation based interpolation and Radial283

basis functions to obtain visualizations of the local appearance map. Using these interpolation284

algorithms, relighted images can thus also be directly displayed without the need for simplified285

parametric representations of the local reflectance as a function of light direction.286
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Figure 7: Annotation of reflective spheres on a synthetic dataset. With the orthographic assumption, automatic segmen-
tation is not accurate and annotated circles cannot, in any case, match exactly the real object contours (left). With the
perspective mode the segmentation is more accurate, and this results in a quite higher accuracy of the estimated light
direction, as shown in Sec.5.1

3.6. MLIC data basic processing: Photometric stereo, PTM/HSH fitting287

Apart from creating relighted images with interpolation in the light direction space, the MLIC288

stacks encoded as (intensity-corrected) appearance profiles can be processed with the standard289

algorithms used to recover shape and reflectance parameters. Given for each pixel the light290

direction
(
lx(i), ly(i), lz(i)

)
and the (corrected) reflectance L(i) known for N light directions ~l(i),291

basic Photometric Stereo estimates albedo a and normals ~n assuming the Lambertian model and292

solving the overconstrained system293

L(i) = a
[
nx, ny, nz

] [
lx(i), ly(i), lz(i)

]T
i = 1...N (1)

PTM fitting approximates the reflectance function with a polynomial function, also using a294

least squares solution to find coefficients. The classical form [10] is295

L(i) =
[
a, b, c, d, e, f

] [
l2x(i), l2y(i), lx(i)ly(i), lx(i), ly(i), 1

]T
(2)

but different polynomial function have been proposed, as well as different fitting functions,296

such as Hemispherical Harmonics or Discrete Modal Decomposition [12, 13]. Implementing297

different function fitting is quite simple, and their ability to represent the real reflective behavior298

of the material depends clearly on the kind of material analyzed.299

Furthermore, it must be considered that non-local effects, such as interreflections and pro-300

jected shadows, create local anomalous behaviors of the laws directly linking light angle and301

reflected color. To cope with these effects, and also to separate diffusive behavior from specular302

highlights, robust fitting methods have been proposed [42, 43], trying to remove outliers from303

the parameters estimation procedure.304

4. Simple tools for RTI data processing305

We designed two software tools to process image stacks captured by a camera in RTI settings.306
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The first tool, RTITool, is aimed at performing all the preprocessing steps to transform ac-307

quired images to appearance profile array data cropped in the region of interest, prepared so that308

they can be used easily to estimate normals, relightable images and feature maps both with our309

own tools or other photometric stereo and RTI fitters. RTItool takes as input image and calibra-310

tion information, and is able to perform all the calibration steps described in the previous section311

to cope with the difficulties of free-form acquisitions.312

The second tool, APTool, is aimed at processing appearance profile array data using different313

algorithms, creating and exporting albedo, normal maps, relightable RTI files (e.g., PTM files),314

as well as displaying derived images (multi-light image enhancements, relighted images from315

novel illumination directions) on a canvas window. Both tools are still a work in progress, but316

current versions, with all the capabilities described in the paper are available at the web site317

http://www.andreagiachetti.it/rtitools. Code has been developed on a Linux platform, but, as it318

has been realized in C++ using Qt and OpenCV libraries, it could be easily ported on a variety319

of computing architectures.320

4.1. RTITool321

This program allows the user to load image sets, both trough image lists or through files322

with filenames and associated light directions typically used in current RTI tools. Users can then323

perform all the processing pipeline with various option, working with both 8-bit and 16-bit depth324

images and generating APA files for the entire image size or cropped regions. The interface is325

designed to simplify all the annotating tasks. For example, in order to easily annotate reflective326

spheres, annotation and automatic fitting algorithms are by default done on the maximum image,327

showing the highest luminance pixels over the stack, removing shadows and evidencing the black328

object (Fig. 3, left). In the same way, the annotation of the white frame is done by showing the329

minimum image, displaying the lowest per-pixel luminance, so as to easily avoid annotating330

regions that can be shadowed from some light directions (Fig. 3, right).331

The annotation of reflective spheres is semi-automatic. The user is asked to draw a rectangle332

including each sphere image. The circles (in case of orthographic assumption) or the ellipses (in333

case of perspective) are automatically estimated and drawn. Users can also visually refine the334

segmentation by interactively changing the curve parameters on the interface. Fig. 7 shows the335

inaccuracy of classical circular annotation (left), fixed on the same image by the ellipse fitting.336

In both cases, light directions can be estimated and stored. Note that even an apparently small337

deviation from the orthographic model, as the one shown in the figure, may result in an increase338

of one order of magnitude of error in light direction estimation (see Sec.5.1).339

4.2. APTool340

The processing of the raw MLIC stack performed with the RTITool ends by the storage of341

the data structure allowing the sequential processing of pixel information (light directions and342

associated corrected or non corrected intensity values). This information can be used to estimate343

normals and albedo using photometric stereo, creating novel relighted or enhanced images by344

interpolating or mixing the different pixel values, fitting reflectance models storing relightable345

images like PTM or HSH standard files, and more. We developed, for these purposes, a second346

software tool called APTool, which loads preprocessed arrays and allows the generation of nor-347

mal and albedo maps derived from PS or the estimation of PTM coefficients. Robust versions of348

the fitters are also available. The idea is to include, in the future, different fitting and visualiza-349

tion algorithms to the software in order to support different kinds of end-user applications. Apart350
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from fitting models and saving classical RTI files, the tool currently allows direct visualization351

of relighted images given a novel light direction, through direct interpolation of samples based352

on radial basis functions (Fig. 8). By selecting image locations (single points or rectangular re-353

gions), it is also possible to visualize a 2D intensity map represented in lx, ly space of the local354

appearance profile, obtained by scattered data interpolation of the known samples (Fig. 8(b)).355

We have experimented with a Delaunay triangulation based and a Radial Basis Function interpo-356

lation of the samples, and provide an RBF implementation in the delivered tool.357

(a)

(b)

Figure 8: APTool used to show directly a Radial Basis function interpolation simulating direct relighting from (lx =

0.5, ly = −0.5) (a) and from (lx = −0.5, ly = 0.5) (b). In the second case, we also selected and compared AP profiles in
selected image points.

5. Experimental results358

In order to demonstrate the usability of our pipeline and the effects of new algorithms, we359

performed a series of experiments covering different kinds of MLIC capture and processing.360

Our tests include both synthetic datasets and real-world ones. The real-world experiments were361

performed using a DSLR Nikon D810 camera with an architecture based on a CMOS sensor with362

removed IR cut-off filter. The size of the sensor is 36x24mm and the spatial resolution of the full363

format image area is 36MP. To the digital camera a full frame AF-S FX Nikkor 50mm f/1.8G lens364
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(a) Synthetic MLIC with directional lights

(b) Synthetic MLIC with spot lights

Figure 9: (a) Two images of a synthetic dataset simulating a white plane with some large bumps and 4 reflective spheres,
acquired by a fixed camera under different parallel and constant illumination. (b) Two images of a synthetic dataset with
the same geometry, but illuminated by simulated spot lights.

was attached. As in this paper we present results using visible light, an IDAS-UIBAR III optical365

filter was used to gather only the signal from the visible range of the electromagnetic spectrum.366

The sensor of the digital camera was checked for linearity, by taking images covering a wide367

range of exposures, from very low to very high and then plotting the brightness as a function368

of exposure. The camera was geometrically calibrated by computing the intrinsic parameters,369

two radial and two tangential distortion coefficients with the GML Camera Calibration Toolbox.370

However, any other calibration tool can be used for this purpose.371

5.1. Accuracy of light direction estimation372

In order to evaluate the errors in light direction estimation when the orthographic camera373

model is not perfectly followed, we created a synthetic RTI dataset by rendering a scene with 4374

reflective spheres near image corners, placed on top of a white Lambertian surface not exactly375

perpendicular to the camera axis, and with some spherical bumps, illuminated with perfectly376

parallel rays along 50 known directions (Fig. 9 a) or with the same number of simulated spot377

lights (Fig. 9 b). Using RTItool, we annotated the elliptic sphere profiles and estimated the light378

directions at each sphere position as described in Sec. 3.2. We compared the results with those379

obtained with our tool in the orthographic approximation, by annotating the circle circumscribed380

to the ellipse. We also compared our results with those obtained similarly with the widely used381

RTIBuilder package [21]. Note that the circular annotation cannot be precise, as the sphere mask382

is actually elliptic, as shown in Fig. 7, and this happens in most real images.383

A comparison of the errors obtained (difference between the average of the four sphere es-384

timations and ground truth) reveals that, despite the limited eccentricity of the ellipses, with the385
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Figure 10: Angular errors due to wrong orthogonal camera assumption can be quite relevant. The use of a perspective
model makes the values quite accurate.

perspective model we have the error reduced by an order of magnitude. The average errors for386

the 50 directions of Fig. 9 a are, in fact, 0.02 radians for the perspective estimation, 0.21 for the387

orthographic estimation done with RTITool, and 0.23 for the orthographic estimation done with388

RTIBuilder. Fig. 10 shows errors for each of the 50 single light directions sorted by elevation.389

The local accuracy of light direction estimation is then improved by estimating local values390

by interpolating the values of the sphere at the corners. In order to show the amount of error391

reduction, we conducted two experiments. First, we created another synthetic dataset similar to392

the previous one, but where the images are illuminated with simulated spot lights approximately393

pointed towards the center of the target. Light direction and intensity for each pixel are thus not394

uniform, as in most typical real-world scenarios. In this case, the per pixel average error in the395

constant estimation (average of the values of the four spheres) is significantly higher than the396

error value coming from interpolation. Fig. 11 shows the average errors for the single images397

plotted versus elevation angle of the spotlight orientation. With interpolation, the error, averaged398

on all pixels of all images, is reduced from 0.17 to 0.05 degrees.399

We also performed experiments on a real acquisition of a calibration target. In this case, we400

captured images of a flat plane perpendicular to the camera axis, putting four reflective spheres at401

the corners of the image area and a fifth in the center. In the set of images captured, the average402

difference between the direction measured in the top left corner and the one measured in the403

image center was 0.146 radians. Fig. 12 shows that, for small elevation angles, the error is higher404

due to the larger effect of quantization error in highlight localization. If we estimate a per-pixel405

linear interpolation of light direction, we reduce the average error to 0.121 radians.406

5.2. Accuracy of normal reconstruction407

The improved per-pixel light direction estimation and the procedure to correct illumination408

increase the quality of the MLIC-based reconstructions, as demonstrated, for instance, by our409

tests with Photometric Stereo and normal estimation. Using the same simulated dataset with410
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Figure 11: Angular errors of light direction estimated on a sphere with respect to real one in the simulated ”spotlight”
dataset of Fig. 9 b, plotted against elevation of the principal ground truth spotlight direction. Interpolation strongly
increase the average accuracy of the per-pixel estimation.

Angular err (rad) Std. Dev
Single Directions, no light correction 0,482 0,271
Interpolated directions, no light correction 0,417 0,249
Single Directions, light correction 0,262 0,188
Interpolated directions, light correction 0,252 0,183

Table 1: Angular errors reduction in per-pixel normal estimation with Photometric Stereo on the synthetic ”spotlight”
dataset of Fig. 9 b using interpolated light direction estimation and intensity correction.

spotlight illumination, we estimated surface normals (and albedo) by solving the classical least-411

squares problem under the assumption of Lambertian surfaces. We then compared per-pixel re-412

constructed normals with the ground truth values. Table 5.1 shows that the average angular error413

is strongly reduced both by the light direction interpolation and the light intensity correction.414

The effects of light correction can be also appreciated when reconstructing normals of chal-415

lenging real-world objects from MLICs using Photometric Stereo. To show this, we acquired416

images of a set of coins placed over a flat background. We used our reconstruction pipeline and417

the RTITool to recover the appearance profile arrays and then used our APTool to reconstruct418

normal maps.419

The set is composed by a bronze Roman coin (quadrans) dated 9 B.C. and damaged by420

scratches, and two 10 cent Italian coins. One exemplar, dated 1931 is made of copper and is421

severely degraded, while the second exemplar, dated 1939, is made of a special alloy with nickel,422

called Bronzital, which has been used to improve corrosion resistance.423

Normal maps obtained with Photometric Stereo have been compared with an (approximate)424

reference solution derived from a high resolution 3D reconstruction of the same coins made425

with an optical microprofilometer based on conoscopic holography [44]. This device is able426

to capture reliable profilometric measurements down to the scale of micron on different kinds427

of materials, reflective or diffusive. Our microprofilometer is based on an Optimet conoscopic428
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Figure 12: Angular difference of the direction estimated on a sphere near the corner with respect to the one estimate
on a sphere near the image center (blue dots), plotted as a function of elevation for a complete MLIC scan (50 photos).
Replacing the corner estimate with the linear interpolation of the four corner values in the central position, we can get
reduced errors (red squares).

probe mounted on sub-micrometric linear stages in order to scan a region up to 30x30cm2 in one429

session. Reference coin models have been reconstructed with a transversal resolution (XY grid)430

of 50 microns.431

Depth maps derived from these models were finally registered with the estimated RTI normal432

maps using a similarity transform optimized to match the correspondence of manually selected433

points (12 landmarks). This initial registration was then refined by locally optimizing mutual434

information in image space.435

Fig. 13 shows the three coins and the related differences between RTI-based normal maps and436

the reference normal maps estimated from microprofilometric data, both in case of non-corrected437

image brightness, and with the light correction procedure described in Sec. 3.4. It is evident438

that light correction sensibly improves the reconstruction quality, as quantitatively reported in439

Table 5.2. The light correction procedure reduces the median errors, on average, by 27%.440

Median angular distance (rad.)
Non-corrected Corrected

Bronzital 10c 0.117 0.079
Copper 10c 0.068 0.053
Quadrans 0.171 0.108

Table 2: Median angular distances of the RTI estimated normals from the reference microprofilometer normals. The
calibration procedure reduces the errors on average of 27 percent.

5.3. Recovery of reflectance properties of materials441

Our intensity correction methods are also important to better recover material properties. To442

demonstrate this fact, we placed a matte paper target with different albedo regions in different443
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Figure 13: Angular errors. Color-coded angular errors (degree) of RTI estimated normals wrt ground truth from micro-
profilometry. Left: non-calibrated results. Right: results with light calibration.

positions on a flat planar background (Fig. 14).444

Figure 14: Three images of a MLIC capture of a planar surface with flat paper targets with different albedo regions.

If we visualize the interpolated appearance profiles estimated on a pixel in a selected region,445

in this case with flat perpendicular surface and approximately Lambertian behavior, we should446

see a function that, represented in lx, ly coordinates, should present a regular and symmetric447

function. Fig. 15 shows that plots of interpolated appearance profiles on non-corrected images are448

not symmetric and different in different regions of the same material if images are not corrected449

with our procedure. Conversely, light correction results in profiles similar to those expected and450

similar in different parts of the image where the material is the same.451

This effect can be quantitatively measured by evaluating the average albedo of the patches of452
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Figure 15: Appearance profiles corresponding to the same material on flat patches are similar and regularly shaped when
computed on light-corrected images (bottom), while are irregular when lighting is not uniformed (top)

the same paper types put in two different positions in the scene of Fig. 14. Without corrections,453

the albedo of paper patches of the same type placed in different image position differs up to 7%.454

The difference is strongly reduced with the light direction and intensity correction procedure, as455

shown in Table 5.3.456

By matching the reflectance of the Lambertian frame to a reference value, we can also esti-457

mate the consistency of albedo measurements among different image captures. Table 5.3 shows458

that the measurements obtained in a second acquisition are largely different (often more than459

30% of the value), even if a similar protocol and the same light source has been used. It is ac-460

tually sufficient to change the distance of the source to have different results. However, the use461

of the correction procedure results in similar albedo values (difference lower than 2.5% of the462

value)463

Another important effect of the light correction procedure is the repeatability of reflectance464

parameters estimation in different MLIC captures without light calibration. Table 5.3 shows465

the albedo of the same paper types of the previous experiment estimated on a different MLIC466

capture of a plane with paper targets glued on it. Without light correction, the light intensity is467

quite different, even if we tried to use a similar configuration. Clearly a small difference in light468

distance results in different illumination and estimated albedo. The light correction procedure,469

by contrast, makes the estimated parameters similar.470

Processed RTI data is often used to segment different materials not easily recognized in color471

images [18]. Such kind of results can be improved by our light correction procedures. To show472

this, we have performed two RTI acquisitions of a polished silver sample partially covered by473
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Albedo
Pos. 1 std

Albedo
Pos.2 std diff/mean

Paper1 corrected 0,557 0,003 0,559 0,004 0,39%
non-corrected 0,726 0,009 0,708 0,009 2,53%

Paper2 corrected 0,406 0,003 0,411 0,003 1,38%
non-corrected 0,515 0,007 0,539 0,018 4,54%

Paper3 corrected 0,391 0,003 0,391 0,005 0,17%
non-corrected 0,501 0,009 0,514 0,007 2,73%

Paper4 corrected 0,157 0,004 0,156 0,003 0,55%
non-corrected 0,206 0,005 0,203 0,006 1,30%

Paper5 corrected 0,551 0,003 0,545 0,005 1,08%
non-corrected 0,734 0,008 0,685 0,010 6,96%

Paper6 corrected 0,138 0,006 0,135 0,003 2,10%
non-corrected 0,184 0,004 0,173 0,007 6,18%

Table 3: Albedo measured on planar patches of the same material can be quite different in different image regions if
estimated with classic photometric stereo on non-corrected multi-light image stacks. Our brightness and light-direction
correction procedures clearly result in more consistent values.

a coating, see Fig. 16(a), and applied unsupervised classification to segment regions with or474

without coating. For each RTI sample, we compute a 7-dimensional descriptor of a 30 pixels475

neighborhood. The descriptor is the average albedo value, to account for material color, plus the476

6 standard deviations of the standard RTI polynomial coefficients, to account for the roughness477

of the sample surface.478

Unsupervised classification is achieved by performing two-class k-means clustering. We479

measured the similarity of the classification outcomes obtained from the two different acquisi-480

tions, without and with light calibration, see Fig. 16. The only difference between the two ac-481

quisitions of the same sample is the different lighting pattern caused by the free-form approach.482

The coated area is in red, while the uncoated area is in green. In the absence of light calibration,483

the clustering outcome is unstable, as it has only a 20% overlap, while, by performing light cali-484

bration, we improve it up to 99.5% of pixels that have been assigned to the same class, showing485

that with our approach free-form RTI can be used for surface characterization.486

5.4. Visual analysis of RTI enhancements487

The typical use of MLIC data done in the Cultural Heritage domain consists in estimating488

relightable images and analyzing them to improve the visualization of object details. To sim-489

ulate this application, we created a mock-up of a complex structure with fine relief details by490

imprinting a leaf on modeling paste, then acquiring the photos with our pipeline supporting light491

correction. We exported both corrected and non corrected appearance profiles with RTITool and492

estimated and exported PTM files with APTool. The files have been analyzed with RTIViewer493

to visualize interesting detail [21]. Fig. 17 shows a detail of a relighted image with the specular494

enhancement proposed in [10]. The result on top right is obtained from the non-corrected data,495

while the one on the bottom right is obtained with the corrected pipeline. In the corrected images,496

it is possible to appreciate a better enhancement of detail and a clearer visualization of nervatures497

and scratches, hardly visible on the uncorrected image.498

This effect is even more visible in the example of Fig. 18, where specular enhancements ob-499

tained from PTM fitting of the non-corrected and corrected appearance profiles derived from the500
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Albedo
MLIC 1

Albedo
MLIC 2 diff/mean

Paper1 corrected 0,558 0,548 1,81%
non-corrected 0,717 0,518 32,25%

Paper2 corrected 0,409 0,404 1,18%
non-corrected 0,527 0,393 29,23%

Paper3 corrected 0,391 0,385 1,60%
non-corrected 0,508 0,381 28,45%

Paper4 corrected 0,156 0,156 0,23%
non-corrected 0,205 0,155 27,64%

Paper5 corrected 0,548 0,536 2,22%
non-corrected 0,710 0,510 32,77%

Paper6 corrected 0,136 0,139 2,06%
non-corrected 0,178 0,135 27,84%

Table 4: Albedo values measured on a different acquisition of the same material patches of Table 3. The correction
procedure results in similar values for similar materials.

acquisition shown in Fig. 2(b) are compared. The correction leads to a much better visualization501

of brush strokes.502

Looking at PTM-based relighting, it is interesting to note that even if light calibration ensure503

a better quality of enhancements due to the improved normals, the removal of specular compo-504

nents results in loss of possibly relevant information about the imaged object. This can be seen505

comparing relighted PTMs with corresponding relighted APA visualized with our tool. Fig.19506

shows this on the painting detail. PTM-based relighting represents similarly regions where the507

surface has different specular behavior and the perception of depth is reduced by the absence of508

specular effects, visible in RBF interpolation.509

We plan, therefore, to investigate on possible improvements of interactive direct visualiza-510

tion of APA information and on the development of novel enhancement methods that can be511

directly implemented in the APTool to allow a better visual analysis of the information hidden512

in RTI stacks. PTM or HSH encodings are useful as they allow compact storage of relightable513

images, but, imposing a drastically simplified reflectance model discarding relevant information,514

they may result in information loss that may create serious problems to the subsequent surface515

analysis. Our plan is to use smart compression techniques to obtain a compact representation of516

the full APA information allowing an easier handling and more efficient direct visualization.517

6. Discussion518

Highlight RTI is quite popular, especially in the Cultural Heritage domain, to the point that it519

may be considered one of the most successful computational photography techniques in that do-520

main. It can be realized with a simple camera, a simple light source and one (or more) reflective521

spheres. However, the framework commonly used for this task has some limitations, and this can522

result in a low degree of repeatability of measurements, as well as in a poor quality of extracted523

information, leading, in some cases, to the impossibility of effectively using the technique.524

In this article, we have shown that, with slight modifications of the standard acquisition525

setup, it is possible to significantly improve the quality of the fusion of a multi-light image526
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(a) Partially coated silver sample

(b) Clustering results without light correction

(c) Clustering results with light correction

Figure 16: Unsupervised classification. In (b),(c), two class k-means clustering (left/right) applied to two different
acquisitions of the polished sample in (a) are represented. The coated area is in red while the uncoated area is in green.
Without calibration we have a)20% of classification similarity, while we obtain a value of 99.5% by using the calibrated
images. This shows the drastically increased level of repeatability of the proposed pipeline with respect to classic free-
form RTI.

collection, achieving a better reconstruction of shape and material properties of the scene, as527

well as an improved quality of relightable images. Our approach realizes a sort of integration528

of the classic H-RTI technique, usually based on uncalibrated lights and qualitative analysis,529

with the Material Capture and Photometric Stereo approaches targeted at accurate shape (and530

reflectance) reconstruction, but usually requiring very high-density acquisitions and/or light and531

camera calibration.532

As with all practical setups, the proposed approach has also some limitations. First of all, the533

necessity of placing more targets near the object, and the fact that we assume that the object to be534

imaged is mostly planar. The latter assumption is, however, typically true in H-RTI applications,535

and can be resolved with the same iterative techniques applied in PS settings. Moreover, in our536

current implementation, using our custom designed frame with the four spheres and the coated537

aluminum bars, the size of the object to be captured is limited to a range from about 50x50538

cm to 1mx1m. For larger sizes, the placement of co-planar Lambertian targets to estimate the539

correction may be difficult in on-site acquisitions. We are investigating, however, different light540

correction methods that may take into account depth variations of the illumination. We are also541

investigating improved interpolation methods tuned for standard spot lights.542

Our current work focuses on the finalization and testing of our processing tools, that will be543

freely available for the scientific community.544

We are also investigating novel techniques for shape and material reconstruction, as well for545
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Figure 17: Detail of relighting with specular enhancements of a captured mock up representing a leaf with small im-
printed details. Using RTIViewer with the same parameters, the result obtained with the PTM files estimated using
corrected images (bottom) allows a better perception of small details.

feature detection from MLIC. A challenging problem is, for example, the development of robust546

fitting techniques able to recover material reflectance information independently from shape.547

Apart from the difficulty in modeling reflectance, releasing hypotheses of Lambertian behavior,548

it is also necessary to consider that pixel information is not always depending only on local shape549

and reflectance, but also to global effects like inter-reflections and projected shadows. The use550

of classic outlier removal procedures, proposed in previous works [43], may be problematic due551

to the relatively low number of samples and more specific heuristics for outlier rejection may be552

more effective.553
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