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Abstract—Modern Internet of Things ecosystems and appli-
cations must be able to cope with an increasing demand for
flexibility, efficiency, scalability, security. This paper presents
CMC-IoT (CRS4 Microservice Core - IoT), an Internet of Things
platform built upon a microservice-based architecture, providing
tools for developing scalable and robust IoT applications. The
platform aims to act as a generic middleware to connect a wide
variety of devices, using a connector-driven and vendor-agnostic
approach, allowing the development of applications in many
domains, as shown in the provided examples. The focus is on
the most prominent architectural features of CMC-IoT, that are
compared with a reference architecture available in literature.

Index Terms—Internet of Things, Microservices, IoT middle-
ware

I. INTRODUCTION

Over the past years, software architectures has shifted away

from the traditional monolithic approach. An urgent need for
systems to be more scalable, resilient, efficient and cloud-
ready, paved the way for modular architectures, which are
nowadays largely adopted in many domains and drive the
development of modern software systems. In this context,
Microservices represent a state-of-the-art architectural model
[1] [2], especially in domains where distributed and pervasive
computing is of paramount importance, as in Internet of
Things [3]. IoT systems are built upon a large number of con-
nected devices communicating through the Internet, with strict
requirements for device coordination and for management of
a large amount of device generated data.
This paper is structured as follows. Section II analyzes the state
of the art of IoT platforms and middleware, with a focus on
their architectural peculiarities. Section III introduces CRS4
Microservice Core (CMC), a microservice-based framework
for the development of modular and scalable applications, cre-
ated at CRS4 research center. Section IV presents CMC-IoT,
an IoT platform developed as a service of CMC framework,
and compares its software architecture with an IoT reference
architecture. Further developments and final considerations are
discussed in Section V.
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II. BACKGROUND AND RELATED WORK

As soon as a variety of heterogeneous connected devices
became the backbone of pervasive and ubiquitous networks,
emerged the necessity for middleware systems that could
act as an abstraction layer between applications and Things,
integrating additional services [4] and supporting interop-
erability among these applications and services [5]. As a
consequence, many loT platforms and middleware were de-
veloped, and industry and academia made an effort to sur-
vey these systems, classifying them with respect to their
architecture [6] as well as functional/non-functional features
[5] [4]; furthermore, objective criteria were generally defined
for their evaluation and adoption in different scenarios. An
insight on cloud IoT platforms is given in [7], [8] focuses
on middleware particularly suited for application development,
while a comparative analysis on Open Source [oT middleware
platforms is performed by [9]. [4] underlines the centrality, in
IoT platforms and middleware, of the different aspects lying
under the notion of interoperability [10], which is one of the
requirements for implementing the abstraction functionalities.
Network interoperability acts as a bridge between the different
communication protocols used by Things; syntactic interop-
erability deals with the format of data exchanged among
Things; semantic interoperability defines the semantic domain-
specific model, which establishes the rules for understanding
the meaning of information content. The semantic model will
be then translated into a data model used by the concrete
software system.

[11] proposes a classification of the different types of ar-
chitecture for IoT middleware, which are identified as SOA,
cloud-based and actor-based. Service Oriented Architectures
represent a well established approach in software design [12],
and in IoT systems as well [13] [14] [15] [16]. Microservices
further developed and refined SOA concepts, focusing on the
subdivision of large monolithic applications in small, highly
decoupled, independently deployable and scalable services,
performing a single, well defined and domain-oriented task,
and communicating among themselves by means of a simple
protocol, e.g. HTTP [1] [2].

A comprehensive review on the adoption of microservices for
IoT systems can be found in [17]; previous studies already
highlighted how well microservices could help IoT platforms
to overcome limitations of SOA approach, such as scalability



and maintainability [18] [19], providing the design principles
and technological tools to build distributed and large-scale
applications deployable in the cloud [18] [20] [21] [22].
Consequently, several IoT platforms in various domains ap-
plied microservice architectural style, gaining benefits in terms
of resilience, scaling, modularity, heterogeneity and indepen-
dence of technology [23] [24] [25] [26] [27] [28] [29].

In the next sections we propose our contribution to the above
cited challenges, represented by a microservice architecture
acting as a framework for building scalable and cloud-ready
services and applications, and an IoT platform deployed as a
microservice on top of that architecture.

III. CMC - CRS4 MICROSERVICE CORE

CRS4 Microservice Core (CMC)' is a high-level and gen-
eral purpose framework, built upon a microservice architecture
and conceived for supporting the development of vertical ser-
vices and applications. It provides cross-cutting functionalities,
each of them deployed as a microservice, that allow the
developers to focus on the business logic of their application.
These basic microservices, called “Core” services, are the
following:

e CMC-Auth is the central service of CMC. It takes care of
service registration, token management and authorization
to all services and vertical applications. Three categories
of JWT-Base64 tokens are generated by CMC-Auth:

— Microservice token, authorizing communication
among internal microservices

— User token, granting access to authenticated CMC
users on registered services

— Application token, granting access to third-party ap-
plications on registered services

CMC-Auth also implements a rule engine to manage ac-
cess to every single HTTP resource exposed by services.
Each token belonging to one of the three categories can
also have a type defining authorizations with a finer level
of granularity.

o« CMC-User exposes a number of features for user man-
agement. It takes care of user registration and authenti-
cation, providing a user token (generated by CMC-Auth)
required to access a protected resource (if the access to
that resource has been enabled by Auth service)

o« CMC-App, similarly to CMC-User, allows the complete
management of third-party applications, and in general
any system calling CMC services

This architecture allows a seamless extension with further
microservices, which can be registered in the platform and
communicate with other CMC services or the external world
(Fig. 1). In order to be integrated in CMC, a service must
comply with few specifications:

« It must expose an authenticated API, using CMC-Auth
It must be registered in CMC using CMC-Auth

Uhttps://github.com/smartenv-crsd/cmc

o It must communicate with the other CMC microservices
by means of the token generated by CMC-Auth on service
registration

e Service authorization rules must be configured using
CMC-Auth, via API or Ul

Custom Microservices
Fig. 1. CMC services.

Once registered in the platform, any service can talk to
other CMC services via REST API, if allowed by authorization
rules managed by CMC-Auth. It can also independently scale
according to user’s needs.

IV. CMC-IoT

CMC-IoT? is a general purpose IoT platform and middle-

ware, developed as a custom service compliant with CMC
specifications. In literature there is already a platform named
CMC-IoT proposed by CRS4 [30]; however, this paper
presents a complete rework of that system, from both archi-
tecture and features perspective.
CMC-IoT is basically a middleware supporting a wide class
of devices, since it implements an abstraction between the
Things and the applications interacting with them. Therefore,
it provides a uniform interface to Things, which can be
native compatible (e.g. a sensor developed in-house) or need
a specific driver or connector to be integrated in the platform.
In the system architecture (Fig. 2), Connector Middleware
depicts the logical block encompassing any kind of connector
available.

Fig. 2 in its entirety describes a four layer architecture:

o The base layer is composed by Things, the physical
objects hosting one or more Devices, where a Device is a
sensor capable of performing a single physical measure-
ment (e.g. temperature, humidity, voltage) or an actuator

Zhttps://github.com/smartenv-crs4/cmc-iot
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Fig. 2. CMC-IoT architecture.

able to accept commands for acting on the environment
(e.g. a switch).

e The CMC-IoT Connector Middleware, previously intro-
duced, is composed by any piece of software needed to
integrate heterogeneous Things in the platform; in other
words, the layer responsible for the communication be-
tween CMC platform and each Thing’s exposed interface.
It can be summarized as a composition of a commu-
nication interface, an interpreter of the device protocol,
and a driver for heterogeneous access by the platform.
From the technological point of view, connectors can be
implemented using any technology suited to eventually
talk to the platform’s REST API; Standalone connectors
comprehend a complete stack, while Platform-dependent
connectors rely on a third-party platform offering a
framework to ease the connector implementation.

o The CMC-IoT REST API logical block encompasses all
the IoT features of the platform, which are exposed
through a HTTP REST interface. It is responsible for
Things management (discovery, device data processing
and exposing to applications, command sending and so
on), data storage, context detection, system configuration.
Ultimately, all these services provide a coherent interface
to the functionalities offered by Things, abstracting their
heterogeneity and complexity.

o The top layer is constituted by any client calling the
REST API, which can be an external application con-
suming CMC-IoT services, or a microservice registered
in the CMC platform.

As a general purpose IoT platform, CMC-IoT can be adopted
in a broad range of scenarios; its customizable data model
is based on the concept of Device Type, allowing users to
map their own devices onto custom categories with custom
properties. As an example, CMC-IoT could manage a network
of hygrometers placed in a humidity controlled environment;

a Hygrometer device type will be defined, associated with a
Relative Humidity observed property and a Percentage unit
of measurement. In an analogue manner, a smart mobility
application could acquire traffic information from sensors
registered in CMC-IoT as belonging to Traffic Sensor device
type, observing the Number of Vehicles property.

A. Reference architecture

At the beginning of Section IV, the CMC-IoT architecture
was described in order to give an insight into the functional
decomposition of the system, and how the modules interact
and exchange data.

Several IoT reference architectures, as well as models and
taxonomies, have been previously proposed with the aim of
providing frameworks and conceptual models that could be
generic and flexible enough to be adopted and supported by
concrete software platforms [31] [32] [33].

In this paper the reference architecture proposed by [6] has
been chosen to perform a mapping onto CMC-IoT architecture.
By adopting abstract concepts and a common terminology, the
platform will be better described, capturing it in a framework
that, as [6] stated, could help in comparing the existing
platforms in terms of features and further developments.
Every concept of the Reference Architecture (RA) will be
mapped onto each logical block of CMC-IoT architecture,
evaluating the similarities and differences of “overlapping”
elements (Fig. 3)

Starting from the bottom layer, a Sensor in RA represents
a hardware component that captures information from the
physical environment, while an Actuator manipulates that
environment. So they fit almost perfectly with the CMC-IoT
concept of Device, which performs a single measure or a single
command inside a CMC-IoT Thing. In both architectures,
this lower level kind of component communicates with the
outer world only by means of another piece of hardware
encapsulating it, namely the RA Device and the CMC-IoT
Thing, which are for this reason functionally equivalent.

The RA Driver is a software running on the RA Device
enabling uniform access to its Sensors and Actuators; in
CMC-IoT architecture, its purpose can be accomplished by a
software layer allowing a Thing to be directly invoked without
further interoperability layers either by the platform (i.e. a
CMC native compatible Thing directly talking to the REST
API component), or by an external client/application (e.g. a
Thing with an on-board HTTP layer able to communicate with
a Web UI).

The RA Gateway takes care of communication between ex-
ternal systems and those RA Devices that are not capable of
managing that kind of connection. This task perfectly fits with
CMC-IoT Connector Middleware; the only difference lies in
the possibility, for a CMC-IoT connector, of running inside a
Thing or in an external system. In the former case, that Thing
would be CMC native compatible, and the connector would
be acting more as a RA Driver rather than a middleware.
The IoT Integration Middleware in the Reference Architecture
models an integration layer for Sensors, Actuators, Devices
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Fig. 3. CMC-IoT architecture vs Reference Architecture.

and Applications, thus enabling a common interface to them,
abstracted from their actual implementation. With respect to
this concept, the CMC-IoT REST API performs the same task
by means of HTTP protocol, while other protocols may be
adopted in the RA. The exposed API is the interface to some
common IoT functionalities provided by both architectures,
mainly the management of Devices/Things and sensor data.
Further features are made available, but in CMC-IoT some
of them are provided by means of the CMC environment,
with microservices each exposing a narrow set of features,
for example the core functionalities of authentication and
user management. Other higher level features would need ad-
hoc microservices, such as graphical dashboards or business
intelligence on sensor data.

Finally, the RA Application represents any software system
which calls the IoT Integration Middleware to use the con-
nected Devices, so any third-party application (whose access
is managed by CMC-App) or CMC service invoking its REST
API is fully equivalent.

V. CONCLUSION

CMC-IoT as a service satisfies the main functional require-
ments of an IoT platform, such as abstraction, context aware-
ness and resource management; at the same time, it is deployed

in the context of CMC, a general-purpose and microservice-
based framework addressing non functional requirements in
terms of availability, scalability, security [5]. From this per-
spective, the overall CMC-IoT architecture can be defined
as a two-layer framework: the high level provides vertical
features to ease the development of modern IoT applications
and services; these features have their solid foundations in the
lower level, a microservice architecture that takes care of all
the cross-cutting concerns that every modern application has to
address, allowing developers to focus on the implementation
of domain functionalities.

The purpose of mapping the CMC-IoT architecture onto a
generic and more abstract reference is to describe it in a
uniform and consistent way, by using a common basis of
concepts and terms that ease the understanding of its main
features and the comparison with other IoT platforms.
Future work will expose a more in-depth review of the IoT
platform technological features, as well as the implications of a
microservice approach in terms of performance and resilience
of the system. Furthermore, a real-world use case of CMC-IoT
will be presented in order to better clarify how an application
can benefit from its adoption.
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