Volume Puzzle: visual analysis of segmented volume data with
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Fig. 1. Inspired by word search puzzles, we present Volume Puzzle, a framework that allows us to interactively and/or automatically
reveal spatial patterns from segmented volumes with associated multivariate attributes

Abstract— A variety of application domains, including material science, neuroscience, and connectomics, commonly use segmented
volume data for explorative visual analysis. In many cases, segmented objects are characterized by multivariate attributes expressing
specific geometric or physical features. Objects with similar characteristics, determined by selected attribute configurations, can
create peculiar spatial patterns, whose detection and study is of fundamental importance. This task is notoriously difficult, especially
when the number of attributes per segment is large. In this work, we propose an interactive framework that combines a state-of-the-art
direct volume renderer for categorical volumes with techniques for the analysis of the attribute space and for the automatic creation
of 2D transfer function. We show, in particular, how dimensionality reduction, kernel-density estimation, and topological techniques
such as Morse analysis combined with scatter and density plots allow the efficient design of two-dimensional color maps that highlight
spatial patterns. The capabilities of our framework are demonstrated on synthetic and real-world data from several domains.

Index Terms—Segmented Volumes, Multivariate data, Color mapping, Dimensionality reduction

1 INTRODUCTION

The analysis of large 3D volumes composed of multiple objects with
different shapes and characteristics is paramount for a variety of do-
mains. Representative examples include:

e material engineering [13, 2], where high resolution tomographic
scans are routinely used for investigation and diagnosis of samples
in order to qualitatively and quantitatively analyze the characteris-
tics of materials at micrometric or nanometric scale to understand
whether they can be used for specific purposes like construction of
photo-voltaic cells or electronic devices;

e physical simulations [25, 11], where scientists analyze 3D static
or dynamic volumes resulting from complex simulations related
to various natural systems, like meteorology, or geology, or fluid
interactions;

e neuroscience investigations [3, 10], where practitioners use high
resolution acquisition of animal brain samples with the target of
reverse engineering the connectivity between neurons.

In all these cases, the volume coming out of high resolution 3D imag-
ing equipment or simulation data is typically segmented into objects
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associated with a variety of attributes that determine their character-
istics. These attributes range from scalar values representing geomet-
ric, physical, or other domain-specific measures, to categorical labels
identifying discrete or Boolean features.

The need to make sense of all this information has led to the de-
velopment of visual analysis methods that couple attribute filtering
schemes with real-time rendering to support sophisticated visual ex-
ploration [3, 13, 4]. As a general scheme, current methods couple
the rendering of volumetric scenes incorporating domain knowledge
with interactive tools to perform real-time culling of uninteresting
data. However, the visual mapping between the attribute space and
the 3D space remains a very difficult task, especially when the num-
ber of attributes does not allow for extensive exploration of the con-
figuration space. To address these challenges, various methods have
recently been proposed to simplify the analysis of the multivariate
data in various contexts [18]. These methods strive to improve fea-
ture classification, fusion visualization, and correlation analysis. How-
ever, in several cases, domain scientists are interested in investigating
whether objects with similar characteristics can form particular spatial
patterns, like alignment, regular grids, or clustering (e.g., cells with
similar characteristics in brain samples, or objects with similar size in
material science samples).

In some cases, these spatial patterns are easily recognizable, espe-
cially when they are associated with visible geometric features, such
bundles of fibers that have identical orientations (see Fig. 5). How-
ever, the most common cases include patterns that cannot be revealed,
especially when they are related to complex combination of attributes.
Accordingly, such investigations require reverse engineering efforts by
the users through extensive attribute exploration and iterative transfer
function editing. Selecting the right objects forming a pattern can be
considered similar to solving word-search puzzles, in which the user
must mark words hidden inside an array of letters. In this work, we
propose a novel framework, dubbed Volume Puzzle, that aims to sim-
plify the visual mapping of attributes to volumetric objects to support
segmented volume analysis and discovery of spatial patterns. In par-
ticular, we strive to combine rapid identification of clusters in attribute



space with the interactive 3D visual inspection of the arrangement of
the identified objects in the 3D space. This workflow is supported by
the combination of a real time ray casting of mipmapped label vol-
umes, built on top of the Mixture Graph framework [4] with inter-
active methods for specifying one-dimensional and two-dimensional
transfer functions that map scalar and categorical attributes to volu-
metric objects on-the-fly. The exploration of multivariate data is sup-
ported through a novel method for generating two-dimensional trans-
fer functions, based on machine learning analysis of attribute space.
In particular, we propose an algorithm that computes attribute projec-
tion through dimensionality reduction, kernel density estimation, and
topological analysis based on the Morse-Smale complex. Although
the attribute analysis components taken singularly are not novel, to the
best of our knowledge, this is the first time they are combined together
to reduce the complexity of attribute space and to produce automatic
2D transfer functions for interactive spatial analysis of segmented vol-
umes with multiple attributes. We demonstrate the potential of our
framework on a variety of synthetic and real world data from various
domains. The explored data include label volumes obtained through
segmentation of microscopy stacks representing material science sam-
ples and rodent brain samples at nanometric resolution. Our results
show how our proposed semiautomatic transfer function method is
able to reveal complex spatial patterns with minimal effort from the
users.

2 RELATED WORK

Our work combines and extends the state-of-the-art solutions in in-
teractive volume rendering of label volumes, multidimensional color
mapping and transfer function, visualization of multivariate attributes,
and the applications of Morse-Smale complexes in interactive visual
analysis. Here, we review the methods most relevant to ours, referring
the readers to well-established surveys on volume rendering [5], trans-
fer functions [23], and multivariate spatial data visualization [18] for
a wider coverage.

Multidimensional transfer functions In the literature, many so-
phisticated methods have been proposed to support volumetric explo-
ration of complex data through the assignment of optical properties
to voxel data [23]. In order to generate multidimensional transfer
functions that can map multiple attributes to voxel color and opacity,
Liu et al. [22] proposed a semi-automatic design system that repre-
sents high-dimensional data in the attribute space as a collection of
low-dimensional linear subspaces. This collection is then used for
creating multiple 2D views by projecting the embedded data points.
While the proposed system works well for data with moderate com-
plexity, it can become difficult to master once the attribute dimen-
sionality grows, since the number of projected views becomes diffi-
cult to control. For this purpose, several space-based clustering meth-
ods have been designed to reduce the visual clutter during transfer
function editing. The key idea of these methods is performing clas-
sification in high-dimensional feature space before transforming the
volumetric data into a cluster space representation. This representa-
tion can then be easily explored by the user during transfer function
editing [24, 7]. This strategy has been exploited for automatic gen-
eration using different methods, such as intensity-gradient magnitude
histogram [7], self-organizing map (SOM) to create transfer functions
through a clustered 2D topology, and dendrograms for material seg-
mentation and feature exploration [33]. Sharma et al. [31] proposed
a fully-automated method based on the deduction of a material graph
from material boundaries. However, this algorithm is best perform-
ing only on materials with well-separated interface edges, which is
not the case with most real data. In the current paper, we propose a
technique based on dimensionality reduction, density estimation and
Morse-Smale analysis to provide a solution for addressing cluttered
transfer functions.

Morse-Smale complex in Visualization Morse-Smale Complex
is a topology analysis method that partitions a manifold or a scalar field
according to the behavior of the gradient. This is performed in a way
that all points in a partition are characterized by a gradient which leads

to the same critical point [16]. Lately, Morse-Smale complex has been
applied on complex analysis in various domains, such as medical ap-
plications [33], where it has been used as a clustering algorithm for
decomposing a 2D density plot into several valley cells. These cells
represent potential structures within a scalar volume data. Gerber et al.
[15] proposed a framework that combines topological and geometric
information to generate simplified lower dimensional geometric repre-
sentation of the Morse-Smale complex. The framework preserves im-
portant information about the high dimensional scalar fields and allows
for interactive exploration of the input domain. The results have been
demonstrated in different applications including physics, climate sim-
ulations, and combustion simulations [9, 27, 12]. Similarly, Abdel-
mula et al. [1] used dimension reduction and density analysis for spa-
tial identification of prognostic tumor subpopulations on mass spec-
trometry imaging data. In the context of transfer function design for
volume rendering, Kotava et al. [20] applied Morse-Smale complex
for the analysis of 2D transfer functions related to standard magnitude-
gradients in scalar volumes. Within this scope, we apply Morse-Smale
theory to analyze 2D density functions in a reduced attribute space ob-
tained through projection. In this sense, our approach has similarities
with respect to methods proposed in Computer Vision for segmenting
images based on density and topology analysis in the attribute space,
where the pixel coordinates are also considered for increasing the di-
mensionality space [28, 14]. We instead use the generated partitions
to create automatic transfer functions for volumes which contain nom-
inal data. This way, we provide an automatic method for exploring
segmented volumes that enable the user to highlight spatial patterns.

Rendering of segmented volumes Segmented volumes are get-
ting increasing popularity in various fields such as neuroscience, con-
nectomics [|7], and material science [35], where raw data is normally
obtained by imaging through an electron microscope (EM) and seg-
mentation techniques range from semiautomatic [10] to (almost) fully
automatic [36, 32] approaches.  To support real time exploration,
hybrid strategies for ray casting have been recently proposed, that im-
prove empty space skipping by balancing the computational load be-
tween the determination of empty ray segments (in the rasterization or
object-order stage), and sampling of the non-empty volume data (in
the ray-casting or image-order stage) [17]. This helps managing the
culling of segments through a hierarchical representation of label sets
that are leveraging on top of deterministic and probabilistic representa-
tions [6]. Recently, a data structure called Mixture Graph [4] has been
proposed to speedup the rendering through the real time query of seg-
mentation histograms. The Mixture Graph is based on the construc-
tion, factorization, and compression of mipmaps which contain convex
combinations of segmentation IDs. This data structure enables the fast
propagation of complex transfer function allowing for pre-filtered in-
teractive rendering, and enabling real time query of partial histograms.
In this paper, we build on top of the Mixture Graph approach, by ex-
ploiting the capabilities of multidimensional transfer function editing
and adding automatic schemes based on attribute space exploration as
well as density estimation and topology analysis.

3 METHODS

The Volume Puzzle framework is an interactive volume visualization
system that works with segmented data, and in which every segment is
associated with a list of attributes. We can formalize the representation
of a segmented volume as a function A(x) assigning labels to voxel
positions:

A:DCZP—LCZ

where D denotes the spatial domain as regular grid, and L is a set
of labels representing the segments contained in the 3D space. Each
segment A is also characterized by an heterogeneous feature vector
¢ (A) that can be represented as a function mapping each segment to a
number S of scalar attributes and a number N of categorical attributes:

¢0:LCZ—RSxZN



sspreme

PEETICREFTY ':’w"'
lees V22, Tilon
. . o .
Dimension & _;'é

Reduction ...".’ e
wig o f ot >

;3%

Geodesic

Morse-Smale Complex

Interpolation s

Fig. 2. Density-based automatic transfer function: The computation pipeline (left to right) starts by attribute projection through dimensionality
reduction, density-function computation through kernel density estimation, generating Morse-Smale complex manifolds, and finally performing the

geodesic interpolation.

3.1 Architecture overview

The proposed Volume Puzzle framework contains the following com-
ponents:

e an interactive GPU volume renderer using ray casting and a spe-
cialized mipmapped representation of label volumes A (D) and
based on the Mixture Graph data structure [4] ( we refer readers
to the original publication for technical details);

e interactive transfer function widgets for selecting attributes and
specitying the optical properties of segments in the form of color
and opacity for the accumulation during ray casting process, either
monodimensional or bidimensional;

e semiautomatic 2D transfer function widgets for specifying seg-
ment color and attributes through the application of dimension
reduction schemes, and topology analysis of the density function
computed in the reduced attribute space.

Transfer function editing The assignment of the optical proper-
ties to segments consists of mapping colors and opacities to each seg-
ment A that is represented inside the volume: C=C(A) and o = a(A).
This could be done by selecting each segment singularly and assign-
ing the optical properties one by one, or through functions that map
individual or multiple attributes of the segments. Our system pro-
vides widgets for performing this manual specification by using sin-
gle attributes: the user can select an attribute of interest to specify
a colormap and an opacity function through an interactive design of
a piecewise linear function. We also support bi-dimensional transfer
function editing by providing a widget in which users can select two
attributes, and create composite transfer functions that blend single-
axis opacity functions (through multiplication), and single attribute
colormaps (through interpolation). In order to guide users in the defi-
nition of the transfer functions, we provide a scatter plot of the object
attributes. However, bi-dimensional transfer functions have the issue
of a limited discrimination power that make them difficult to master for
discriminating areas. Moreover manual selection of attributes can be
a time consuming process, especially when the volume data contains
a significant number of attributes.

3.2 Density-based Morse-Smale automatic transfer func-
tion

In order to speed-up the visual analysis process, we introduce an au-
tomatic method for aggregating multiple attributes together and gen-
erating an automatic transfer function based on density analysis. The
method is composed of the following steps: dimension reduction of
attributes in a way to project them to a 2D space, computation of a
density function on top of the projected parameter space, and topology
analysis of the density function for highlighting critical points that are
used for interpolating a 2D transfer function (see Fig. 2).

Dimension reduction Various methods can be considered for
performing attribute projection, and users can select either to use all
attributes or to choose a subset. In our preliminary tests, we con-
sidered Uniform Manifold Approximation and Projection (UMAP),
that is based on the assumptions that data is uniformly distributed on
Riemannian manifold, and searches for a low dimensional projection
of the data that has the closest possible equivalent fuzzy topological
structure [26]. However, other methods for projecting attributes can be

used and incorporated in the system, like Principal Component Analy-
sis (PCA) [19] or t-Stochastic Neighbor Embedding (t-SNE) [21]. The
projected space can be either used for the manual specification of the
transfer function by editing opacity and color maps, or can be used for
the density analysis.

Kernel density estimation Given N samples containing 2D at-
tributes Xk, either in the projected parameter space or in axis selected
by users, a density function can be computed through the following

estimator:
1Y X — Xk
6(x)—ﬁkgl<< - ) M

where K (x) is a kernel function, and % is a smoothing parameter called
bandwidth [34]. Various choices of kernel functions can be consid-
ered: in our tests, we used the Gaussian normal kernel

K(x)=——e 7. 2

In this way, the process of recovering the density function & (x) is sim-
ilar to the concept of the mixture-of-Gaussians concept: it uses a mix-
ture consisting of one Gaussian component per point, in a way that
results an essentially non-parametric estimator of density.

Fig. 3. Geodesic interpolation. (a): for each sample x we compute
a normalized geodesic interpolation factor by computing the geodesic
distance from the peak and the valley in the same Morse-Smale parti-
tion through backward and forward integration of the gradient field. (b):
example of geodesic interpolation. (c): examples of linear interpolation.
Blued dots represent peaks of the Morse Smale Complex while red dots
represent valleys.

Application of Morse theory The Morse theory is a powerful
topology framework for the analysis of functions, since it provides
tools for subdividing the domain according to the classification of crit-
ical points into partitions exhibiting gradient similarity. Moreover it
can be used for generating natural interpolation fields in the attribute
space by exploiting the gradient field and the inherent streamlines for
performing geodesic interpolation. In our case, we computed a Morse-
Smale Complex on top of the density function &(x) [15] to identify
the critical points. Then, we subdivided them into peaks and val-
leys/saddles. Next, we used the manifold partitions to drive geodesic
interpolation in the attribute domain. Users can specify the desired op-
tical properties by simply assigning the material properties for density
peaks (colors C, and opacities ¢,) and valleys (in most of our re-
sults we put a neutral light color C,, for all valleys), and an additional



1D opacity function a(c) based on a normalized geodesic interpo-
lation factor ¢ that is computed as ¢ = ﬁ, where d), and d, are
p Ty

respectively the geodesic distances between the sample point x and
the connected peak xp and valley xy in the same partition (see Fig. 3.2
(a)). Hence, for each attribute sample x the material properties are:
C(x) = 0C(xp) + (1 — 0)C(xy) and & = (o) The geodesic dis-
tances are obtained by computing the streamline passing through the
sample point x: for doing that, we use the sample point x as seed, and
we perform forward and backward gradient integration through 4th or-
der Runge Kutta [30] in a way to reach the peak xp and the valley xy
connected to X. The process is equivalent to the popular streamline in-
tegration method used in flow visualization, and provides us a way to
compute a smooth automatic transfer function incorporating the topo-
logical features of the density map. Compared to standard linear in-
terpolation, since it considers also valleys and gradient field, geodesic
interpolation allow to obtain transfer functions separating more clearly
the clusters originated around density peaks (see Fig. 3.2 (b) and (c)).
In Sec. 4 we show how this transfer function can support the detection
of spatial patterns in synthetic and real-world data.

4 RESULTS

We developed the VolumePuzzle in Python and C++, using OpenGL
and GLSL for volume ray casting, and QT for the transfer function
widgets. The attribute analysis methods are implemented through spe-
cific Python libraries, including UMAP or t-SNE for dimension re-
duction and kernel density estimation, and they are encapsulated in
modules that communicate with the framework through a Python/C
API wrapper interface. We performed a preliminary assessment of the
capabilities of our framework on a variety of synthetic and real-world
data from different domains. Since the method is applied inside the
Mixture Graph framework, we currently deal with volumes containing
segments on the range number 1K - 10K, and the underlying image
space for attribute interpolation is 128x128, hence our current Python
implementation is adequate for computing projections, and transfer
functions in reasonable times for interactive analysis (few seconds for
the overall automatic computation process).

Fig. 4. Visual analysis of synthetic data: two examples of test vol-
umes containing spheres associated with scalar attributes. Only The
automatic transfer function is able to highlight the spatial pattern.

Synthetic data For testing our system and the automatic trans-
fer function approach, we generated a variety of synthetic examples
(see Fig. 4). In these examples, the volume dataset is composed of
K disconnected objects having identical spherical shape and size, and
organized in a regular 3D grid with a little amount of jittering in the
position, for a total number of 4096 segments on a 512 x 512 x 512
grid. Each object is corresponding to a segment and is associated with
a vector of S scalar attributes that we randomly generate according to
normal distributions with different means and variances. Only a par-
ticular combination of them is able to solve the puzzle by revealing
a visible pattern like a short writing or a simple shape (as visible in
Fig. 4). In our preliminary tests, which are run with a variable num-
bers of attributes (between 4 and 10), we could assess that the stan-
dard 1D and 2D transfer functions were not able to reveal the patterns,
while our semiautomatic transfer function approach allowed users to
highlight them immediately (see supplementary video).

Real world data We carried out a preliminary evaluation on
two real world datasets, namely from materials science and connec-
tomics. The first one is an XRray CT scan of a sample containing
Fiber-Reinforced Polymers, with 614 x 961 x 600 voxel resolution

Fig. 5. Visual analysis of XRay CT of Fiber-Reinforced Polymers:
VolumePuzzle can support materials science experts for individuating
spatial patterns in fiber organizations. Left: 2D transfer functions for
highlighting patterns due to different orientations. Right: automatic
density-based transfer function for highlighting patterns due to orien-
tation or other geometric features (length, diameter).

Fig. 6. Visual analysis of SSEM rodent brain sample: VolumePuz-
zle can support neuroscience experts for individuating spatial patterns
in neural structures, like axon bundles (left) or post-synaptic density for-
mation (right).

and containing 15,917 segments, while the later is a nanometric res-
olution rodent brain sample extracted from hippocampus region, with
831 x 831 x 280 resolution and a total number of 353 segments repre-
senting various neural structures [8]. For both datasets, we based our
analysis on the following precomputed geometry attributes: length,
diameter, and orientation components along the three axis directions.
For the first dataset, a spatial pattern is originated by the different
fiber orientations, while the other is originated according to different
lengths of fibers (see Fig. 5): in both cases, both the manual and au-
tomatic transfer functions are able to reveal them, with the significant
difference that the automatic transfer function reveals immediately the
main patterns without the time-consuming attribute search involving
trial and error strategy. For the connectomics dataset, a preliminary
assessment from a domain scientist highlighted that the framework is
able to simplify visual analysis of unannotated segmented volumes,
by clustering neural structures according to functional characteristics,
like axons bundles and post-synaptic densities (see Fig. 6). Further
investigation is needed to assess that the system can be used for auto-
matic semantic labelling in connectomics.

5 CONCLUSIONS

We presented a framework for highlighting spatial patterns in seg-
mented volume data based on multidimensional transfer functions us-
ing dimensionality reduction, density estimation and topology analysis
for reducing the complexity of attribute space. The current implemen-
tation is limited to moderate complexity volumes in terms of num-
ber of segments: in order to scale over more complex volumes, con-
currently with the revision of Mixture Graph data structure, we plan
to consider more sophisticated GPU methods for dimension reduc-
tion [29], density estimation, MSC computation, and geodesic inter-
polation [14]. Moreover, since our target was the discovery of spatial
patterns, we did not investigate how the nonlinear properties of var-
ious embeddings can affect the computation of the transfer function.
As future work, together with an analysis of non-linear properties, we
plan to extend the evaluation with user performance analysis, and with
volume data coming from other domains. In particular, the framework
can be adapted to work on multi-attribute scalar volumes or ensemble
simulations by considering each attribute as a segment and each leaf
voxel as a mixture (or histogram). To deal with scalability in image
space, we plan to perform analysis on downsampled versions of the
attribute space directly mapping to the volume mipmaps. Finally, we
plan to investigate whether density-based attribute analysis can con-
tribute to visual explainability of deep learning models.
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