
Computers & Graphics (2020)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Interactive Spatio-Temporal Exploration of Massive Time-Varying Rectilinear Scalar

Volumes based on a Variable Bit-Rate Sparse Representation over Learned Dictionaries

Jose Dı́aza,∗, Fabio Martonb,∗∗, Enrico Gobbettib,∗∗

aDigital Care Research Group, UVic-UCC, Spain
bVisual Computing Group, Center for Advanced Studies, Research and Development in Sardinia (CRS4), Cagliari, Italy

A R T I C L E I N F O

Article history:

Received 13 December 2019

Received in final form 2 March 2020

Accepted 4 March 2020

Keywords: Direct volume rendering,

Time-varying data, Compression, Sparse

coding, Learned dictionary

A B S T R A C T

We introduce a novel approach for supporting fully interactive non-linear spatio-temporal

exploration of massive time-varying rectilinear scalar volumes on commodity platforms.

To do this, we decompose each frame into an octree of overlapping bricks. Each brick

is further subdivided into smaller non-overlapping blocks compactly approximated by

quantized variable-length sparse linear combinations of prototype blocks stored in a

learned data-dependent dictionary. An efficient tolerance-driven learning and approxi-

mation process, capable of computing the tolerance required to achieve a given frame

size, exploits coresets and an incremental dictionary refinement strategy to cope with

datasets made of thousands of multi-gigavoxel frames. The compressed representation

of each frame is stored in a GPU-friendly format that supports direct adaptive streaming

to the GPU with spatial and temporal random access, view-frustum and transfer-function

culling, and transient and local decompression interleaved with ray-casting. Our variable-

rate codec provides high-quality approximations at very low bit-rates, while offering

real-time decoding performance. Thus, the bandwidth provided by current commodity

PCs proves sufficient to fully stream and render a working set of one gigavoxel per

frame without relying on partial updates, thus avoiding any unwanted dynamic effects

introduced by current incremental loading approaches. The quality and performance of

our approach is demonstrated on massive time-varying datasets at the terascale.

c© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Interactive visual exploration of very large time-varying

datasets is crucial to understand scientific simulation results [1,

2]. Such data, commonly represented as a sequence of time-

varying rectilinear scalar volumes, normally present thousands

of time steps and billions of voxels per frame [3, 4]. Meeting

interactivity constraints when rendering such massive datasets

∗Corresponding author: Mail: jose.diaz@uvic.cat
∗∗Corresponding authors: Mail: enrico.gobbetti@crs4.it;

fabio.marton@crs4.it; WWW: www.crs4.it/vic/

is very hard, especially when showing the animated sequence.

In order to cope with bandwidth constraints, all current GPU-

based solutions mix and match multiresolution data represen-

tations, compression, out-of-core methods and data streaming

to enable the interactive visualization of massive volumetric

datasets. With the notable exception of the adaptive variable-

rate approach of Marton et al. [5], all current solutions either

amortize the updates of a rendering working-set over multiple

frames, introducing unwanted dynamic effects, or use differen-

tial encodings which restrict random access and non-trivial back-

ward/forward/accelerated temporal exploration of time-varying

sequences (see Sec. 2).

2 Preprint Submitted for review / Computers & Graphics (2020)

Fig. 1. Real-time exploration. Our multiresolution compression-domain GPU volume rendering architecture supports interactive random-access explo-

ration of massive time-varying rectilinear scalar volumes on commodity platforms. From left to right: velocity magnitude field of forced isotropic turbu-

lence simulation (ISO, 1024 time steps 10243, float, 4TB) compressed to 93.6 GB (0.45 bps, PSNR 46.19 dB for frame 256); density field of a homogeneous

buoyancy-driven turbulence simulation (HBDT, 1010 time steps 10243, float, 4TB) compressed to 92.7 GB (0.45 bps, PSNR 41.48 dB for frame 256);

(2048 × 512 × 1536) × 4000 Channel Flow simulation (23.4 TB) compressed to 551.7 GB (0.45 bps, PSNR 49.78 dB for frame 256). The main images show

an overall view of the full dataset, while the inset provides an illustration of the amount of detail available for exploration.

In this paper, we explore the feasibility of adapting state-

of-the-art compressed octree-based solutions to offer spatio-

temporal random access without incremental updates. The re-

sulting system strives to provide total control over the spatial

and temporal dimensions of the data, supporting the same ex-

ploration metaphor as traditional video players (in the rest of

the paper, our approach is referred as MTV-Player for Massive

Time-varying Volume Player).

By encoding frames in an I/O and GPU-friendly compressed

format that supports high-compression rate with tolerance-driven

error control, we strive to stream to GPU and render dynamic

scenes with 1Gvoxel/frame. To achieve this goal, each frame

is independently encoded, and decomposed into a bricked oc-

tree. The bricks, used as I/O, culling, and rendering units,

have a 2-voxel apron (i.e., a border around each brick that

duplicates the values across brick boundaries) in order to al-

low exploiting texturing operations for trilinear filtering and

gradient computations. Each brick is further subdivided into

smaller non-overlapping blocks, which are compactly approx-

imated by a quantized variable-length sparse linear combina-

tions of prototype blocks stored in a data-dependent dictionary

learned from the input sequence (Sec. 3). In order to meet

bandwidth constraints, we estimate per-frame compression tol-

erances from the required frame size. At run-time, an adaptive

compression-domain renderer closely coordinates off-line data

selection, streaming, decompression, and rendering, starting

from an out-of-core GPU-friendly representation that supports

adaptive streaming to the GPU with spatio-temporal random

access (Sec. 4).

Our contributions are manifold: first, we introduce a carefully

designed I/O and GPU-friendly compact representation. Second,

we show how a tolerance-driven variable-rate encoding scheme

can support scalable dictionary learning on massive datasets

and meet size constraints through automatic tolerance computa-

tion. Third, we show how our variable-rate encoding based on

sparse representations provides scalable high-quality approxi-

mations, while offering real-time transient decoding within an

interactive renderer. Finally, we describe how our codec can be

integrated in an out-of-core real-time rendering architecture, ca-

pable of fully streaming and rendering dynamic representations

of gigavoxel-sized frames without relying on partial updates

of individual frames. This article is an invited extended ver-

sion of our STAG 2019 contribution [6]. We here provide a

more thorough exposition, but also significant new material, in-

cluding an efficient incremental dictionary learning method for

time-varying sequences, an algorithm to estimate tolerance from

size constraints, and an improved quantized encoding of sparse-

coded blocks. Furthermore, the evaluation has been significantly

extended.

The major limitations of our method, shared with other

compression-based approaches, are the non-negligible encoding

time and the upper bound on achievable quality dictated by the

need to meet run-time bandwidth constraints for giga-voxel-sizes

working sets. Our results show, however, that excellent quality

results can be achieved on time-varying datasets with billions

of voxels per frame and thousands of time-steps, making the

method of immediate practical interest.

2. Related Work

This section briefly reviews the work that is most closely

related to our approach. For additional information, we refer

the reader to the following surveys on modeling and visualiza-

tion methods for time-varying volumetric data [1], compression-

based direct volume rendering [7] and GPU-based large-scale

volume visualization [8].

2.1. Data compression for GPU-accelerated DVR

State-of-the-art solutions are based on compressing and

storing data in multiresolution out-of-core structures such as

octrees [9, 10, 11, 12], bricks [13], hierarchical grids of

bricks [14, 15] or hierarchical tiled 3D grids [5], followed by an

adaptive loading of the compressed data on the GPU, where a

fast decompression is performed on-demand during rendering.

In particular, sustaining a 10 frames/s animation on 1K3 working

sets requires uploading, decompressing, and rendering at least

10 Gvox/s. To this end, a wide variety of compression methods

have been used.

Early successful approaches used simple hardware-

accelerated fixed-rate codecs based on some form of block

truncation coding (BTC [16]) and supporting random access

and interpolation [17, 18, 19], at the cost of limiting achievable

compression and rate-distortion performance [20, 21].

Preprint Submitted for review / Computers & Graphics (2020) 3

Vector quantization solutions [22, 23, 24, 25] also support

real-time visualization, since decoding can be achieved by sim-

ple dictionary lookups that can be accelerated by texture caches.

Their quality is, however, limited by the dictionary size [26].

Guthe and Goesele [24] combined vector quantization with loss-

less compression to support larger dictionaries with respect to

uncompressed vector quantization at the same bit-rate. While

good results are achieved with 8- or 12-bit homogeneous datasets

(e.g., CT scans), vector quantization limitations still apply, and

severe blocking artifacts appear on floating point simulation data

at low bit-rates. Moreover, compression times, in the range of

many hours per gigavoxel, are not compatible with time-varying

datasets at the terascale.

Several more advanced codecs, in particular the ones based on

Wavelets [27, 28] and tensor approximation solutions [29, 30]

achieve excellent performance especially when combined with

advanced entropy coding methods. However, at low bit rates

and due to their parallel decoding complexity, even the fastest

methods [13] are far from being able to sustain real-time stream-

ing of large dynamic volumes on current hardware [5]. For

this reason, interactive systems are typically forced to amortize

decompression over multiple frames, which is not a suitable

solution for time-varying data [5]. In order to distribute cod-

ing efforts into areas deemed more important, Park et al. [31]

have proposed to improve performance with a saliency-aware

codec, but their approach does not allow changes of the transfer

function on-the-fly.

Sparse-coding methods, which represent volume blocks as

sparse linear combinations of prototype blocks from a learned

overcomplete dictionary, have shown their effectiveness to

achieve state-of-the-art compression while supporting real-time

decoding, as demonstrated by the COVRA architecture [11].

Since the dictionary is learned from the input data, the number

of terms needed to obtain a good approximation at low bit rates

is much lower than the ones needed with fixed bases such as

wavelets, so that state-of-the-art rate-distortion performance can

be achieved without recurring to complex entropy coding meth-

ods. However, COVRA employs a fixed-rate approach, which is

sub-optimal for datasets that exhibit wide spatial variations in

data complexity, a common feature in many simulations. Tensor

decomposition is also learned from data, but it imposes limita-

tions on decoding locality and achieves a much lower decoding

speed [29, 30]. Recently, Marton et al. [5] have proposed a

variation that improves COVRA’s fixed-rate scheme through

a constrained variable-rate encoder. This approach adapts bit

rates within fixed-size pages and provides a better bit allocation

scheme. In our original contribution [6], we have shown how a

tolerance-driven approach leading to an unconstrained variable-

rate encoding can significantly improve over fixed-rate schemes

and provide also superior results in terms of rate-distortion dis-

tribution with respect to page-constrained schemes. However,

selecting the tolerance required to meet the size constraints dic-

tated by the need to stream large frames at interactive speed

proves very hard. For this reason, we introduce here a coreset-

based approach to efficiently estimate a per-frame tolerance.

Moreover, we refine the quantized representation to further im-

prove rate-distortion performance.

2.2. Time-varying data exploration

Visualizing time-varying datasets has usually been addressed

with temporal-coherent compression techniques [32, 33, 34, 35,

36], where data of previous time-steps are needed to process

a specific one. This extra amount of information imposes a

rigid constraint in terms of memory and bandwidth usage that

limits the maximum size of the input data and difficults random

access to specific time-steps. For this reason, the free temporal

exploration like the one provided by traditional video players that

we seek with our approach is difficult to be obtained. Random

access to single time-steps is improved by compressing voxels

with respect to reference key-frames [37, 38, 39, 40, 41, 42, 43,

2, 44], but restrictions on the maximum size of data are still

present, even when combining both approaches [20, 45, 46, 47].

A different way to partially overcome the limitations of the

temporal-coherent compression architectures is based on encod-

ing each frame of the sequence individually by using 3D com-

pression methods [11, 13, 48, 5]. With no temporal dependency,

full random access to single time-steps is guaranteed. As in the

COVRA architecture [11], our technique encodes volume blocks

using a sparse representation based on a dictionary learned by

means of the K-SVD algorithm [26]. However, instead of using

a fixed-rate compression scheme, our variable-rate encoding

provides a better trade-off between quality and compression

ratios. Moreover, COVRA relies on incremental updates, and

dynamic datasets are visualized only by fully pre-caching dy-

namic data on the GPU, while we support full-frame updates

and unlimited-length sequences. More examples of per-frame

based approaches are the wavelet-based compression rendering

architecture presented in [13], which includes run-length and

entropy encoding, or the recent method by Pulido et al. [48]

that allows the remote visualization of multi-terabyte data em-

ploying as well a wavelet-based compression scheme. High

quality explorations of single time-steps are obtained in both

cases but a free temporal exploration of the sequence can not

be achieved in real-time. The recent work of Marton et al. [5]

also supports high-quality exploration of massive time-varying

datasets in both desktop and mobile devices. In this case, they

use a variable-rate encoding scheme based on sparse coding with

fixed-size pages and a hierarchy of grids. This feature enables a

fast parallel decompression on the GPU but it is not well-suited

for datasets with big empty regions, where many pages might not

be completely filled, producing a non-optimal memory footprint

of the compressed data. To address this issue, we employ here

a sparse octree representation with variable sized bricks. Since

the drawback of using sparse coding from learned dictionaries

on massive datasets is the lengthy dictionary learning time, we

have recently proposed a faster training scheme based on a hier-

archy of coresets [6], which is however limited to have a single

dictionary for the entire sequence. In this work, we significantly

improve this approach for time-varying data by employing a

different dictionary per frame, using an efficient incremental

dictionary learning method, which quickly adapts the dictionary

of a given frame starting from the dictionary of the previous

one. By applying this scheme to small frame batches, parallel

dictionary construction is guaranteed.

4 Preprint Submitted for review / Computers & Graphics (2020)

3. Constructing the compact multiresolution out-of-core

representation

Our method is based on the off-line transformation of a time-

varying rectilinear scalar volume into a compressed representa-

tion stored off-line in a format that supports random access to

individual frames, quick coarse determination of the portions

required for a particular image, efficient streaming to GPU and

rendering of those portions. Each time step is encoded into a

bricked octree, compressed and stored in a GPU-friendly for-

mat that can be transferred from GPU to disk using batched

asynchronous host-to-device copies (see Sec. 4).

In order to build the compact representation, we choose an

error-driven approach in which each brick of size B is further

subdivided into smaller blocks of size M, which are compactly

approximated up to a prescribed error tolerance by sparse linear

combinations of prototype blocks stored in a per-frame data-

dependent dictionary D. Such an adaptive approach overcomes

the problems of fixed-rate schemes, which often lead to poor

reconstructions of high-variation regions. All the computation

is performed in a scalable way, without limits dictated by the

input data size. The parameters guiding the process are the brick

size B, which determines the octree granularity, the compressed

block size M ≤ B, the desired coreset size Ctrain, which bounds

the amount of memory used for training, the dictionary size

K ≥ M3, and a threshold ǫ ≥ 0 to bound the reconstruction

error of each block. Since determining ǫ to meet specific size

constraints may be cumbersome, we introduce a method based

on coresets to automatically determine it given a pre-determined

per-frame size.

3.1. Dictionary learning background

In our approach, an over-complete dictionary D of prototype

blocks is trained using a tolerance-driven method from the input

data and each block bi of the original volume is represented

by a sparse linear combination of prototype blocks. To do this,

each block bi of size m = M3 is first mapped to a zero-mean

column vector y ∈ Rm by subtracting its average ȳ. Since we tar-

get error-constrained variable-rate compression, the dictionary

is computed by jointly optimizing the columns of the dictio-

nary and the sparse representation given the error tolerance ǫ

according to the objective function:

min
D,λi

∑

i

wi ‖yi − Dλi‖
2
2 (1)

subject to:

∀i, ‖λi‖0 is the minimum such that ‖yi − Dλi‖
2
2 ≤ ǫ

2 (2)

where wi represents the weight of each training sample and ‖λi‖0
is the number of non-zero entries of λi. A variation of the K-

SVD algorithm [26] is used to train the dictionary D, where each

prototype block is mapped to a unitary column vector di ∈ R
m

and maintained at zero mean. For sparse coding blocks given

the learned dictionary, we employ the batch-OMP algorithm

[49], which supports encoding with a prescribed tolerance. In

the following sections, we introduce techniques to efficiently

compute an adapted per-frame dictionary at a small cost, as

well as a scalable method to determine the tolerance required to

achieve the best results within a given per-frame size budget.

3.2. Dictionary learning for frame sequences

Compressing a dataset requires the computation of a sparsify-

ing dictionary D, which is efficient if closely modeling the data.

Learning this dictionary is however costly. Similarly to previous

work [11, 5], in order to reduce the complexity of dictionary

learning, we perform it on a weighted subset of the original sam-

ples (i.e., a coreset) instead of on all the input samples. Since

constant blocks can be trivially encoded due to the fact that we

remove the average, we estimate for each input block bi the

potential residual error ei = ‖bi − ȳ1‖22, and in order to build a

coreset of size Ctrain, we pick training samples with a probability

proportional to ei using a one-pass streaming method based on

weighted reservoir sampling [50], assigning a weight propor-

tional to the reciprocal of the picking probability to account for

the non-uniform sampling.

The K-SVD method employed for dictionary learning, then,

alternatively iterates between two sub-problems solved by heuris-

tic greedy methods over the coreset samples: sparse coding,

which finds the best λi given a fixed dictionary, and dictionary

updating, which updates one column of D at a time in order

to minimize the representation error given the current sparse

representation. For sparse coding, we employ the same batch-

OMP algorithm [49] used for final encoding, while for dictionary

updating we employ the Approximate K-SVD algorithm [49],

modified to take into account training sample weights, as in

previous work [11, 5, 6]. Table 1 shows the time required for

dictionary learning using 100 K-SVD iterations, for different

coreset sizes, and for the frame depicted in Fig 1 of the three test

datasets in a typical configuration (block size M = 6, brick size

of B = 32 voxels, and dictionary size K = 2048). Dictionary

learning time, measured on the machine described in Sec. 5.2,

is close to linear in coreset size, and very good dictionaries

are obtained with extremely small coresets, since PSNR (Peak

Signal-to-Noise-Ratio) reduction saturates very quickly. For this

paper, we have thus used coresets of 16MVoxels, which are far

below 2% of the frame size for all datasets.

ISO HBDT CHAN

Coreset Size % Time PSNR % Time PSNR % Time PSNR

2 0.20% 65 44.83 0.20% 63 37.78 0.13% 64 47.12

4 0.39% 72 45.25 0.39% 71 38.24 0.26% 75 47.51

8 0.78% 87 45.49 0.78% 89 38.51 0.52% 89 47.77

16 1.56% 127 45.65 1.56% 175 38.71 1.04% 129 47.93

32 3.13% 206 45.76 3.13% 213 38.83 2.08% 206 48.03

Table 1. Achieved PSNR as a function of the coreset size. Data is reported

for a variable-rate encoding at 0.45bps.

However, even with such a large reduction, dictionary learning

times on such small coresets are still non-negligible for single

frames and on-par or superior to the encoding step for all blocks

contained in an entire frame [5]. For this reason, Dı́az et al. [6]

proposed to only learn a single dictionary for the entire sequence,

using a coreset extracted from multiple frames. This approach,

however, is valid only in particular cases, where little variations

Preprint Submitted for review / Computers & Graphics (2020) 5

occurs during simulation, losing the advantage of learned dic-

tionaries in cases where significant qualitative evolution exist.

For instance, in the HBDT simulation (see Fig. 1 and Sec. 5),

two fluids are initialized as random homogeneous blobs, and

turbulence is generated as the two fluids start moving in opposite

directions due to differential buoyancy forces, until when the

fluids become molecularly mixed, and buoyancy forces decrease,

decaying also the turbulence. Thus, the characteristics of all

fields and of related optimal dictionaries vary widely across the

simulation.

In this work, we propose to exploit the incremental nature

of the K-SVD algorithm to drastically reduce learning time for

general simulation results. In our approach, we decompose the

input sequence in small batches of consecutive frames (32 in this

paper), which are then processed sequentially. The first frame of

the batch (key frame), learns the associated dictionary using a

frame-specific coreset of size Ctrain, starting from an initial ran-

dom dictionary and 100 K-SVD iterations, which are sufficient

to arrive to convergence. Instead, the subsequent frames in the

batch start from the dictionary learned in the previous frame and,

using again a frame-specific coreset of size Ctrain, refines the

dictionary for just 5 iterations. This approach is motivated by

the fact that it is expected that even widely varying simulations

are smoothly evolving, and we can also expect that one frame’s

optimal dictionary would be not far from the optimal dictio-

nary of the next frame. By applying this sequential approach to

small frame batches, we support parallelization, as all batches

can be constructed in parallel, and we remove problems due to

drift. The validity of this approach is proved by our experimen-

tal results. In particular, the average learning cost for a batch

of 32 frames drops from 4000s (120s/frame) for the 3 datasets

to 318s (10s/frame), while the achieved PSNR when using the

incrementally learned dictionary is within ±0.1% of the PSNR

achieved when independently learning all frames. Moreover, for

significantly varying datasets, such as HBDT, having a per-frame

dictionary is measurably better than using a single dictionary

for multiple frames. For instance, the PSNR at frame 32 of

the HBDT sequence is a full 1% lower when using a single

dictionary for the first 32 frames than when using a per-frame

dictionary. Uniform selection of keyframes to subdivide learn-

ing into batches is, thus, a simple but very effective solution: it

guarantees load balancing, does not require a prior analysis of

the dataset, and achieves a quality almost indistinguishable from

full processing at a fraction of the cost.

3.3. Determining tolerance given size constraints

The tolerance-driven approach used in this paper allows for

ensuring a constant reconstruction quality for each frame. How-

ever, in order to be usable within bandwidth-critical operations,

which occur when transferring the dataset from a remote server

to a local renderer, or when transferring data from storage to

graphics memory at each frame during dynamic operations, it is

essential to meet storage size constraints. For instance, a single

1 Gvox frame (or working set) would require 64 MB at 0.5 bits

per sample (bps), translating to 64GB for streaming a 1K-frames

animation from a non-local server. Moreover, supporting a

10 frames/s animation requires a codec able to load, decompress

KSVD D

Sparse

Codingε
Greedy

Tolerance

Compute

Compressed

Volume

Sε

Input

Processing

Intermediate results

Output

Target BPS

Input

Volume

Streaming

Coreset

Compute

Average

Sparsity

Compute

CoresetTrain

CoresetEval

Fig. 2. Compression pipeline. Variable-rate compression is achieved by effi-

ciently computing target tolerance from a target size constraint using core-

sets.

and render at least 10 Gvox/s. For this reason, previous works

have favored either fixed-rate compression [11], or variable-rate

compression within fixed-rate pages [5]. Variable-rate encoding

has been also employed [6], but achieving compliance with size

constraints required manual tuning, difficult for single frames

(and far from optimal for large sequences). Instead, in this paper

we use a method for computing the target tolerance from a target

size constraint.

The algorithm (Fig. 2) first translates the desired bit-rate into a

target floating point average sparsity S ǫ based on the knowledge

of the encoding (Sec. 3.4), and then learns the dictionary D using

a fixed target sparsity of round(S ǫ). At negligible cost, during

the same streaming pass that extracts the coreset for training, we

also extract a second coreset of size Ceval, with a uniform picking

probability. After learning the dictionary D, we estimate, with a

greedy algorithm, the tolerance required for encoding the frame

at a specified target bit-rate. For each of the elements in the

coreset, we compute the initial solution, using zero sparsity, and

insert it into a priority queue sorted by maximum residual error.

We then proceed by iteratively removing the top candidate from

the queue, executing one step of the Batch-OMP method to com-

pute the next solution to push into the queue. The method stops

when the overall size constraint is met, i.e., the average sparsity

is greater or equal to S ǫ . The final tolerance ǫ for variable-rate

encoding is then set to the largest residual of the computed rep-

resentation. We have experimentally determined that a coreset

of 8Mvox is sufficient to always determine a tolerance that leads

to a compressed representation within 1% of the target size,

spending only 4s/ f rame.

3.4. Dataset encoding

Given a sparsifying dictionary, the compressed representation

is achieved by sparse coding all blocks and compactly coding

the dictionary and the block representation. It should be noted

that, in our case, we should strive at maximum decoding perfor-

mance, rather than maximum compression, because of the need

to support real-time decoding during rendering. In particular, we

do not apply any bit transformation and entropy coding.

The dictionary is very small with respect to the frame and

does not require particular compression. In our current code,

we store dictionaries in formats directly supported by the GPU

(floating point or 16-bit quantization), with no form of delta

encoding. In the settings used for the paper, the dictionary

accounts for 800KB-1600KB/frame, i.e. just a few percent of

our typical compressed frame size. Introducing more elaborate

6 Preprint Submitted for review / Computers & Graphics (2020)

BRICK

N
O

D
E

N
O

D
E

LEVEL 1 LEVEL NROOT

T
Y
P
E

FIRST

IDX

CHILD

DATA
IDX

HISTOGRAM

B
R

IC
K

B
R

IC
K

B
R

IC
K

B
R

IC
K

LEVEL 1ROOT

B
H

1AVG

bias &

scaling

ID
X

 D
IC

E
N

T
R
Y

C
O

E
F
F

ID
X

 D
IC

E
N

T
R
Y

C
O

E
F
F

ID
X

 D
IC

E
N

T
R
Y

C
O

E
F
F

BLOCK 1 BLOCK 2

Num. bits 32|32 32|32 32

Num. bits 32 642 30

NODE

COMP.

DATA

OCTREE

N
O

D
E

NODE

BLOCK

HEADERS
N

O
D

E

N
O

D
E

COEFF

bias &

scaling

11|5 11|5 11|5

B
H

n

32

BLOCK HEADER AVG S Cmin Cmax

11 | 7 | 7 | 7 Num. bits

Fig. 3. Encoded format. Each octree is stored in breadth-first order (and

Morton order inside each level) to support efficient partial GPU upload-

ing up to a run-time-determined levels. The first data segment stores the

octree-structure using 128 bits per non-empty node, while the second data

segment stores a variable-bit-rate representation of each non-empty brick,

composed of a header plus a quantized sparse representation of its blocks.

Each block has a 32 bits header containing average, sparsity, coefficient

min and max bits.

compression (e.g., multi-frame encoding, or lossy compression)

would achieve a little gain. Note that, when using 16-bit format,

the dictionary is quantized before encoding the frames.

The off-line storage of each octree of bricks (see Fig. 3) is

designed to be compact, GPU-decodable, and traversable so

that potentially visible portion of the dataset can be directly

transferable to the GPU up to the required levels using few

batched host to device copies (see Sec. 4).

The representation consists of two parts: the octree structure

itself, and the data for the non-empty bricks.

In the octree structure portion, each node is encoded in 128

bits containing an index to its compressed data brick (32 bits),

the node type (2 bits: inner, leaf or empty node), the index of the

first child in the nodes list (30 bits) and a binary histogram (64

bits) computed bottom-up from the bricks of the children, that is

used for transfer-function-based culling. In case of leaf or empty

nodes, the index to the first child is set to 0. The compressed

data is encoded as a list of bricks sorted by levels.

In the data portion, non-empty bricks are compactly stored

without gaps in breadth-first order (and Morton order inside

each level), to make it possible to rapidly move from disk to the

GPU the bricks corresponding to some specific level-of-detail.

A 32-bit word-bounded coding scheme is employed to simplify

parallel decoding on a GPU (Sec. 4).

The data storage for non-empty bricks contains the sparse

representation of the contained blocks. Compression is achieved

by storing for each block only the index and value of the non-

empty coefficients λi and by quantizing their values, as well as

the average value of the block ȳ. Thus, each brick encoding

contains two float values (32 bits each) representing the bias and

scaling for dequantizing the average value ȳ of each contained

block, and other two for dequantizing the coefficients λi of all

blocks. The dequantization header is followed by two data

segments. In the first segment, which contains one 32 bits entry

per encoded block, we encode four values for each block: the

sparsity si, the quantized average and the remaining bits are used

for better encoding the min and max values of its coefficients.

The sparsity (i.e., the number of non-zero coefficients) uses 7

bits/block for a maximum sparsity of S max = 127, while the

average uses 11 bits/block. In the second segment we encode

each block as a sequence si (16-bit codes), with the upper bits (11

for a 2048-entry dictionary) providing the index of the prototype

block in the dictionary, and the lower bits for the coefficient

value. Pairs of values and indexes can be read using a single

32-bit word load operation. Scalar quantization is applied by

combining information at brick, block, and individual coefficient

level, as explained in Sec. 4.2.

3.5. Parallel construction

The proposed method can be efficiently parallelized on cur-

rent multi-core machines and clusters. In our implementation,

we assume that the original uncompressed data is stored as a

separate volume per frame, and that compression is done on one

or more multi-core machines. The time sequence is partitioned

into small batches of 32 consecutive frames. A coordinator pro-

cess distributes these batches to a number of workers, which

perform dictionary learning, sparse coding, and final encoding

and storage. Load balancing is ensured if the coordinator ini-

tially seeds each worker with a batch and subsequently assigns

the next batch to the worker that signal completion. Each worker

sequentially computes the representation of each assigned frame

in order to exploit the incremental dictionary computation. How-

ever, the encoding process is massively parallel and requires

minimum memory, as it can be performed in parallel for all the

bricks that compose each octree, fully exploiting the multi-core

architecture. Coordinator and workers may reside on the same

multi-core machines or on a small cluster, since all workers are

independent and very little communication is required between

workers and coordinator.

4. GPU accelerated rendering

In this paper, we strive to demonstrate the feasibility of a novel

compression-domain out-of-core DVR approach supporting full

spatio-temporal random access without incremental updates. We

therefore designed an adaptive renderer built around on-demand

streaming to GPU of compressed frame portions. By design,

the renderer does not use any form of temporal coherence and

does not use key-framing. We assume that data is stored offline

locally on SSDs (eventually moving it locally from a server

before rendering), and we exploit efficient disk-to-GPU batched

data transfer to quickly and freely achieve random access and

non-trivial backward/forward/accelerated temporal exploration

of time-varying sequences.

Preprint Submitted for review / Computers & Graphics (2020) 7

Algorithm 1 Process to render a single time-step

1: Input: Time t, view V , projection P, transfer function T F

2: Output: Updated frame buffer

3: clear frame buffer()

4: Dt ← Dictionary of frame t

5: async host to device memcpy(Dt)

6: Ot ← Octree of frame t

7: Ft Forest of subtrees of bounded size of Ot

8: for each octree oi ∈ Ft in front-to-back-order do

9: if is visible(oi, V , P, T F) then

10: (idx, data ranges)← adaptive selection(oi, V , P, T F)

11: (idx, data ranges)← merge batches(idx,data ranges)

12: async host to device memcpy(idx)

13: async host to device memcpy(data[data ranges])

14: dec bricks tex3D← gpu decoded(lea f s, Dt)

15: gpu ray casting and compositing(dec bricks tex3D)

16: end if

17: end for

4.1. Adaptive loading and rendering scheme

The process followed to render a single time-step is shown in

Algorithm 1.

As each frame is encoded independently into different octrees

of bricks, rendering uses only per-frame information. We first

start subdividing the octree until the point in which the number

of nodes contained in the subtree is such that decoded data can

fit in GPU memory, thus computing a forest of octrees. We then

traverse front-to back each octree root of the current time-step

and determine whether the octree is potentially visible from

the current view using the current transfer function parameters.

This step requires only the computed bounding box and the

stored value histogram of the root node. If the octree is proved

invisible, it is skipped and rendering proceeds by evaluating

the next one in front-to-back order. Otherwise, we prepare

data transfer by computing, from the index data and the current

viewing configuration, a spatial index of the data required for

rendering the octree. We perform this phase within a recursive

traversal of the index tree, collecting into a small array a compact

spatial index of the potentially visible portion of the tree, whose

leaf nodes point to associated data bricks. During this traversal,

we maintain the minimum and maximum index of the data bricks

per level, which determine the portions of the data array that are

required for rendering. As the data array is stored in breadth-first

order (and Morton order inside each level), this range efficiently

culls out the data that is too refined or out-of-frustum. After

collection is completed, we reduce the number of disjoint data

ranges to a maximum of three, by iteratively merging nearby

data ranges of different levels starting from the smaller gaps.

Merging stops when the number of ranges is less than four and

the next removed gap is larger than 25% of the size of the merged

data ranges. At the end of merging, the different data ranges

are assumed to be relocated contiguously, and the references in

the index tree are updated accordingly. Rendering can then be

performed by moving the index tree and the compressed brick

data to GPU using few async host to device memcpy

calls (up to a maximum of four per octree, including the index).

It should be noted, in addition, that by using a different CUDA

stream per subtree, we can effectively obtain concurrency and

overlap between transfer and computation.

Once the data is in device memory, we decompress all vol-

ume bricks covered by the subtree into 3D texture memory

using a fast CUDA-based GPU decoder (see Sec. 4.2). Decom-

pressed data is then accessed by a GPU ray-casting algorithm,

that traverses the current spatial index using standard stackless

raycasting schemes [9, 11] and samples voxel values from the

temporary decoded 3D texture with hardware texture filtering.

The raycaster is implemented in a single CUDA kernel, which

renders the octree to a viewport of the frame buffer that strictly

encloses the projection of the octree’s bounding box. The octree

raycasting procedure starts from the color and opacity fetched

from the frame buffer, and follows the ray accumulating col-

ors and opacity until maximum opacity is achieved or the ray

leaves the subtree. Since octrees are rendered in front-to-back

order, this approach supports visibility culling through early ray

termination. After rendering all the visible octrees in a frame,

the frame-buffer contains the final composited image for the

volume.

4.2. GPU decompression

BLOCKS (Bi)

OFFSETS &

LENGHTS O
/L

 B
1

O
/L

 B
2

O
/L

 B
N

O
/L

 B
1

O
/L

 B
N

Brick 1

O
/L

 B
1

O
/L

 B
N

O
/L

 B
1

O
/L

 B
N

Brick 2 Brick N-1 Brick N

H
e
a
d
e
r

C
.
B

1

C
.
B

N

C
.
B

2

H
e
a
d
e
r

C
.
B

1

C
.
B

N

O
ff

B
r1

O
ff

B
r2

O
ff

B
rN

-1

O
ff

B
rN

COMPR.

DATA

BRICKS (Bri)

OFFSETS

H
e
a
d
e
r

H
e
a
d
e
r

C. B1-BN

C
.
B

1
-B

N

DEC.

GPU

GRID

GPU Block

DEC. 3D TEX

P
o
s
 B

r1
P
o
s
 B

r2

P
o
s
 B

rN
-1

P
o
s
 B

rNDEC. BRICK

POSITIONS

Fig. 4. Memory layout for GPU decoding.

The GPU decompression phase must transform our variable-

rate representation of bricks into uncompressed data stored in a

3D texture. This is achieved through a combination of several

CUDA kernels. Given the fact that bricks and blocks have a

variable size, we opted for a linear GPU memory layout for

compressed data, which provides an easy sequential access to

the brick’s data, given the availability of offsets to the start point

of each brick. Before starting GPU decompression, the CPU

renderer uploads to the GPU three buffers: the compressed data

8 Preprint Submitted for review / Computers & Graphics (2020)

representation, the starting offsets of the compressed bricks and

their corresponding destination positions in the 3D texture. De-

compressing a block requires to know where it starts. Each brick

has a header containing the sparsity of all its encoded blocks.

Thus, before decompression, all the starting positions of the

blocks are evaluated with a prefix-sum algorithm. The kernel

assumes that all the bricks are layered along the X axis, one after

another, and the kernel grid reflects this brick distribution (see

Fig. 4). Decompression uses a thread per decoded voxel, with a

grid size equal to the block size. The kernel work is subdivided

in two stages: fetching data to shared memory and voxel com-

putation. The brick id is identified by the thread position along

X, while the block id depends on the x, y, z thread coordinates.

From these coordinates, the brick and block starting offsets and

the header data, including sparsity S , can be loaded from the

corresponding buffers. The compressed block representation (S

pairs of bytes containing index and coefficient) is then coopera-

tively fetched and stored in shared memory. Each participating

thread always loads 32 bits at a time, and thus decodes to GPU

shared memory groups of two index-coefficient pairs in order to

avoid bank conflicts. Coefficient dequantization is performed be-

fore storing coefficients in shared memory. The index coefficient

pairs are ordered so that the first and the second ones are relative

to the max and min block coefficients, loaded by the first thread

using a single 32-bit load. These coefficients are uniformly de-

quantized in the range stored in the brick header using the value

bits, plus the extra 7 bits in the block header. The remaining

coefficients, instead, use only their value bits for dequantization,

but in the range of the coefficients of the block, determined when

decoding the first two coefficients. After thread synchronization,

decompressing a voxel is then just a matter of loading its corre-

sponding values from the indexed dictionary words and linearly

combining them with the coefficients present in shared memory.

5. Implementation and results

Our approach has been implemented as an experimental soft-

ware running on Arch Linux using C++, OpenGL and NVIDIA

CUDA 10. It has been tested with a variety of time-varying

massive volumetric datasets.

In this paper, we discuss the results obtained with three rep-

resentative massive time-varying datasets from the JHU Turbu-

lence database [51]: the velocity magnitude field of a forced

isotropic turbulence simulation (ISO, 1024 time steps 10243,

float, 4TB), the density field of a homogeneous buoyancy-driven

turbulence simulation (HBDT, 1010 time steps 10243, float,

4TB), and the x-component of the velocity field of a channel

flow simulation (CHAN, 4000 time steps 2048 × 512 × 1536,

float, 24TB). All the benchmark datasets are publicly available

and the selected fields were used in our previous work, which

presented detailed comparisons with current state-of-the-art solu-

tions in the area of real-time volume rendering from compressed

data [5], thus providing a solid context for the results discussed

here. Note that the results presented in Diaz et al. [6] use, instead,

the pressure field for all the datasets.

5.1. Compression setup

We evaluated our compression strategy by running a battery

of tests on the selected time-varying datasets. In all our tests, we

used a K-SVD block size M = 6, a brick size of B = 36 voxels,

a dictionary size K = 2048 stored in floating point format, and

varied the target bit-rate to 0.38 bps, 0.45 bps, and 0.60 bps. Bit-

rates were selected so as to be small enough to support real-time

rendering, as well as achievable with other fixed-rate codecs.

In order to provide a context for the evaluation of our work,

we compare our results with a fixed-rate version of the same

codec, as well as with a recently introduced solution based on

Elastic Sparse Coding (ESC) [5], which is also capable of real-

time performance, and represents the current state-of-the-art in

compression for real-time rendering. As Marton et al. [5] have

already compared ESC with the major real-time and non-real-

time codecs, including COVRA [11], ASTC [52], Hierarchical

Vector Quantization (HVQ) [22], CudaCompress wavelet codec

(CC) [13], ZFP [27], and SZ [53], we do not repeat all the

benchmarks here. As a reference, we include here only the

results obtained with the ZFP [27] codec (V 0.5.4), which is a

de-facto standard for compression of floating-point volumetric

data, and with ASTC (version 10/2017 [54]), which was the best-

performing competing real-time codec in previously presented

benchmarks [5]. For ZFP, we used the fixed accuracy mode,

which usually yields the best signal-to-noise ratios, and varied

the absolute error tolerance (-a) to obtain the desired bit rates.

For ASTC, we selected the maximum quality and lowest bit-rate

achievable.

5.2. Hardware configuration

Performance has been measured on a single Arch Linux PC

with 128GB RAM, a 20-core i9-7900X 3.30 GHz CPU and a

GeForce RTX 2080Ti GPU with 11GB VRAM. The uncom-

pressed data is stored on a Synology RS3617Xs+ with a RAID

5 composed of SEAGATE ST10kNE004-1ZF101 disks (BTRFS

file system) connected to the processing and rendering machine

using a 10 Gbit/s link. The compressed data is stored instead on

a local Samsung 9160 Pro 1TB SSD for storage formatted with

ext4.

5.3. Compression speed

All the three benchmark datasets were compressed using the

incremental approach described in Sec. 3, using a batch size of

BS = 32 frames, I = 100 training iterations for the keyframe,

I = 5 iterations for the other frames, a coreset for training

of Ctrain = 16Mvox and a coreset for tolerance estimation of

Ceval = 8MVox. The training process first downloads the frame

from the remote storage to the local SSD, then performs all

the other operations on SSD (filtering for construction of the

octree hierarchy, coreset extractions, dictionary learning, and

final encoding). The bottom-up filtering phase, also including

the extraction of the two coresets, is dominated by the initial

data transfer time from the file server to the processing node, and

takes 20 s/frame for ISO and HBDT and 32 s/frame for CHAN.

Dictionary learning time is independent from dataset size and

only very slightly dependent on sparsity due to the combination

of coresets with our incremental training approach (10s/frame).

Preprint Submitted for review / Computers & Graphics (2020) 9

Determining tolerances is also independent from the dataset

size, and takes just 4s/frame. Given the computed dictionary,

encoding time is linear with the dataset size, and grows sub-

linearly with the target sparsity. ISO and HBDT require 156-181s

for the encoding, while CHAN requires 238-271s, lower times

being for higher compression rates. Thanks to our optimizations,

thus, dictionary computation becomes negligible with respect to

the other phases.

The encoding speed of the other benchmarked solutions

widely varies. ESC, also based on sparse coding, takes 147-185s

for dictionary learning, due to not using incremental dictionary

refinement, and also has increased encoding time due to per-page

size optimization (235-273s for ISO and HBDT, and 370-415s

for CHAN). Instead, ZFP is much faster (45-49 s/frame for the

overall processing of ISO and HBDT, 55-76s for CHAN), while

ASTC is much slower (over 12 min/frame for ISO, 15 min/frame

for HBDT, 17 min/frame for CHAN).

MTV-VAR MTV-FIX ESC ASTC ZFP

bps PSNR bps PSNR bps PSNR bps PSNR bps PSNR

ISO

0.38 44.62 0.38 44.06 0.38 46.09 0.34 31.80

0.45 46.19 0.45 45.65 0.45 47.34 0.45 36.54

0.60 48.56 0.60 47.99 0.60 48.72 0.59 45.85 0.59 39.84

HBDT

0.38 39.94 0.38 37.03 0.38 39.07 0.34 13.56

0.45 41.48 0.45 38.71 0.45 39.71 0.45 20.95

0.60 43.44 0.60 40.97 0.60 40.01 0.59 38.02 0.59 27.29

CHAN

0.38 48.10 0.38 46.31 0.38 48.59 0.34 32.01

0.45 49.78 0.45 47.93 0.45 49.75 0.45 36.83

0.60 52.25 0.60 50.29 0.60 50.99 0.59 48.20 0.59 40.21

Table 2. Compression rate and distortion. The compared codecs are MTV

Player with tolerance-driven variable-rate encoding, MTV Player with

fixed rate encoding at similar bits per output sample, Elastic Sparse Coding

(ESC) [5], ASTC [52], and ZFP [27] at similar target bit rate. For ZFP, we

used the fixed accuracy mode, which usually yields the best signal-to-noise

ratios, and varied the absolute error tolerance (-a) to obtain the desired

bit rates. For ASTC, we selected the maximum quality and lowest bit-rate

achievable.

5.4. Compression rate and distortion

Table 2 summarizes the compression performance of the eval-

uated codecs at similar bit rates. The results are reported for

a single selected frame (number 256 for all datasets). In or-

der to compare with other single-resolution methods, we report

the results obtained only for the leaf-level full-resolution grid.

Compression rate is measured in bits per output sample (bps),

while quality is measured with peak signal to noise ratio (PSNR),

defined as 10 log10
(maxi xi−mini xi)

2

1
N

∑
i(xi−yi)2

, where xi is the original voxel

value, yi is the approximated one and N the total number of

voxels.

Each dataset has been compressed using our codec (MTV)

with three different bit-rates using the variable-rate encoder,

as well as with a fixed-rate version of the encoder, where the

target sparsity has been set to match the same bit rate. Param-

eters for ESC, ASTC, and ZFP have been also set to provide

a similar compression. Empty cells in the table correspond to

non-achievable results.

The new variable-rate codec scales well and provides con-

siderable improvement in terms of PSNR with respect to the

fixed-rate solution for most of the datasets. The codec is also

competitive or on par with respect to ESC, which optimizes rate-

distortion within fixed-size pages. ZFP, used here as a reference

implementation, does not appear to perform that well at such

extreme compression rates (close or below 0.5 bps). On the other

hand, using a near-lossless setup, it could be employed in the

encoder to speed-up data accesses. ASTC also provides consider-

ably lower quality at comparable bit-rates, and cannot compress

data below 0.59bps. This is compatible with the findings of

Marton et al. [5].

The improved results in terms of average and maximum errors

lead to improved perceptual quality during volume exploration

with respect to fixed-rate solutions. Fig. 5 provides an illustration

of the visual quality obtained for an isosurface rendering of

our benchmark datasets at high magnification, and numerically

assesses the visual quality provided by the various encoding

schemes by using the Structural Similarity metric [55], which is

known to have a good correlation with perceptual quality. The

results, shown for a 0.45bps for all schemes except ASTC and

compressed at 0.59bps, show that the sparse-coding schemes

(MTV and ESC) provide better visual quality than ZFP and

ASTC, even if ASTC requires over 30% more storage. Variable-

rate schemes also provide significantly better quality than fixed-

rate ones, with SSIM values that increase by 7-18% depending

on the dataset, which are considered noticeable differences.

The behavior in terms of error distribution of the various real-

time codecs is illustrated in Fig. 6. The images show, using

color coding, the average error computed along the z direction

for the three data sets, collapsing errors on the 3D volumes to

a 2D image. It can be notices that in all cases error increases

at block boundaries, since all the techniques use block-based

compression in order to support parallel real-time decoding with

random access. Deblocking techniques, orthogonal to the work

covered here, could be applied to further improve visual quality,

at the expense of decoding and/or rendering time [56]. The error

images also show that the tolerance-driven codec proposed in

this paper successfully maintains a near-constant quality, while

the other codecs have a much more variable distribution, with

low-error blocks mixed with high-error ones. Moreover, the ESC

codecs clearly shows page boundary artifacts, especially visible

in the CHAN dataset, which has significant differences between

the boundary region, with high turbulence, and the central one

with laminar flow.

5.5. Interactive exploration

We evaluated the rendering performance of our framework

on a number of interactive inspection sequences of the three

dynamic datasets tested, using the 0.45bps configuration shown

in Table. 2. This leads to the creation of compressed octree

representations of 93.6 GB (ISO), 92.7 GB (HBDT), and 551.7

GB (CHAN). The individual frame size is of 93.6MB for ISO

and HBDT and of 141.2MB for CHAN.

The qualitative performance of our adaptive GPU ray-caster,

loading data from local SSD disk and rendering with a RTX

2080Ti GPU is illustrated in the accompanying video. All im-

ages have been recorded on a window size of 1920× 1080 pixels

using a 1 voxel/pixel accuracy. Representative frames are de-

picted in Fig. 1 and Fig. 7.

10 Preprint Submitted for review / Computers & Graphics (2020)

Fig. 5. Perceptual quality assessment. Isosurface rendering and corresponding SSIM (structural similarity) values of the rendered images: from top to

bottom ISO, HBDT and CHAN. All encodings use 0.45 bps except ASTC which is encoded at 0.59 bps (minimum reachable bps with this coder).

As shown in the video, the system is fully interactive. It is

possible to translate, rotate, and scale the volumes, to change

the transfer function while playing back animations at various

speeds, moving back-and-forth in time, and jumping at different

time-steps. Frame rates are generally well above the targeted

10Hz, varying from 15Hz for medium-range closeups where

most of the full dataset is visible at high resolution to well above

40Hz for overall views or extreme closeup views of models,

where we can better exploit level-of-detail and view culling to

reduce uploading, decoding and rendering overhead. In par-

ticular, for the sequences included in the accompanying video,

the average frame rate was of 33.0Hz for ISO (min 5.9Hz, max

120.6Hz), 37.2Hz for HBDT (min 6.4Hz, max 123.7Hz), and

24.9Hz for CHAN (min 7.9Hz, max 48.9Hz). The absolute

worst case occurs when all the model is visible with a semi-

transparent transfer function that forces, at the same time, full

decoding and full traversal.

Data loading is performed in parallel with the decoding and

rendering kernels. GPU profiling reveals that, on average, half

of the frame time is devoted to rendering, while the other half

is occupied by all other operations: cut identification, culling,

data loading, and decompression. In particular, the raycasting

kernel takes on average from 35% (CHAN) to 58% (ISO and

HBDT) of the total frame time. This is not surprising, since the

goal of this paper is to show the feasibility of using a custom

compressed representation for cache-less full-frame decoding

during real-time spatio-temporal exploration, and no particular

optimization has been made to reduce the number of decoded

blocks, beyond plain view-frustum and transfer-function culling.

The introduction of caching when exploring static frames and

occlusion culling for improving performance on opaque models

would result in increased average performance, and could be

done exactly as in Marton et al. [5]. In this work, we focus

instead on just measuring typical worst-case situations.

As we do not exploit temporal coherence, performance does

not change depending on whether animations are played back-

wards and forwards, or when they are rendered at higher speed.

Moreover, thanks to the lack of incremental updates, no dynamic

artifacts due to partial refinements are visible in the animation.

Such a streaming architecture is, however, limited by the amount

of data that is streamed, decoded, and rendered on a per-frame

basis. See accompanying video for more details.

6. Conclusions

We have presented a novel approach for supporting fully in-

teractive exploration with non-trivial temporal access of massive

time-varying rectilinear scalar volumes on commodity platforms.

Instead of looking at maximum compression and adaptivity,

we streamline the rendering loop, by using a time-independent

codec that produces a highly-compressed real-time-decodable

format and asynchronously sending to GPU the required frame

portions in few batches, to be decoded and rendered at interac-

tive speeds. Our variable-rate encoding scheme based on sparse

coding volume blocks using a learned dictionary deals with

bandwidth and memory limitations, while providing competitive

perceptual and signal reconstruction quality at similar compres-

sion ratios with respect to current state-of-the-art fixed-rate or

constrained variable-rate solutions supporting real-time perfor-

mance. Furthermore, thanks to the scalability at all the stages of

the pipeline, the presented architecture is capable of processing

and visualizing massive datasets, as demonstrated by our results

on terascale turbulence simulations, freely explored by rapidly

moving in time, space and transfer function parameters.

Our current work is aimed at using the approach for the ex-

ploration of simulation data, especially in the area of large scale

Preprint Submitted for review / Computers & Graphics (2020) 11

Fig. 6. Error distribution maps. Accumulated error maps on the Z direction for all datasets: from top to bottom ISO, HBDT and CHAN. All encodings use

0.45 bps except ASTC which is encoded at 0.59 bps (minimum reachable bps with this coder). ISO and HBDT show the full 1024x1024 projection, while

CHAN shows the central crop of 1024x512.

CFD simulation. Fig. 8 and the accompanying video illustrate

our preliminary results, which show the possibility of exploring

in real-time the vorticity field around buildings at urban scales.

Acknowledgments. The authors would like to warmly thank Peter Lindstrom

for making available his excellent ZFP code. Datasets are courtesy of the Johns

Hopkins Turbulence Database (JHTDB) initiative. The urban dataset is courtesy

of the Architectural Institute of Japan. We also acknowledge the contribution

of Sardinian Regional Authorities under projects VIGECLAB and TDM (POR

FESR 2014-2020 Action 1.2.2).

References

[1] Weiss, K, Floriani, L. Modeling and visualization approaches for time-

varying volumetric data. In: Proc. Advances in Visual Computing. 2008,

p. 1000–1010.

[2] She, B, Boulanger, P, Noga, M. Real-time rendering of temporal

volumetric data on a GPU. In: Proc. IEEE InfoVis. 2011, p. 622–631.

[3] Li, Y, Perlman, E, Wan, M, Yang, Y, Meneveau, C, Burns, R, et al. A

public turbulence database cluster and applications to study Lagrangian

evolution of velocity increments in turbulence. Journal of Turbulence

2008;9.

[4] Irion, R. The terascale supernova initiative: Modeling the first instance of

a star’s death. SciDAC Review 2006;2(1):26–37.

[5] Marton, F, Agus, M, Gobbetti, E. A framework for gpu-accelerated

exploration of massive time-varying rectilinear scalar volumes. Computer

Graphics Forum 2019;38(3).

[6] Dı́az, J, Marton, F, Gobbetti, E. MTV-Player: Interactive spatio-temporal

exploration of compressed large-scale time-varying rectilinar scalar vol-

umes. In: Proc. STAG. 2019, p. 1–10.

[7] Balsa Rodriguez, M, Gobbetti, E, Iglesias Guitián, J, Makhinya, M,

Marton, F, Pajarola, R, et al. State-of-the-art in compressed GPU-based

direct volume rendering. Computer Graphics Forum 2014;33(6):77–100.

[8] Beyer, J, Hadwiger, M, Pfister, H. State-of-the-art in GPU-based large-

scale volume visualization. Computer Graphics Forum 2015;34(8):13–37.

[9] Crassin, C, Neyret, F, Lefebvre, S, Eisemann, E. GigaVoxels: Ray-

guided streaming for efficient and detailed voxel rendering. In: Proc. I3D.

2009, p. 15–22.

[10] Engel, K. CERA-TVR: A framework for interactive high-quality teravoxel

volume visualization on standard PCs. In: Proc. IEEE LDAV. 2011, p.

123–124.

[11] Gobbetti, E, Iglesias Guitián, J, Marton, F. COVRA: A compression-

domain output-sensitive volume rendering architecture based on a

sparse representation of voxel blocks. Computer Graphics Forum

2012;31(3/4):1315–1324.

[12] Reichl, F, Treib, M, Westermann, R. Visualization of big SPH simulations

via compressed octree grids. In: Proc. IEEE Big Data. 2013, p. 71–78.

[13] Treib, M, Burger, K, Reichl, F, Meneveau, C, Szalay, A, Westermann,

R. Turbulence visualization at the terascale on desktop PCs. IEEE TVCG

2012;18(12):2169–2177.

[14] Hadwiger, M, Beyer, J, Jeong, WK, Pfister, H. Interactive volume

exploration of petascale microscopy data streams using a visualization-

driven virtual memory approach. IEEE TVCG 2012;18(12):2285–2294.

[15] Fogal, T, Schiewe, A, Kruger, J. An analysis of scalable GPU-based

ray-guided volume rendering. In: Proc. IEEE LDAV. 2013, p. 43–51.

[16] Delp, E, Mitchell, O. Image compression using block truncation coding.

12 Preprint Submitted for review / Computers & Graphics (2020)

Fig. 7. Representative frames of the accompanying video. Our rendering architecture supports interactive spatial exploration, modification of the transfer

function parameters, playing the sequence forwards and backwards at various speeds, and full random access to individual frames.

Fig. 8. Example of application to urban CFD simulation. Frames from an interactive sequence of spatio-temporal exploration of the vorticity field around

buildings at a urban scale (Shinjuku, Japan).

IEEE Trans Comm 1979;27(9):1335–1342.

[17] Craighead, M. Gl nv texture compression vtc. OpenGL Extension Reg-

istry; 2004.

[18] Yela, H, Navazo, I, Vazquez, P. S3Dc: A 3Dc-based volume compression

algorithm. Computer Graphics Forum 2008;:95–104.

[19] Iglesias Guitián, JA, Gobbetti, E, Marton, F. View-dependent exploration

of massive volumetric models on large scale light field displays. The

Visual Computer 2010;26(6–8):1037–1047.

[20] Fout, N, Ma, KL. Transform coding for hardware-accelerated volume

rendering. IEEE TVCG 2007;13(6):1600–1607.

[21] Parys, R, Knittel, G. Giga-voxel rendering from compressed data on a

display wall. In: Proc. WSCG. 2009, p. 73–80.

[22] Schneider, J, Westermann, R. Compression domain volume rendering.

In: Proc. IEEE Vis. 2003, p. 293–300.

[23] Kraus, M, Ertl, T. Adaptive texture maps. In: Proc. Graphics Hardware.

2002, p. 7–15.

[24] Guthe, S, Goesele, M. Variable length coding for GPU-based direct

volume rendering. In: Proc. VMV. 2016, p. 77–84.

[25] Yu, S, Zhang, S, Wang, K, Xia, Y, Zhang, H. An efficient and fast GPU-

based algorithm for visualizing large volume of 4D data from virtual heart

simulations. Biomedical Signal Processing and Control 2017;35:8–18.

[26] Aharon, M, Elad, M, Bruckstein, A. K-SVD: An algorithm for de-

signing overcomplete dictionaries for sparse representation. IEEE TSP

2006;54(11):4311–4322.

[27] Lindstrom, . Fixed-rate compressed floating point arrays. IEEE TVCG

2014;20(12):2674–2683.

[28] Amorim, P, Franco de Moraes, T, Silva, J, Pedrini, H. Out-of-core

rendering of large volumetric data sets at multiple levels of detail: Appli-

cations and computational techniques. In: Multi-Modality Imaging. 2018,

p. 191–215.

[29] Suter, S, Iglesias Guitián, J, Marton, F, Agus, M, Elsener, A, Zollikofer,

C, et al. Interactive multiscale tensor reconstruction for multiresolution

volume visualization. IEEE TVCG 2011;17(12):2135–2143.

[30] Ballester-Ripoll, R, Lindstrom, P, Pajarola, R. TTHRESH: Tensor com-

pression for multidimensional visual data. arXiv preprint arXiv:180605952

2018;.

[31] Park, J, Gutenko, I, E. Kaufman, A. Transfer function-guided saliency-

aware compression for transmitting volumetric data. IEEE Transactions

on Multimedia 2017;PP:1–1.

[32] Shen, HW, Johnson, CR. Differential volume rendering: A fast volume

visualization technique for flow animation. In: Proc. IEEE Vis. 1994, p.

180–187.

[33] Guthe, S, Straßer, W. Real-time decompression and visualization of

animated volume data. In: Proc. IEEE Vis. IEEE; 2001, p. 349–572.

[34] Lum, EB, Ma, KL, Clyne, J. A hardware-assisted scalable solution

for interactive volume rendering of time-varying data. IEEE TVCG

2002;8(3):286–301.

[35] Woodring, J, Wang, C, Shen, HW. High dimensional direct rendering of

time-varying volumetric data. In: Proc. IEEE Vis. 2003, p. 417–424.

[36] Wang, H, Wu, Q, Shi, L, Yu, Y, Ahuja, N. Out-of-core tensor

approximation of multi-dimensional matrices of visual data. ACM TOG

2005;24(3):527–535.

Preprint Submitted for review / Computers & Graphics (2020) 13

[37] Westermann, R. Compression domain rendering of time-resolved volume

data. In: Proc.IEEE Vis. 1995, p. 168–175.

[38] Ma, KL, Shen, HW. Compression and accelerated rendering of time-

varying volume data. In: Proc. International Workshop on Computer

Graphics and Virtual Reality. 2000, p. 82–89.

[39] Wang, C, Gao, J, Li, L, Shen, HW. A multiresolution volume render-

ing framework for large-scale time-varying data visualization. In: Proc.

Volume Graphics. 2005, p. 11–19.

[40] Shen, HW. Visualization of large scale time-varying scientific data. Journal

of Physics 2006;46(1):535–544.

[41] Ko, CL, Liao, HS, Wang, TP, Fu, KW, Lin, CY, Chuang, JH. Multi-

resolution volume rendering of large time-varying data using video-based

compression. In: Proc. IEEE Pacific Vis. 2008, p. 135–142.

[42] Mensmann, J, Ropinski, T, Hinrichs, K. A GPU-supported lossless

compression scheme for rendering time-varying volume data. In: Proc.

Volume Graphics. 2010, p. 109–116.

[43] Wang, C, Yu, H, Ma, KL. Importance-driven time-varying data visual-

ization. IEEE TVCG 2008;14(6):1547–1554.

[44] Jang, Y, Ebert, DS, Gaither, KP. Time-varying data visualization using

functional representations. IEEE TVCG 2012;18(3):421–433.

[45] Nagayasu, D, Ino, F, Hagihara, K. Two-stage compression for fast

volume rendering of time-varying scalar data. In: Proc. GRAPHITE. 2008,

p. 275–284.

[46] Wang, C, Yu, H, Ma, KL. Application-driven compression for visualizing

large-scale time-varying data. IEEE CGA 2010;30(1):59–69.

[47] Cao, Y, Wu, G, Wang, H. A smart compression scheme for GPU-

accelerated volume rendering of time-varying data. In: Proc. IEEE ICVRV.

2011, p. 205–210.

[48] Pulido, J, Livescu, D, Kanov, K, Burns, RC, Canada, C, Ahrens, JP,

et al. Remote visual analysis of large turbulence databases at multiple

scales. J Parallel Distrib Comput 2018;120:115–126.

[49] Rubinstein, R, Zibulevsky, M, Elad, M. Efficient implementation of the

K-SVD algorithm using batch orthogonal matching pursuit. Tech. Rep.;

CS Technion; 2008.

[50] Efraimidis, PS. Weighted random sampling over data streams. In: Algo-

rithms, Probability, Networks, and Games. 2015, p. 183–195.

[51] JHU, . Johns Hopkins Turbulence Databases. http://turbulence.

pha.jhu.edu/datasets.aspx; 2016. [accessed: 2018-10-31].

[52] Nystad, J, Lassen, A, Pomianowski, A, Ellis, S, Olson, T. Adaptive

scalable texture compression. In: Proc. HPG. 2012, p. 105–114.

[53] Di, S, Cappello, F. Fast error-bounded lossy HPC data compression with

SZ. In: Proc. IEEE IPDPS. 2016, p. 730–739.

[54] ASTC compression library. https://github.com/

ARM-software/astc-encoder; 2017. [accessed: 2018:10:31].

[55] Wang, Z, Bovik, A, Sheikh, H, Simoncelli, E. Image quality assessment:

from error visibility to structural similarity. IEEE TIP 2004;13(4):600

–612.

[56] Marton, F, Iglesias Guitián, J, Diaz, J, Gobbetti, E. Real-time deblocked

GPU rendering of compressed volumes. In: Proc. VMV. 2014, p. 167–174.

