
WaveTF: a fast 2D wavelet transform for
machine learning in Keras*

Francesco Versaci

CRS4, Cagliari, Italy

March 15, 2021

Abstract

The wavelet transform is a powerful tool for performing multiscale analy-
sis and it is a key subroutine in countless applications, from image processing
to astronomy. Recently, it has extended its range of users to include the
ever growing machine learning community. For a wavelet library to be
efficiently adopted in this context, it needs to provide transformations which
can be integrated seamlessly in already existing machine learning workflows
and neural networks, being able to leverage the same libraries and run on
the same hardware (e.g., CPU vs GPU) as the rest of the machine learning
pipeline, without impacting training and evaluation performance. In this
paper we present WaveTF, a wavelet library available as a Keras layer, which
leverages TensorFlow to exploit GPU parallelism and can be used to enrich
already existing machine learning workflows. To demonstrate its efficiency
we compare its raw performance against other alternative libraries and finally
measure the overhead it causes to the learning process when it is integrated
in an already existing Convolutional Neural Network.

1 Introduction

The wavelet transform [18] is a powerful tool for multiscale analysis. It produces
a mix of time/spatial and frequency data and has countless applications in
many areas of science, including image compression, medical imaging, finance,
geophysics, and astronomy [2]. Recently, the wavelet transform has also been
applied to machine learning, for instance to extract the feature set to be used
by a standard learning workflow [3, 16] and to enhance Convolutional Neural
Networks (CNNs) [4, 12, 21, 15]. For many of these applications, and machine
learning in particular, parallel execution on GPGPU accelerators is of critical
importance to ensure the tractability of real-world problems. Therefore, a library
that provides wavelet transform functionality for this context must efficiently
integrate into existing computational pipelines, mitigating the loss of performance
due to the cost of exchanging data between memories in different phases of the
computation – e.g., if our pipeline runs on a GPU we would like to execute the

*The final authenticated version of this article is available online at https://doi.org/10.
1007/978-3-030-68763-2_46

1

https://doi.org/10.1007/978-3-030-68763-2_46
https://doi.org/10.1007/978-3-030-68763-2_46

wavelet on the same device, without the need to repeatedly move data between
the GPU and the main memory.

In this work we present WaveTF, a library providing a fast 1D and 2D wavelet
implementation that provides scalable parallel execution on CPU and GPU de-
vices. WaveTF enables full GPU execution of computational pipelines including
wavelet transforms. The library is built on top of the popular TensorFlow frame-
work and is exposed as a Keras layer, making it easy to integrate into existing
Python workflows based on these widely adopted frameworks. Our evaluation
shows that WaveTF improves upon the state of the art by providing faster routines
and by adding only a negligible overhead to machine learning applications.

The rest of this manuscript is structured as follows. In Sec. 2 we provide a
description of wavelet transforms, followed by a discussion of the related work
in Sec. 3. Section 4 describes the implementation of the WaveTF library, while
an evaluation of its performance is presented in Sec. 5. Finally, Sec. 6 points the
reader to the software and Sec. 7 concludes the manuscript.

2 Background

2.1 Wavelet transform

Wavelet transforms are a family of invertible signal transformations that, given an
input signal evolving in time, produce an output which mixes time and frequency
information [8]. This paper will only focus on discrete transformations.

2.1.1 Haar transform

The simplest wavelet transform is the Haar transform, which, given in input a
signal x = (x0, . . . , xn−1) (with n even) produces as output

H(x) := (l0, . . . , l n
2−1, h0, . . . , h n

2−1) = (l(x), h(x)) ,

where

li :=
x2i + x2i+1√

2
, hi :=

x2i − x2i+1√
2

, (1)

with li and hi containing low and high frequency components localized at times
2i and 2i + 1 of the original signal. Note that when the input size is not even, the
signal must be extended using some form of padding. The wavelet transform is
often iterated on the low components to carry out a multiscale analysis:

Hd(x) :=
(

Hd−1(l(x)), h(x)
)

, with H0(x) := x . (2)

2.1.2 Daubechies wavelet

The Haar transform can be extended so that li and hi are linear functions of
more than two terms, as done by the following Daubechies-N=2 (DB2) transform
(see [7] for details):

li = λ0x2i−1 + λ1x2i + λ2x2i+1 + λ3x2i+2 ,
hi = µ0x2i−1 + µ1x2i + µ2x2i+1 + µ3x2i+2 ,

2

Figure 1: The four components (LL, LH, HL and HH) of a two-dimensional
Daubechies-N=2 wavelet transform. LH, HL and HH have been contrasted to
emphasize their structure.

where
λ0 = 1+

√
3

2
√

2
λ1 = 3+

√
3

2
√

2
λ2 = 3−

√
3

2
√

2
λ3 = 1−

√
3

2
√

2

µ0 = λ3 µ1 = −λ2 µ2 = λ1 µ3 = −λ0 ,
(3)

and vectors ~λ := (λ0, λ1, λ2, λ3) and ~µ := (µ0, µ1, µ2, µ3) being orthonormal.
When working with larger kernels (4×2 in this case, where Haar was 2×2)

the border of the signal must always be extended with padding to be able to
invert the transformation.

2.1.3 Multidimensional transform

The wavelet transform is extended to multidimensional signals by executing it
orderly in all the dimensions. For instance, in the two-dimensional case the
input is a matrix and the output is obtained by first transforming the rows and
then the columns; it is thus formed by 4 matrices (conventionally called LL, LH,
HL, and HH), containing the low and high components for the horizontal and
vertical directions (an example can be seen in Fig. 1). As with the 1D case, the
multidimensional transformations can also be iterated for perform a multilevel
analysis (see Fig. 2). When the input is a multichannel image (e.g., RGB or HSV),
transformations are performed independently for each channel.

WaveTF supports batched, multichannel inputs, i.e., for the two-dimensional
case it accepts a tensor of shape [batch_size, dim_x, dim_y, channels], and returns
a tensor of shape [batch_size, new_x, new_y, 4×channels].

2.2 TensorFlow and Keras

TensorFlow [1] is a powerful framework for efficiently manipulating multidi-
mensional arrays (i.e., tensors) in parallel, and it provides APIs for Python, C++,
Java and JavaScript. It has been developed as a fast and scalable framework for
machine learning, and for this purpose it is complemented by the higher level
Keras library [6]. However, TensorFlow offers many powerful algebraic routines
which can be used independently of the application and its Python API can be
seen as a parallel, GPU-enabled version of NumPy [23], with which it shares
many similarities in the syntax and names of its methods. Note that TensorFlow
supports a wide variety of computing hardware: it can run on multiple CPUs,

3

LH0

HL0 HH0

LH1

HL1 HH1

LH2
HL2 HH2

LL2

Figure 2: Recursive structure of a 2D multilevel wavelet transform: each new
level is obtained by transforming the LL component of the previous level (which
can be preserved or discarded, as in this case).

GPUs and also on specialized ASICs known as TPUs [13], which are now available
for end-users as part of the Google Cloud infrastructure.

We have chosen to implement WaveTF leveraging TensorFlow’s rich API
and scalability, so that it can easily exploit available parallelism, be easily and
efficiently integrated with other programs that use TensorFlow and Keras and
provide its functions to the growing machine learning community.

3 Related work

In this section we briefly describe three alternative wavelet libraries available
for Python and published as open source software: PyWavelets, pypwt and
TF-Wavelets. In Sec. 5.1 we will compare their raw performance to our library.

3.1 PyWavelets

PyWavelets [14] is probably the most widely used Python library for wavelet
transforms. Its core routines are written in C and made available to Python
through Cython. It supports 1D and 2D transformations and provides over 100
built-in wavelet kernels and 9 signal extension modes. Unlike WaveTF, it is a
sequential library and runs exclusively on CPUs.

3.2 pypwt

pypwt [20] is a Python wrapper of PDWT, which in turn is a C++ wavelet
transform library, written using the parallel CUDA platform and running on
NVIDIA GPUs. It implements 1D and 2D transforms, (though it does not support
batched 2D transforms) supports 72 wavelet kernels and adopts periodic padding
for signal extension.

3.3 TF-Wavelets

TF-Wavelets [10, 17] is a Python wavelet implementation which, like WaveTF,
leverages the TensorFlow framework. It features two wavelet kernels (Haar and
DB2) and implements periodic padding for signal extension. It is the library

4

more conceptually similar to ours, allowing, for instance, both input and output
to reside in GPU memory, and it is thus the best match for a raw performance
comparison against WaveTF. However, it lacks support of batched, multichannel,
2D transforms, which are typically required for machine learning applications in
Keras. As a consequence, it does not provide a network layer for that framework.

4 Implementation

WaveTF is written in Python using the TensorFlow API. It exposes its functions
via a Keras layer which can either be called directly or can be plugged easily into
already existing neural networks. The library currently implements the Haar
(Eq. (1)) and DB2 (Eq. (3)) wavelet kernels – which are the two most commonly
used ones. To handle border effects, anti-symmetric-reflect padding (known as
asym in MATLAB) has been implemented, which extends the signal by preserving
its first-order finite difference at the border. WaveTF supports both 32- and 64-bit
floats transparently at runtime.

4.1 Direct transform

In order to efficiently implement the wavelet transform in TensorFlow we first
reshape it as a matrix operation. Let us consider, as an example, the 1D DB2
transform with input size n, where n is a multiple of 4. The original formulation
of the transform presented in Sec. 2.1.2 can be rewritten as a matrix multiplication
in the following form:

l0 h0
l1 h1
l2 h2
l3 h3
...

...
l n

2−1 h n
2−1

=

2x0 − x1 x0 x1 x2
x1 x2 x3 x4
x3 x4 x5 x6
x5 x6 x7 x8
...

...
...

...
xn−3 xn−2 xn−1 2xn−1 − xn−2

λ0 µ0
λ1 µ1
λ2 µ2
λ3 µ3

 .

In order to generate the data matrix above we need to group the data vector by
4 and interleave it with a copy of itself, shifted left by two (plus some constant
operations for the padding at the border). This operation can be implemented
with the reshape, concat and stack methods provided by TensorFlow. Alterna-
tively, the specialized conv1d method can be employed instead of the standard
matrix multiplication, somewhat simplifying the data rearrangement. We have
implemented both the variants and we have seen that the convolution one is
faster in all considered cases, except for the 1D-Haar transform (for which we
have thus adopted the matrix multiplication algorithm).

Note that when n is not a multiple of 4, the border values are arranged slightly
differently, but the procedural steps remain the same.

4.2 Inverse transform

In this section we show how to properly invert the DB2 wavelet transform, taking
into account the border effects while keeping the padding as small as possible.
This is done both to justify the exact algorithmic steps we adopted and to offer a

5

future reference for alternative implementations by other authors. To the best of
our knowledge the following derivation, at this level of detail, is original, though
it is likely that it might be already present, at least implicitly, in the vast literature
on Wavelet transform.

To better understand how to properly handle the border effect when comput-
ing the inverse, let us reshape the transformation above in a slightly different
way: i.e., as ~w = W~x = KP~x, with K being the n× (n + 2) kernel matrix and P
the (n + 2)× n (anti-symmetric-reflect) padding matrix:

l0
h0
l1
h1
...

l n
2−1

h n
2−1

︸ ︷︷ ︸

~w

=

λ0 λ1 λ2 λ3
µ0 µ1 µ2 µ3

λ0 λ1 λ2 λ3
µ0 µ1 µ2 µ3

.

︸ ︷︷ ︸

K

2 −1
1

1
. . .

1
1

−1 2

︸ ︷︷ ︸

P

x0
x1
...

xn−1

︸ ︷︷ ︸

~x

.

We can then decompose K, P and W in (non-square) blocks (with each block
shape shown between parentheses):

K =

K00 K01 0
(4×3) (4×n−4) (4×3)

0 K11 0
(n−8×3) (n−8×n−4) (n−8×3)

0 K21 K22
(4×3) (4×n−4) (4×3)

, P =

P00 0 0
(3×2) (3×n−4) (3×2)

0 In−4 0
(n−4×2) (n−4×n−4) (n−4×2)

0 0 P22
(3×2) (3×n−4) (3×2)

,

W = KP =

K00P00 K01 0
(4×2) (4×n−4) (4×2)

0 K11 0
(n−8×2) (n−8×n−4) (n−8×2)

0 K21 K22P22
(4×2) (4×n−4) (4×2)

.

To invert W we first note that K11 has orthonormal rows and thus admits its trans-
pose as a right inverse: K11Kt

11 = In−4. Furthermore, W00 := K00P00 and W22 :=
K22P22 have linearly independent columns and thus admit a (Moore–Penrose) left
inverse: W+

00W00 = W+
22W22 = I2. Finally, because of the choice of coefficients in

Eq. (3), we have

W+
00K01 = Kt

01W00 = W+
22K21 = Kt

21W22 = 0 ,

Kt
01K01 + Kt

11K11 + Kt
21K21 = In−4 .

6

Table 1: Hardware configuration of the test machine.

CPU Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz (24 SMT cores)
RAM 250 GiB
GPU GeForce RTX 2080 Ti (11 GB GDDR6)

We can now verify that W is inverted by

W−1 =

W+
00 0 0

(2×4) (2×n−8) (2×4)

Kt
01 Kt

11 Kt
21

(n−4×4) (n−4×n−8) (n−4×4)

0 0 W+
22

(2×4) (2×n−8) (2×4)

,

and that we can compute its non-border elements similarly to the direct transform
case:

x1 x2
x3 x4
...

...
xn−3 xn−2

=

l0 h0 l1 h1
l1 h1 l2 h2
...

...
...

...
l n

2−3 h n
2−3 l n

2−2 h n
2−2

l n
2−2 h n

2−2 l n
2−1 h n

2−1

λ2 λ3
µ2 µ3
λ0 λ1
µ0 µ1

and its border values as:

(
x0
x1

)
= W+

00

l0
h0
l1
h1

 ,
(

xn−2
xn−1

)
= W+

22

l n

2−2
h n

2−2
l n

2−1
h n

2−1

 .

4.3 Correctness

In addition to the formal derivation given above, we have tested our implemen-
tation for consistency against PyWavelets, and we have composed direct and
inverse transforms to verify that they result in an identity map (up to numerical
precision errors). The randomized test code is included with the source code and
is runnable with the pytest framework [19].

Note that, contrary to PyWavelets, WaveTF always uses a minimal padding
when transforming: e.g., WaveTF’s output for an input vector of size 10 is a 2×5
matrix, whereas PyWavelets produces a 2×6 matrix when using the DB2 kernel
and a 2×5 one when using the Haar kernel.

5 Performance results

The performance of WaveTF has been tested in two ways:

• by executing raw signal transforms, leaving the output data available for
the user either in RAM or in the GPU memory;

7

Table 2: Versions of the software used in this work.
Package Version Source

WaveTF 0.1 https://github.com/crs4/WaveTF
PyWavelets 1.1.1 https://github.com/PyWavelets/pywt
pypwt d225e09 https://github.com/pierrepaleo/pypwt
TF-Wavelets ac4f357 https://github.com/UiO-CS/tf-wavelets

TensorFlow 2.1.0 https://www.tensorflow.org/install
CUDA V10.1.243 https://developer.nvidia.com/cuda-downloads
NVIDIA driver 435.21 https://www.nvidia.com/Download/Find.aspx

• as a Keras layer, integrated in a simple neural network for a training task.

In the first test, we also computed the same transformations with the PyWavelets,
pypwt and TF-Wavelets libraries to compare their performance to WaveTF’s.

In order to better exploit the computation power provided by the GPU [5],
the tests have been run with single-precision floating-point types: np.float32 for
PyWavelets, tf.float32 for WaveTF and TF-Wavelets, and pypwt compiled to
use 32-bit floats.

The hardware and software used in the tests are detailed in Tables 1 and 2.

5.1 Raw transformation

PyWavelets operates in RAM and pypwt uses RAM for input and output but
runs its computation in the GPU. On the other hand, WaveTF and TF-Wavelets
operate on TensorFlow tensors which, when GPUs are available and used, reside
in the GPU memory. We expect to see this difference reflect on the runtimes,
because of the overhead of moving data between GPU and RAM.

We have recorded the wall clock time of one- and two-dimensional Haar and
DB2 wavelet transforms using WaveTF, PyWavelets and pypwt and TF-Wavelets.
For WaveTF, we have measured both the time required when leaving the data in
the GPU memory and when input and output are required to be in main memory.
For TF-Wavelets we have instead focused on the fastest case of working only on
GPU memory, to offer a fair comparison for WaveTF. The test procedure for the
one-dimensional case is as follows:

• A random array of n elements is created, with n ranging from 5 · 106 to 108,

• For the non-batched case the array is used as is (i.e., shape = [n]), for the
batched case it is reshaped to [b, n/b], with b = 100,

• The transform, on the same input array, is executed from a minimum of
500 up to a maximum of 10000 times for smaller data size; the total time is
measured and the time per iteration is recorded.

For the two-dimensional case, the input matrix is chosen to be as square as
possible given the target total size of n elements, i.e., shape =

[
b√nc, d√ne

]
.

Note that we have not measured the time to execute a single transformation,
but instead the time to execute many of them grouped together (up to 10000),
because the single execution time when working in GPU memory would have
been completely overshadowed by the setup time required for the library calls.

8

https://github.com/crs4/WaveTF
https://github.com/PyWavelets/pywt
https://github.com/pierrepaleo/pypwt
https://github.com/UiO-CS/tf-wavelets
https://www.tensorflow.org/install
https://developer.nvidia.com/cuda-downloads
https://www.nvidia.com/Download/Find.aspx

Table 3: Runtimes, for the largest tested size, i.e., 108 elements, normalized against
WaveTF.

Operation WaveTF TF-Wavelets PyWavelets pypwt

1D Haar 1 2.98 74.81 73.55
1D DB2 1 1.58 42.91 36.04
1D Haar, batched 1 3.21 73.69 72.37
1D DB2, batched 1 1.62 39.85 33.63

2D Haar 1 2.58 45.59 14.30
2D DB2 1 2.30 44.61 12.27
2D Haar, batched 1 n.a. 42.55 n.a.
2D DB2, batched 1 n.a. 41.08 n.a.

The standard deviations for these grouped measures are all well below 1%, so
they are not shown in the plots.

5.1.1 Discussion

As can be seen from the data in Fig. 3 and Table 3, there is a huge gap in
performance between PyWavelets and pypwt and the TensorFlow programs. The
performance of PyWavelets is explained by the fact that it is a serial program and
that it does not exploit the parallelism available in the GPU. pypwt, on the other
hand, does use the GPU but incurs a big overhead caused by the data movement
between GPU and main memory – as demonstrated by the similar performance
achieved by WaveTF when it is forced to have both input and output in RAM.

When working directly in GPU memory WaveTF and TF-Wavelets have a big
performance advantage over the other evaluated libraries, with WaveTF being
about 70x faster than PyWavelets and pypwt on 1D Haar and 30-40x on 1D DB2.
For the 2D cases WaveTF has a speedup greater than 40x over PyWavelets and
a 12-14x one over pypwt. This test scenario mirrors the common situation in
TensorFlow-based machine learning workflows using wavelet transforms.

The speedup of WaveTF against TF-Wavelets is still quite impressive, consid-
ered that both libraries adopt the same general strategy, and it ranges from 1.6x up
to 3.2x. This improvement is mainly due to a careful algorithmic implementation
as to avoid redundant computations.

5.2 Machine learning

In this section we quantify the overhead of integrating WaveTF in machine
learning workflows. For this purpose we consider a classification problem on a
standard image dataset solved by a simple CNN. In our experiment we measure
the training and evaluation times before and after enriching the CNN with
wavelet layers.

For this test we have adopted the Imagenette2-320 dataset [11] – a subset of
10 classes from ImageNet [22] – consisting of 9469 training and 3925 validation
RGB images. For the classification task we used a basic CNN network featuring 5
levels of convolution, followed by downscaling which halves the spatial feature
dimensions at each level (i.e., 320x320 → 160x160 → 80x80 → 40x40 → 20x20).
To enrich this network with the wavelet transform, each newly downscaled layer

9

10−3

10−2

10−1

100

Ex
ec

ut
io

n
tim

e
[s

]

2×107 4×107 6×107 8×107 1×108

Signal size n

1D Haar

5×106

WaveTF + RAM
WaveTF
PyWavelets

TF-Wavelets
pypwt

10−3

10−2

10−1

100

Ex
ec

ut
io

n
tim

e
[s

]

2×107 4×107 6×107 8×107 1×108

Signal size n

1D Daubechies-N=2

5×106

10−3

10−2

10−1

100

Ex
ec

ut
io

n
tim

e
[s

]

2×105 4×105 6×105 8×105 1×106

Signal size n

1D Haar, batched

5×104
10−3

10−2

10−1

100

Ex
ec

ut
io

n
tim

e
[s

]

2×105 4×105 6×105 8×105 1×106

Signal size n

1D Daubechies-N=2, batched

5×104

10−3

10−2

10−1

100

Ex
ec

ut
io

n
tim

e
[s

]

2×107 4×107 6×107 8×107 1×108

Signal size n

2D Haar

5×106 10−3

10−2

10−1

100

Ex
ec

ut
io

n
tim

e
[s

]

2×107 4×107 6×107 8×107 1×108

Signal size n

2D Daubechies-N=2

5×106

10−3

10−2

10−1

100

Ex
ec

ut
io

n
tim

e
[s

]

2×105 4×105 6×105 8×105 1×106

Signal size n

2D Haar, batched

5×104
10−3

10−2

10−1

100

Ex
ec

ut
io

n
tim

e
[s

]

2×105 4×105 6×105 8×105 1×106

Signal size n

2D Daubechies-N=2, batched

5×104

Figure 3: Runtime of wavelet transforms: WaveTF vs. PyWavelets vs. pypwt vs.
TF-Wavelets – Wall time of execution, for Haar and Daubechies-N=2 kernels,
one- and two-dimensional, batched and non-batched. For WaveTF we show two
runtimes: i) when working directly in GPU memory, ii) when input and output
are required to be in RAM. Standard deviation is below 1% in all cases.

10

INPUT

Convolution
+ Down-Scale

F0
0 · · · F0

k0−1

Concatenate

LL0 LH0 HL0 HH0

Convolution
+ Down-Scale

F1
0 · · · F1

k1−1

Concatenate

LL1 LH1 HL1 HH1

· · ·

Figure 4: The first steps of a wavelet-enriched CNN: after down-scaling at
level l, the kl output features (F0

l , . . . , Fkl−1
l) are concatenated with the wavelet

components (LLl, LHl, HLl, HHl,) at the corresponding level of scale, before the
following convolution is performed.

Table 4: Running times (with standard deviation) of a 5-level CNN on the
Imagenette dataset, with and without enriching the network with wavelet features
computed by the WaveTF Keras layer.

Operation Baseline With wavelet Overhead

Training time [s] 1581 ± 18 1593 ± 14 <1%
Evaluation time [s] 78.5 ± 0.5 78.7 ± 0.8 <1%

is concatenated with the corresponding level from the output of WaveTF (see
Fig. 4), launched iteratively as shown in Eq. (2). This approach has been used,
e.g., for improving texture classification [9].

Since the objective of our experiment is only to quantify the computational
overhead of adding wavelet features via WaveTF to the network, we disabled all
forms of data augmentation for the training – these procedures would add their
own considerable overhead which would confound our results. To compute the
training overhead, we measured the wall clock time required to train the model
for 20 epochs, with and without enriching the network with the wavelet features.
We repeated this training process 20 times (after a first, unmeasured run, used to
set the memory buffering to a stationary state). On the other hand, to measure
the overhead incurred in evaluation we used the trained network to evaluate all
the images in the dataset and repeated the process 20 times.

5.2.1 Discussion

As can be seen from the results shown in Table 4, the overhead of adding wavelet
features to the existing 5-level CNN is below 1%, both in training and evaluation,
thus allowing its use at an almost negligible cost.

6 Software availability

WaveTF is released under the open source Apache License Version 2.0. Its
source code is available for download from the GitHub platform, together with

11

accompanying documentation and some usage examples, which also include the
CNN used in this paper. The link to the GitHub repository is shown in Table 2.

7 Conclusion and future work

In this work we have presented an efficient wavelet library which leverages
TensorFlow and Keras to exploit GPU parallelism and allows for easy integration
in already existing machine learning workflows. Since the wavelet transform
is characterized by high parallelism and low computational complexity (time
complexity being O(n) for an input of size n), minimizing communication is
pivotal to achieve good performance, and in this work we have shown how to do
it by limiting the transfer between GPU and memory whenever is possible.

In future we plan to extend the library to include other popular wavelet
kernels and padding extensions, as well as extending it to 3D signals.

Acknowledgments

I’d like to thank G. Busonera and L. Pireddu for reviewing the draft and S. Leo for
his suggestions on structuring the Python code. This work has been funded by the
European Commission under the H2020 program grant DeepHealth (n. 825111).

References

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-
scale machine learning. In: 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). pp. 265–283 (2016)

[2] Addison, P.S.: The illustrated wavelet transform handbook: introductory
theory and applications in science, engineering, medicine and finance. CRC
press (2017)

[3] Amin, H.U., Malik, A.S., Ahmad, R.F., Badruddin, N., Kamel, N., Hussain,
M., Chooi, W.T.: Feature extraction and classification for eeg signals using
wavelet transform and machine learning techniques. Australasian physical
& engineering sciences in medicine 38(1), 139–149 (2015)

[4] Bruna, J., Mallat, S.: Invariant scattering convolution networks. IEEE transac-
tions on pattern analysis and machine intelligence 35(8), 1872–1886 (2013)

[5] Burgess, J.: Rtx on—the nvidia turing gpu. IEEE Micro 40(2), 36–44 (2020)

[6] Chollet, F., et al.: Keras: The python deep learning library. Astrophysics
Source Code Library (2018)

[7] Daubechies, I.: Orthonormal bases of compactly supported wavelets. Com-
munications on pure and applied mathematics 41(7), 909–996 (1988)

[8] Daubechies, I.: Ten lectures on wavelets, vol. 61. Siam (1992)

12

[9] Fujieda, S., Takayama, K., Hachisuka, T.: Wavelet convolutional neural
networks for texture classification (2017)

[10] Haug, K.M.: Stability of Adaptive Neural Networks for Image Reconstruc-
tion. Master’s thesis (2019)

[11] Howard, J.: Fastai’s imagenette and imagewoof datasets (2020), https:
//github.com/fastai/imagenette

[12] Huang, H., He, R., Sun, Z., Tan, T.: Wavelet-srnet: A wavelet-based cnn for
multi-scale face super resolution. In: The IEEE International Conference on
Computer Vision (ICCV) (10 2017)

[13] Jouppi, N., Young, C., Patil, N., Patterson, D.: Motivation for and evaluation
of the first tensor processing unit. IEEE Micro 38(3), 10–19 (2018)

[14] Lee, G., Gommers, R., Waselewski, F., Wohlfahrt, K., O’Leary, A.: Pywavelets:
A python package for wavelet analysis. Journal of Open Source Software
4(36), 1237 (2019)

[15] Liu, P., Zhang, H., Lian, W., Zuo, W.: Multi-level wavelet convolutional
neural networks. IEEE Access 7, 74973–74985 (2019)

[16] Livani, H., Evrenosoglu, C.Y.: A machine learning and wavelet-based fault
location method for hybrid transmission lines. IEEE Transactions on Smart
Grid 5(1), 51–59 (2013)

[17] Lohne, M.: Parseval Reconstruction Networks. Master’s thesis (2019)

[18] Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet
representation. IEEE transactions on pattern analysis and machine intelli-
gence 11(7), 674–693 (1989)

[19] Oliveira, B.: pytest Quick Start Guide: Write better Python code with simple
and maintainable tests. Packt Publishing Ltd (2018)

[20] Paleo, P.: pypwt, parallel discrete wavelet transform (2020), https://github.
com/pierrepaleo/pypwt

[21] Rodriguez, M.X.B., Gruson, A., Polania, L., Fujieda, S., Prieto, F., Takayama,
K., Hachisuka, T.: Deep adaptive wavelet network. In: The IEEE Winter
Conference on Applications of Computer Vision. pp. 3111–3119 (2020)

[22] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV) 115(3), 211–252 (2015)

[23] Walt, S.v.d., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for
efficient numerical computation. Computing in Science & Engineering 13(2),
22–30 (2011)

13

https://github.com/fastai/imagenette
https://github.com/fastai/imagenette
https://github.com/pierrepaleo/pypwt
https://github.com/pierrepaleo/pypwt

	Introduction
	Background
	Wavelet transform
	Haar transform
	Daubechies wavelet
	Multidimensional transform

	TensorFlow and Keras

	Related work
	PyWavelets
	pypwt
	TF-Wavelets

	Implementation
	Direct transform
	Inverse transform
	Correctness

	Performance results
	Raw transformation
	Discussion

	Machine learning
	Discussion

	Software availability
	Conclusion and future work

