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Abstract

Photometric Stereo (PS) is a technique for estimating surface normals from a collection of images captured from a fixed view-
point and with variable lighting. Over the years, several methods have been proposed for the task, trying to cope with different
materials, lights, and camera calibration issues. An accurate evaluation and selection of the best PS methods for different
materials and acquisition setups is a fundamental step for the accurate quantitative reconstruction of objects’ shapes. In par-
ticular, it would boost quantitative reconstruction in the Cultural Heritage domain, where a large amount of Multi-Light Image
Collections are captured with light domes or handheld Reflectance Transformation Imaging protocols. However, the lack of
benchmarks specifically designed for this goal makes it difficult to compare the available methods and choose the most suit-
able technique for practical applications. An ideal benchmark should enable the evaluation of the quality of the reconstructed
normals on the kind of surfaces typically captured in real-world applications, possibly evaluating performance variability as
a function of material properties, light distribution, and image quality. The evaluation should not depend on light and camera
calibration issues. In this paper, we propose a benchmark of this kind, SynthPS, which includes synthetic, physically-based ren-
derings of Cultural Heritage object models with different assigned materials. SynthPS allowed us to evaluate the performance
of classical, robust and learning-based Photometric Stereo approaches on different materials with different light distributions,
also analyzing their robustness against errors typically arising in practical acquisition settings, including robustness against

gamma correction and light calibration errors.

1. Introduction

Photometric Stereo (PS) is a shape reconstruction technique that
relies on multi-light image collections (MLIC), i.e., sets of images
of a surface captured from a fixed viewpoint with changing illumi-
nation direction. Basically, it is a technique for estimating the sur-
face normals of an object given constraints on lights and reflectance
properties of materials. The 3D shape can then be fully recovered
from dense normal maps through spatial integration.

PS was first introduced by Woodham [Wo0080] for pure Lam-
bertian light scattering. Since then, a lot of work has been done to
extend the original idea to surfaces with general reflectance prop-
erties and/or to improve the estimation precision. In recent years,
in addition to the classical techniques, (deep)neural network based
photometric stereo approach is also emerging [SSS*17, HGGL18,
TM18,CHW18,CHS*19].

As the capture of MLIC data is flexible and affordable, it is quite
popular in the Cultural Heritage (CH) domain. In this context, PS
could be a really useful tool to acquire high-resolution geometri-
cal detail of the objects. However, it is not very clear which are
the algorithmic choices that should be adopted to optimize the re-
construction quality. PS algorithms are typically evaluated on a few
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benchmarks not particularly representative of typical CH applica-
tions, and they do not allow the evaluation of the variability of the
methods’ performances as a function of material types, camera and
light calibration error, and image pre-processing.

In this work, we propose a novel benchmark to test PS meth-
ods that is specifically designed to evaluate the variability of algo-
rithms’ performance in different contexts. The paper is organized
as follows: Sec. 2 presents the related work on PS and PS bench-
marking; Sec. 3 presents the proposed benchmark; Sec. 4 discusses
the performed tests that use SynthPS to compare state-of-the-art
and baseline methods.

2. Related Work
2.1. PS approaches

Most of the existing methods for photometric stereo [SMW* 10,
PF14] assume a simplified reflectance model, such as the Lam-
bertian model for its simplicity. However, this assumption doesn’t
work due to the fact that most of the real-world objects are non-
Lambertian. Thus, many photometric stereo algorithms have been
developed to deal with non-Lambertian materials. The most pop-
ular ones are based on outlier rejection and the use of Lamber-
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tian model for the remaining inliers. Within this category, various
methods have been proposed that rely on different principles, such
as RANSAC [MIS07], median values [MHI10], expectation max-
imization [WT10], sparse Bayesian regression [IWMA12], Least
Median of Squares [DHOMH12,PGPG17], Low-rank matrix com-
pletion and recovery [WGS™*10], or Sparse Regression [I[WMA14].

Unlike outlier rejection methods, methods based on a sophis-
ticated (analytical) reflectance model fit a model to all observa-
tions. This is achieved by solving complex optimization problems.
Many sophisticated analytical reflectance models have been pro-
posed to approximate the behavior non-Lambertian materials, in-
cluding the Torrance-Sparrow model [Geo03], Ward model [CJO8],
Cook-Torrance model [RK09], etc. The downside of this type of
methods is that they can only handle limited classes of material.
On the other hand, example based methods typically require an ex-
ample object with known surface normal, shape and reflectance, to
be placed in the scene. Usually, this requirement limits its practical
use, so other approaches employ a dictionary of BRDFs to render
virtual examples that guide the normal estimation problem. To this
end, Hui and Sankaranarayanan [HS15] proposed a BRDF dictio-
nary to render virtual spheres without using a real example object.

Learning based methods estimate mappings from measured
intensities under known (or unknown) lighting to surface nor-
mals by using machine learning tools or deep learning techniques
[IA14, CHW18, CHS*19]. Deep learning is a powerful learning
method inspired by how the brain works. Convolutional or Fully-
Connected Neural Network based methods have recently replaced
traditional PS techniques. Santo et al. [SSS™17] proposed a deep
fully-connected neural network, called Deep Photometric Stereo
Network (DPSN), to learn the mapping between reflectance obser-
vations and surface normals in a per-pixel manner given a fixed
number of observations captured under a pre-defined set of light
directions. In this work, for each image point of the object, all its
observations and light directions are concatenated to form a fixed-
length vector, which is fed into a fully-connected network to regress
a single normal vector. The weakness of this work arises from the
assumption that the light directions are pre-defined and remain the
same between training and prediction phases, which in turn lim-
its its practical use. Chen et al. proposed two different methods
based on convolutional neural networks [CHW18, CHS*19]. The
first method [CHW 18] proposes a flexible fully convolutional net-
work, called PS-FCN, for estimating a normal map of an object.
The network consists in three components, namely a shared-weight
feature extractor for extracting feature representations from the in-
put images, a fusion layer for aggregating features from multi-
ple input images, and a normal regression network for inferring
the normal map. The second method proposes a two-stage model
named Self-calibrating Deep Photometric Stereo Networks (SDPS-
Net). The first stage of SDPS-Net, denoted as Lighting Calibra-
tion Network (LCNet), takes an arbitrary number of images as in-
put and estimates their corresponding light directions and inten-
sities. The second stage, denoted as Normal Estimation Network
(NENet), estimates a surface normal map of a scene based on the
lighting conditions estimated by LCNet and the input images. In
both cases, to simulate real-world, complex non-Lambertian sur-
faces they trained their model on synthetic datasets created us-
ing shapes from the blobby shape dataset [JA11] and the sculp-

ture shape dataset [WZ17], and BRDFs from the MERL BRDF
dataset [MPBMO3]. Another Neural Network based method, which
have demonstrated the possibility of recovering normals better than
traditional methods, is the one proposed by Ikehata [Ike18]. This
network accepts an arbitrary number of input images, merge them
into the intermediate representation called observation map, which
has a fixed shape, and then regresses the normal map. This network
can directly learn the relationships between the photometric stereo
input and surface normals of a scene. For a detailed and up-to-date
survey please refer to Shi et al. [SMW™19].

2.2. PS benchmarks

The most popular PS benchmark is currently the DiLiGenT dataset
[SWM*16]. Itis composed by captured images of real objects made
of different materials, together with accurate metadata about light
and camera calibration. The dataset has been used in a large num-
ber of papers, and with calibrated and uncalibrated PS methods.
Sablatnig and Wimmer [BZS18] used a dataset of ancient coins to
evaluate the accuracy of a single PS method when the light sam-
pling is varied. However, no details on ground truth estimation are
provided and those data have not been publicly released. Xiong et
al. [XCB*15a] created a PS dataset with seven relatively-diffuse
objects, captured with a CanonEOS 40D camera under directional
lighting, and calibrated with chrome spheres [XCB* 15b]. Alldrin
et al. [AZKOS8] acquired high-dynamic-range images of two known
objects in a dark room and calibrated the lights by employing re-
flective spheres.

While the use of real, calibrated images allows the evaluation
of the methods on real materials and illumination, there are still
few drawbacks. Light intensity and direction need to be calibrated,
and it is not possible to avoid calibration errors. The camera model
is not orthographic and lights are not directional but are approxi-
mately point lights. Shi et al. [SWM™16] provide both light posi-
tions and camera parameters, but often they are not used by many
tested algorithms, which assume orthographic camera model and
directional lights. This may introduce a bias in the evaluation.
Moreover, real lights are typically not uniform, and the intensity
calibration can introduce errors as well. The objects and the acqui-
sition setups used to create the benchmarks are not really similar
to those employed in the classical handheld RTI or light dome ac-
quisition methods typically used in the Cultural Heritage domain.
Furthermore, by using real acquisitions it is not possible to control
and modify the local properties of the materials so it is hard to eval-
uate how the different PS methods behave with varying reflectance
functions and spatial variations of them.

A multi-light images dataset with synthetic rendering (Cycle-
sPS) has already been proposed, for example in [Ike18]. However,
it only features non-realistic objects with different materials as-
signed in superpixels, used to train (and test) local CNN-based PS
algorithms.

This motivated us to create SynthPS, i.e., a specific dataset with
synthetic, physically-based renderings of surfaces that can be con-
sidered typical examples of Cultural Heritage objects, which are
made of different homogeneous and heterogeneous materials, and
have different geometrical complexity.
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These features make the proposed dataset also suitable to de-
sign specific evaluation tests, testing the robustness of the different
methods to a variety of specific factors (materials, material uni-
formity, depth variations, etc.) that are useful to choose the best
approach for practical applications.

We rendered the objects with different configurations of uniform
directional lights, by changing their number and their spatial con-
figuration. We use this dataset to evaluate several recent PS ap-
proaches, both in terms of their accuracy and robustness against dif-
ferent factors. The resulting contribution consists in several guide-
lines to choose the proper image capture strategy and processing
algorithm, together with a public benchmark that can be used by
researchers to evaluate novel PS methods.

3. SynthPS: image collections and tasks

SynthPS is a set of multi-light image collections synthetically ren-
dered with the physically-based reflectance models of the Blender
Cycles engine. The dataset will be publicly distributed after paper
publication. Each collection is rendered with 77 directional lights
placed in concentric rings in the Iy, Iy plane at 9 different elevation
values (10,20,30,40,50,60,70,80,90 degrees). Figure 4 shows the
full set of light directions used. Lights are exactly directional and
no ambient light is employed. The camera model is orthographic,
the size of the rendered images is 320 x 320, and the depth is 16
bits linearly mapped. SynthPS is composed of two subsets: Single-
material, i.e., all the items are created using constant materials;
Multi-material, i.e., all the items (different from those used in the
Single-material case) are textured with captured spatially-varying
albedo and subdivided in patches with different roughness.

The Single material dataset has been created with three untex-
tured geometric models of CH items, downloaded from SketchFab
(https://sketchfab.com) and distributed under the Creative Com-
mons 4.0 license (Figure 1, top). The first is a nearly-flat surface,
actually the 3D scan of an oil on canvas painting by W. Turner, per-
formed by R.M. Navarro. The second is the scan of a cuneiform
tablet from Colgate University. The third is the scan of relief in
marble "The dance of the Muses on Helicon" by G. C. Freund,
digitized by G. Marchal. For these renderings, we have set an or-
thographic camera looking at the object surfaces, removed the am-
bient illumination, and rendered the set of images with the 77 di-
rectional lights. For each model, we created 9 collections of im-
ages assigning 9 different uniform materials to the surfaces. The
assigned materials simulate matte, plastic and metallic behaviors
with varying gray achromatic albedo and roughness and material
with subsurface scattering (subsurface parameter set to 0.5 and radii
1.0,0.2,0.1 in the Blender PBR settings). These sets are reported in
Table 1. Metal=1 means no diffuse scatter and specular reflection
tinted with the base color. Specular=1 means dielectric specular re-
flection equal to 8%. Roughness is the microfacet roughness of the
surface for diffuse and specular reflection. This allows comparing
the performances of the PS methods when specific material fea-
tures are changed, e.g., albedo, roughness, subsurface scattering. It
is also possible to understand how the methods are robust to shape
variations, locally by plotting error as a function of the normal/view
angle, by globally comparing the results on the different objects of
different complexity. One way to evaluate the object complexity is
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# material albedo|metal|spec|rough(subs
1|matte white (MW) 0.8 o O 0
2|white plastic smooth (PLA_WS) 0.8 o 11 04
3|white plastic (PLA_W) 0.8 o 1 0.5
4|white plastic rough (PLA_WR) 0.8 o 1] 0.6
5|gray plastic (PLA_G) 0.5 o 1f 05
6|dark plastic (PLA_D) 0.2 o 1] 05
7|metal smooth (MET_S) 0.8 1l 0 0.5
8|metal rough (MET_R) 0.8 11 0 0.7
9|subsurface (SUB) 0.5 0 1l 0.5 *

Table 1: Parameters of the Cycles principled BSDF model used to
create the 9 materials of the single material dataset.

to evaluate the amount of shadow created on the different images
that can be evaluated on the related rendering pass. For the three un-
textured objects, the total percentages of shadowed pixels in the 77
images are 0.20%,23.88%,16.68%, respectively. Figure 2 shows
example renderings of the same object with the assigned 9 uniform
materials, illuminated from the same light direction.
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Figure 1: Geometrical models used to create the SynthPS dataset.
Top left: untextured models used for the SingleMaterial renderings.
Bottom right: textured models used for the MultiMaterial render-
ings.

The Multi-material dataset has been created with two different
textured geometric models of CH items. All two have been digi-
tized by G. Marchal and distributed under the Creative Commons
4.0 license. The first is the reconstruction of The lion of Goddess
Ishtar, from Nye Carlsberg Glyptotek downloaded from SketchFab.
The second is a totem pole (Giant-Cannibal with eagle and cop-
per plate in his hand) of Kwakiutl Culture (British Columbia) from
Musée du Cinquantenaire (Brussels, Belgium). For these models,
we kept the original texture as the diffuse texture in the material
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Figure 2: Sample images of the same CH object with the assigned
9 materials and lit by the same illumination direction.

settings and then used the Voronoi Texture node of Blender to de-
fine a spatial pattern used to map different roughness values for the
material in different patches, ranging from 0.4 to 0.7 (see Figure 3).

For these two objects, the total percentage of shadowed pixels in
the 77 images collections is 8.00%, 58.84%, respectively.

Figure 3: Left: the Voronoi texture associated with the assigned
roughness. Center, right: two renderings with different directional
lights of the surface with the albedo texture and the regional rough-
nesses.

The goal is to understand the limits and the peculiarities of each
approach by evaluating the accuracy of different state-of-the-art
approaches to recover surface normals as a function of different
characteristics of the input images (number and distribution of the
lights, and material properties like albedo and roughness) remov-
ing biases due to light calibration, and also testing the robustness
of the methods against light calibration errors. Benchmarked tasks
are therefore the recovery of the surface normals from all the ren-
dered collections (varying single materials and materials mixtures)
by using the full set of light directions and selected subsets (see
Figure 4). In this way, we test how the methods perform in acquisi-
tions made with dense, intermediate and sparse dome light config-

urations (77, 49 and 28 lights), and in the case of a single elevation
ring (10 lights), as suggested by Sablatnig and Wimmer [BZS18].
We also tested the performances in the case of asymmetric light dis-
tributions, which may occur in handheld onsite acquisitions when
selected regions around the object of interests are not accessible,
and in the case of controlled simulated errors in light direction cal-
ibration. A further test has been designed to check the robustness
of calibrated PS methods against random error in light direction
calibration. We associated the sets of images with both exact and
noisy light direction files obtained by deforming each light vector
by a fixed angle along a random axis. Original linear 16-bits image
files have also been linearly and nonlinearly (standard gamma cor-
rection) converted to 8 bits and jpeg-compressed images, to both
test the robustness of the methods to different image preprocessing
steps, and to derive related guidelines for practitioners.

Figure 4: Dome light configuration used for SynthPS benchmark-
ing. Top: symmetric domes, from left, 10 light ring at 50 deg. eleva-
tion, 28, 49 and 77 directions domes. Bottom: asymmetric configu-
ration created by removing lights from right in the 49 lights dome.
From left: original, 46 lights, 40 lights, 31 lights represented in the
Iy, Iy plane.

To wrap up, we have a novel dataset simulating CH objects with
different materials and materials distributions, and a set of prede-
fined tasks that allow evaluating calibrated (and uncalibrated) PS
methods by measuring their dependency on material properties,
shape features, image depth and linearity.

4. Evaluation
4.1. Tested algorithms

In this work, we have used out benchmark dataset to test several
PS methods, ranging from classical ones, to robust approaches, and
those based on (deep) neural networks. The main reasons for this
selection are related to the popularity of the chosen methods, the
fact that they exhibit good results in existing benchmarks, and the
public availability of their implementations.

The selected PS algorithms based on model fitting are: standard
Least Squares fitting of Lambertian model (LS) [Wo080]; Trimmed
Least Squares (Trimmed), i.e., LS fed with pruned data, typically
obtained by removing saturated values and a fixed percentage of
high, possibly non-Lambertian, measures (in our tests 5%); Least
Median of Squares(LMS) [DHOMHI12, PGPG17]; Bayesian Re-
gression(BR) [IWMA12]; Low-rank matrix completion and recov-
ery (LMR) [WGS*10]; Sparse Regression [TWMA14].

(© 2020 The Author(s)
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Among deep learning algorithms, we either choose local or
global methods; in the former ones, the normals are obtained on
a per-pixel basis, while the latter train the network on the entire im-
age domain. Furthermore, we also considered some uncalibrated
methods (i.e., unknown input light directions). The tested deep
learning based algorithms are: PS-FCN [CHW18] (calibrated /
global); CNN-PS [Ike18] (calibrated / local); SDPS-Net [CHS*19]
(uncalibrated / global). PS-FCN is a CNN based architecture that
accepts a set of images as input, extracts features for each im-
age, aggregates them via max-pooling, and finally infers the nor-
mal map. The method does not require a pre-defined set of light
directions during training and testing, and it can handle multiple
images and light directions in an order-agnostic manner. CNN-PS
accepts as input an observation map, which is a 32x32 grid that
encodes light intensity as a function of the light direction. A wide
set of synthetic images is used in the training phase. Several differ-
ent maps are generated in the prediction step, forcing a rotational
invariance nature of the normal map estimation, which makes the
method more robust. SDPS-net is a two-stage CNN based architec-
ture. The first stage estimates the light directions, while the second
stage uses the result of the first stage together with the captured im-
ages to compute the final normal map. Despite being uncalibrated,
the method exhibits state-of-the-art performances on the DiLiGenT
benchmark and performs well on challenging surfaces. However, it
assumes surfaces with non-negligible relief and made of homoge-
neous material.

W5 MLRM PS-FCN [ CNN-PS [ SDPS-Net

20.00
15.00
10.00

5.00

0.00
MAT PLA_WS PLAW PLAWR PLALG PLAD MET_S METR SUB

Figure 5: Average errors for selected techniques: basic Lamber-
tian (LS), a robust fitting (LRM), calibrated global network-based
method (PS-FCN), calibrated local network-based method (CNN-
PS) and uncalibrated network-based method (SDPS-Net) on the
49-lights normal recovery for the bas-relief models as a function
of the different uniform materials.

4.2. Results

The comparison of the methods is based on the statistics of angular
error. For each pixel, the angular error is calculated as arccos(nZn)
in degrees, where ny and n are ‘ground truth’ and estimated normals
respectively.
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[LS [Trim.[LMS[BR [LRM[SR [PSFCN]CNNPS[SDPS]|
MAT __ [0.35] 0.56] 0.83[0.28] 0.260.24] 1.58] 0.26[ 1791
PLA_WS [0.33] 0.59] 0.39[0.40 0.260.24] 1.72] 0.33[14.44
PLA_W _|0.32[ 0.50] 0.40[0.25] 0.230.24] 1.10] 0.23[17.38
PLA_WR|0.32[ 0.40] 0.41[0.37] 0.40[0.23 1.83] 0.25[23.91
PLA_G [0.37| 0.77] 0.40[0.73 0.710.29] 0.67 0.25[42.08
PLA_D [0.59] 1.69] 0.56[2.52 2.58[0.50] 3.11|  0.24]33.60
MET_S_[0.79] 3.45] 0.77[4.25] 435[0.68 1.87] 0.76] 7.13
MET_R_[0.54] 0.67] 0.62[1.62] 1.69[0.46] 2.24] 0.23[4227
SUB___ [0.42[ 0.74] 0.57[0.43] 0.45[0.35]  1.34] 0.33[23.03

[Average [0.45] 1.04] 0.55[1.21] 1.21]0.36] 1.72]  0.32]24.64|

a

[LS_[Trim]LMS[BR |[LRM[SR [PSFCN|CNNPS[SDPS|
MAT __ [17.40[16.57]12.86[13.59] 12.82[18.36] 1099 9.78] 9.35
PLA_WS[16.75]16.90[13.34[14.10] 13.44[18.54] 11.55] 10.68] 9.73
PLA_W [17.01]16.83[13.29[14.09] 13.44[18.47] 11.36] 10.36] 9.90
PLA_WR|17.31[16.80[13.25[14.11| 13.45[18.48] 11.40] 10.17] 10.69
PLA_G [14.71]15.03[12.57[12.87[12.30[16.89] 10.08]  9.93[ 7.00
PLA_D [14.85]15.15[13.70[13.64|13.27[15.42] 10.53| 10.84] 9.95
MET_S_[18.23]19.52[22.07[18.60| 18.71[18.14] 12.12] 13.76] 8.42
MET_R [15.12[16.17[16.42[15.20[15.06[16.55] 11.59] 11.52[10.21
SUB _ [19.67]20.05[17.29]17.89]17.4620.85] 16.91| 14.77[17.71

[Average [16.78]17.00[14.98]14.90]14.44[17.97] 11.84] 11.31]10.33]
(b)
[LS [Trim.JLMS[BR [LRM[SR [PSFCN|CNNPS[SDPS|
MAT 11.98] 9.26] 6.76] 7.84] 7.18[12.06] 7.05] 6.61] 9.59
PLA_WS|[10.67| 9.55| 7.18] 8.11| 7.58[11.84] 7.26] 7.14] 6.68
PLA_W [10.98] 9.52| 7.19] 8.14| 7.61[11.77] 7.05|  6.69| 7.45
PLA_WR|[11.37| 9.42] 7.21] 8.20[ 7.67[11.79] 7.07] 6.47| 7.84
PLA_G | 9.46] 9.29] 6.49] 7.49| 6.98[10.67] 6.61] 6.79] 4.29
PLA_D [12.79[14.01] 7.96] 9.16| 8.43[10.18] 6.88] 7.46] 4.15
MET_S [16.83[18.59[14.03[13.43[12.77|12.41] 7.65] 9.15| 5.34
MET_R |[11.11|13.54]10.42[10.64[10.50[10.75] 820 7.36] 5.19
SUB 13.60[13.63[11.59(11.93[11.58[14.47] 10.96]  9.63| 10.84
[Average [12.09]11.87] 8.76] 9.44] 8.92[11.77] 7.64] 7.48] 6.82]
(©)

Table 2: Mean angular error (deg.) for the normal reconstructions
on the three objects of the SingleMaterial dataset with simulated 49
light dome and all the assigned materials. (a) nearly planar canvas,
(b) bas-relief, (c) tablet. Bold fonts indicate the best results.

4.2.1. Uniform materials

For the three uniform material objects, the normal reconstruction
errors for the typical 49-light dome configuration are reported in
Table 2. It is possible to see that the accuracy of "global" neural
methods is low for the nearly planar objects, while the local method
(CNN-PS) provides good results like robust methods. CNN-based
methods are far better than model-fitting techniques on normal-
varying objects (bas-relief and tablet); although it explicitly needs
shadows and relevant shading to solve for the light directions, the
uncalibrated approach (SDPS) provides the best results.

Looking at the performances on different materials (Figure 5),
it is possible to see that the performances of the best methods for
each category are almost the same for matte and plastic materials,
independently of roughness and are in some cases improved with
smaller albedo values. Plots are done for the bas-relief results but
are similar for the tablet. The performances of robust fitting meth-
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ods are poor in the case of metallic surfaces. Neural methods are
far better in this case, with SPDS-net (uncalibrated/global) gen-
erally providing the best results. Subsurface scattering is instead
deteriorating the performances of all the methods in the same way.

Let us now look at the effect of dome light density. Figure 6
shows the average angular errors on the bas-relief dataset with vary-
ing density. It is possible to see that the average errors are nearly
the same by reducing the light density to 28 lights in a reasonably
regular distribution, even if not all the methods are robust against
the replacement of the dome configuration with the 50 degrees ring
proposed by Sablatnig and Wimmer [BZS18]. Neural methods are
the best, but CNN-PS is not effective in the ring configuration (10
lights). This is due to the encoding of the pixel information as a 2D
"observation map" that requires a reasonable density. The uncali-
brated method performances are also decreased in the ring config-
uration as a larger number of lights are required for calibration.

Neural methods are also more robust against asymmetry of the
light direction configuration as shown in Figure 7.
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Mean angular error (deg.)
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Number of dome lights

Figure 6: Average mean angular errors (on all the different ma-
terial) for the bas-relief normal estimation vs number of lights in
radially symmetric configurations.
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Figure 7: Average errors on bas-relief normals estimation vs num-
ber of lights removed from a side of the 49-lights dome.

It might be surprising to note that the uncalibrated method per-
forms well despite the error in the light direction evaluation. How-

25 oL
@ Trimmed
LMs
20 ® EBR
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== SR

Mean average error

15 W PS-FCN
| CNN-PS
|

Direction calibration error (deg)

Figure 8: Average errors on bas-relief normals estimation vs sim-
ulated error in light direction calibration.

Object] | Object2 | Object3
MAT 57.60 6.35 9.22
PLA_WS| 61.71 8.33 8.39
PLA_W 58.44 8.06 8.51
PLA_WR| 5797 7.31 8.77
PLA_G 60.47 7.68 8.11
PLA_D 65.98 9.14 8.97
MET_S 59.76| 12.03| 10.20
MET_R 60.20 9.51 8.67
SUB 60.14| 16.79| 10.56

[Average | 60.25] 9.47| 9.04]

Table 3: Light direction estimation errors obtained on the 49-lights
image collections with the self-calibration module of SDPS-Net on
the three uniform surfaces with different materials assigned

ever, it is possible to see that the addition of a randomly directed
fixed-angle noise to the input light directions does not alter too
much the accuracy of the methods as shown in Figure 8. The only
method that seems to require accurate light directions is CNN-PS.

This fact also explains the success of the uncalibrated SPDS-Net
method: as shown in Table 3 the average accuracy of the light direc-
tion estimated by its LCNet subnet estimating the light directions
is not too accurate: fails on Object 1 and has a MAE close to 10
degrees on the depth varying surfaces, but the normal estimation
subnet is robust against the error in the input light direction when it
is lower than 10 degrees.

The average errors on the entire images, however, do not show
how the performances of the methods change in critical regions,
for example where the normals create large angles with the view
directions and where nonlocal effects like shadows are relevant.

To analyze the performance of the methods in challenging re-
gions we can look at error maps, like those shown in Figure 9,
and plot methods accuracy against local properties, e.g., the z-
component of the ground truth normals, or the percentage of shad-
owed light directions, which can be obtained from the synthetic
rendering output. We report in Figure 9 the error maps for the bas-
relief 49-lights dome test, material 3 (white plastic). It is possible

(© 2020 The Author(s)
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Figure 9: Error maps encoding local errors in normals for the
white plastic bas-relief captured with the simulated 49-lights dome
and reconstructed with: (a) Least Squares; (b) Trimmed LS; (c)
Least Median of Squares; (d) Bayesian Regression; (e) Low-Rank
Matrix; (f) Sparse Regression; (g) PS-FCN; (h) CNN-PS; (i) SDPS-
Net.

to see that, as expected, the error is higher where the surface is not
flat and the effect of shadows and inter-reflections is higher; this
is more evident for Lambertian model-fitting methods. This fact
can be quantitatively shown by plotting the errors as a function of
local surface properties. Figure 10 shows the average pixel errors
on the 49-lights capture of the bas-relief model (average on all the
materials) for pixels as a function of the angle between the actual
surface normal and the view direction. It is possible to see that,
while for surfaces nearly perpendicular to the view direction all
the methods are similarly accurate, the errors grow with the angle
at different ratios, with neural methods far better at large angles.
Figure 11 shows the average pixel errors on the 49-lights capture
of the bas-relief model (average on all the materials) as a function
of the percentage of locally shadowed lights (known from the ren-
dering step. The error is similar for all the methods and low when
shadowed directions are less than 20%, then there is a rapid growth
with neural methods far better. CNN-PS seems more robust when
the percentage exceeds 70%. SDPS-Net, despite not using input
light directions, provides the best results, even if the largest errors
seem more relevant than those of other neural methods in Figure 9.
As reflected in Figure 11, these points correspond to the ones with
a large percentage of shadowed pixels.

(© 2020 The Author(s)
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Figure 10: Average MAE (all materials) obtained with all the
tested methods on the pixels of the bas-relief 49-lights image col-
lections vs angle between normal and view direction.
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Figure 11: Average MAE (all materials) obtained with all the
tested methods on the pixels of the bas-relief 49-lights image col-
lections vs percentage of shadowed directions.

4.2.2. Non-uniform materials

When the materials are not uniform, the ranking of the methods is
completely different. As expected, due to the fact that the hypoth-
esis of uniform material is exploited in the direction calibration
network, SPDS-Net fails, but also PS-FCN is no longer perform-
ing well. CNN-PS is clearly the best one, probably due to its local
nature, even if robust fitting methods are not too far, as shown in
Table 4.

It is interesting to see in Figure 12 that the accuracy of CNN-PS
is practically constant when the number of the directional dome

LS [Trim.[LMS[BR [LRM[SR [PSFCN|CNNPS[SDPS
Objectl | 5.52[ 5.21] 4.38[4.81] 4.67] 5.19] 6.99]  4.04] 12.10
Object2 [12.23[11.80] 9.28]9.73[ 9.17[12.62] 9.74]  7.92] 19.87
|Average| 8.88] 8.51] 6.83]7.27] 6.92] 8.92] 8.37] 5.98[15.99]

Table 4: Average of the MAE obtained by the different methods on
the two multi-material objects. Bold fonts indicate the best results.
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light is reduced from 77 to 28 lights uniformly distributed, but
this method completely fails if the dome is replaced with a single-
elevation ring. This is due to the impossibility of estimating a dense
observation map exploiting rotational symmetry. Least Median of
Squared robust fitting, on the other hand, seems sufficiently accu-
rate also in this case, even if not as in the uniform light dome con-
figuration.

® s
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20 ® (RM
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Mean angular error

SDPS-Net

N E——
-3
0
10 20 30 40 50 60 70

MNumer of dome lights

Figure 12: Average MAE on the two multimaterial objects vs num-
ber of lights in a symmetric dome configuration.

Another limit of the CNN-PS method, at least with the training
provided by the authors, is related to the symmetry of the input light
set. In onsite handheld acquisitions typical of the Cultural Heritage
domain it is rather usual that lights cannot be placed on a side of
the surface of interest. However, CNN-PS is sensitive to the asym-
metrical removal of lights as shown in Figure 13
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PS-FCN
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Mean angular error (deg.)
5

0 5 10 15

Number of asymmetrically removed lights

Figure 13: Average MAE on the two multimaterial objects vs num-
ber of lights removed from a side of the simulated 49-lights dome.

Looking at the error maps for the Lion 49-light capture (Fig-
ure 14) we can see that the error of SDPS-Net is strongly influenced
by the background roughness (patches are visible in the error map).
CNN-PS is clearly the most effective technique, even if robust fit-
ting methods are effective as well.

The behavior of the methods is different with respect to the sur-
face normal or the percentage of shadowed directions. Figure 15
shows that many robust fitting methods (but not LMS) present a

(a) (b) (©

(d) (e)

(g (h) @

Figure 14: Error maps encoding local errors in normals for a
multimaterial object captured with the simulated 49-lights dome.
(a) Least Squares. (b) Trimmed LS. (c) Least Median of Squares.
(d) Bayesian Regression. (e) Low-Rank Matrix.(f) Sparse Regres-
sion.(g). PS-FCN (h) CNN-PS. (i) SDPS-Net.

strong growth of the error with the angle between normal and view
direction, while the error of SDPS-Net is large but mostly unat-
fected by normal direction.

If we look at the effect of shadowed directions, CNN-PS is con-
stantly the best method independently of the amount of shadowed
directions. LMS starts to fail when the number of shadow outliers
exceeds 40%, while LRM behaves well and is quite close to CNN-
PS at large values (see Figure 16).

4.2.3. Effect of different image encoding

In our synthetic image encoding, we did not apply gamma cor-
rection and we recorded a linear signal, encoded with 16 bits per
channel, simulating raw images captured with a sensor with a high
dynamic range. However, multi-light image captures often are per-
formed with low-cost hardware and may be encoded as 8 bits im-
ages, possibly with gamma correction or unknown nonlinear map-
ping. We performed some tests also to verify the effects of this on
the accuracy of the reconstructed normals performed with PS algo-
rithms. Figure 17 shows the results obtained with the tested meth-
ods on the original 16 bits linear images (blue bars), on 8 bits lin-
ear images (red bars), 8 bits nonlinear images (y = 2.2) remapped
linearly before normal estimation, and 8 bits nonlinear images not
corrected (purple bars). The results show that for simulated acqui-
sitions the 8-bits discretization does not affect the results. With real
acquisitions and non-ideal sensors, results can be different, but in

(© 2020 The Author(s)
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Figure 15: Average MAE obtained on the pixels of the Lion 49-
lights capture by the different methods vs angle between normal
and view direction.
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Figure 16: Average MAE obtained on the pixels of the Lion 49-
lights capture by the different methods vs percentage of shadowed
directions.

this case, there is no need for keeping the full dynamic range. Fur-
thermore, it is interesting to note that the best method (CNN-PS) is
rather robust with respect to the lack of correct linearization of the
input illumination.

4.3. Discussion

In this paper we propose a novel benchmark (SynthPS) to evaluate
Photometric Stereo algorithms to reconstruct surfaces of objects
typically captured in multi-light acquisitions performed in the Cul-
tural Heritage domain. The benchmark is composed of synthetic
images simulating acquisitions of surfaces with different geomet-
rical complexity, homogeneous and heterogeneous materials and
assuming perfectly directional lights and orthographic view, thus
avoiding inaccuracy in light or camera calibration. The image sets
can be used to simulate light domes configurations with different
density and asymmetric layout simulating the effect of obstacles
preventing the positioning of the lights from one side of the object.

Exploiting the features of SynthPS we performed a set of tests on

state of the art PS techniques, that can be used to derive suggestions

(© 2020 The Author(s)
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Figure 17: Average MAE on the two multimaterial objects obtained
with the tested methods on differently encoded images: 16 bits lin-
ear, 8 bits linear, 8 bits with standard gamma correction and inverse
correction before fitting, 8 bits with gamma correction without lin-
earization.

or even guidelines for the practical reconstruction of normal maps
and surfaces from MLIC data. Here are the main outcomes of our
tests:

e Neural methods are quite promising, providing the best results
in most of the comparisons. However, due to intrinsic limits or
training on limited surface types, no single method can cope with
all the possible acquisition settings.

e SDPS-Net is quite effective for uniform materials and does
not require light calibration. However, as clearly stated by the
authors, it does not work on nearly-planar objects and multi-
material surfaces.

e PS-FCN even if calibrated is not accurate on nearly-planar ob-
jects and does not perform well on multimaterial objects. This
may be due to the use of global information

e The methods based on robust Lambertian fitting works suffi-
ciently well on matte and plastic materials, but less on metallic
ones.

e CNN-PS seems the most reasonable choice in general, as it
works well on nearly flat surfaces and it is the more effective
in the case of non-uniform materials. However, it is more sensi-
tive than the other techniques to the accuracy of light direction
calibration and the asymmetry of the light layout. This fact is an
intrinsic limitation of the method using "observation maps" as
input but can be reduced using other learning based method to
densify sparse input maps.

e Performances of the training-based methods depend on the train-
ing data used. Good performances of CNN-PS may be biased by
the fact that it is trained with synthetic data rendered with Cy-
cles as SynthPS. Performances of these methods can however be
improved on different sets of data by enlarging the training set
including different kinds of data.

e On well-exposed images it seems to be not crucial to keep 12-
16 bits depth in input images as there is no apparent decrease in
performance with a simple linear mapping onto 8 bits.
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5. Conclusion

We proposed a novel benchmark for Photometric Stereo algorithms
specifically tailored to verify robustness against different factors
that are typically varied in cultural heritage acquisitions, e.g. mate-
rial types, shape complexity, lights number and symmetry. Despite
the limitations related to the synthetic renderings, that, on the other
hand, ensure perfect control of calibration and imaging parameters
as well as local material properties, we believe that it can be ex-
tremely useful to determine the best method to be used for each
experimental setup. We plan to evaluate now other methods and to
extend the dataset with other synthetic objects and acquisitions of
real objects with both hires 3D scanning and multi-light capture.
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