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1 Introduction

Low Prandtl number liquid metals serve as primary coolant for MYRRHA and
ALFRED, two Gen-IV reactors under development [1]. The low Prandtl num-
ber induces discrepancies in the modeling of the turbulent heat transfer when
directly treated according to the Reynolds analogy with a constant turbulent
Prandtl number. The thermal boundary layer is considerably larger than the
velocity one, up to the point that, while we can clearly define a bulk velocity,
there can be no such thing as a bulk temperature. Many correlations have been
derived to tackle the issue [2, 3, 4]. Almost all of them use global parameters
such as the Reynolds or Peclet numbers which are not well defined in complex
geometries and by such not suitable for the related CFD simulations. To the
author knowledge, only Kays’ correlation is using only local parameters. Several
variants of the correlations have been used with significant success, leading to
some perplexity. In a former paper [5], we showed that the correlations can be
simply derived on a basic assumption with regards to the non-linear combination
of stochastic effects and the variants then come from different approximations
of a mother formula. A defect of the mother formula, which is transferred to
the variants is that the turbulent Prandtl number becomes infinite at vanishing
turbulence. In this paper, we proceed further with the constructive hypothesis
to refine the formula, extending the principle of square additivity not only to
the thermal conductivity but also to the viscosity. The derived formula has the
merit to be simple and to not degenerate any more at vanishing turbulence.

2 Derivation of Prt and its approximation

In CFD codes, both viscous effects and heat diffusion modelling and implemen-
tation are represented as the direct sum of two contributions, the molecular one
and the turbulent one. With regard to the heat diffusion, both contributions act
in the same direction, proportionally to the local temperature gradient. Each
contribution is also proportional to a conductivity coefficient. In other words
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the effective conductivity coefficient ke is given as

ke = k + kt (1)

where k is the molecular conductivity coefficient observed in static or laminar
flows and kt is the increment due to turbulence. With ρ the fluid density and
Cp its specific heat, this can be rewritten in terms of thermal diffusivity:

αe = α+ αt (2)

in which αe = ke/(ρCp) is the effective diffusivity, α = k/(ρCp) is the molecular
part and αt = kt/(ρCp) is the turbulent part. Similarly, with regards to the
viscosity the effective kinematic viscosity νe, is the sum of a laminar contribution
ν and a turbulent contribution νt.

νe = ν + νt (3)

The argument developed in precedence [5] is the following. Conduction in
general is originated from a stochastic process. Molecular conduction and turbu-
lent conduction look like different unrelated mechanisms operating at different
scales. While molecular conduction is in fact a molecular process, turbulent
conduction is rather based on a convective process. The cumulative effect is a
convolution rather than a mere juxtaposition. In turn, one would expect the
combined effects to be according to:

αe =
√
α2 + α2

0, (4)

where α0 is the turbulent thermal diffusivity expected for a similar fluid with (al-
most) zero molecular conductivity or similarly when the turbulence is extremely
large.

We now extend the argument to the viscous process and state that the
effective viscosity comes from two independent processes whose intensity should
be square additive.

νe =
√
ν2 + ν20 . (5)

By simple substitution, we have just defined two quantities:

ν0 = νt

√
1 +

2ν

νt
. (6)

and

α0 = αt

√
1 +

2α

αt
. (7)

We can redefine νt and αt in terms of these quantities:

νt =
√
ν2 + ν20 − ν (8)

αt =
√
α2 + α2

0 − α (9)
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The (molecular) Prandlt numbers is defined as Pr = ν
α . Similarly, the

turbulent Prandtl number is defined as Prt =
νt

αt
and the asymptotic turbulent

Prandtl number as Pr0 = ν0

α0
. This later number has been conceived in order to

be the most possible independent of the fluid. Noting that α
α0

= Pr0ν
Prν0

, simple
algebraic manipulations from the former equations give:

Prt =
Pr20
Pr

√
1 + (Prν0

Pr0ν
)2 + 1√

1 + ( ν0

ν )2 + 1
. (10)

This specific form is chosen to show that is is ”difficult” to make degenerate to

infinity. In effect, because ν0 goes to zero if νt does, then Prt tend to
Pr20
Pr while

forge large turbulence, Prt tends to Pr0. In turn, if Pr0, built for this purpose,
do not degenerate, then neither do Prt.

This formulation is practical only if ν0 is readily available. This would be
the case if we had a transport equation for ν0 or a related variable similarly
to what is done with the usual 2-equations turbulence models. Exploring the
potential of this possibility is beyond the scope of the current argument and we
need to express Prt in terms of known parameters.

Thus, expressing Prt, in terms of νt instead of ν0, the formula reduces to:

Prt =
Pr20
Pr

(2 + Prνt

Pr0ν
)

2 + νt

ν

. (11)

this form being useful for interpretation at vanishing turbulent viscosity. Or

Prt = Pr0
(1 + 2Pr0ν

Prνt
)

1 + 2ν
νt

(12)

better suited for larger νt. In particular, when νt > 20ν, the former expression
can be approximated within ∼ 1% under a Kays correlation [2] like form:

Prt ≃ Pr0 + 2
Pr0(Pr0 − Pr)

Prνt

ν

(13)

Taking into consideration that Pr0 is usually taken as Pr0 = 0.85, we get for
Pr ≃ 0.02:

Prt = 0.85 +
1.41

Pr νt

ν

(14)

For the second coefficient (here 1.41), Kays indicated two values, 0.7 and 2
discussing without reaching a conclusion in favor of one or the other value.
However, the current value of 1.41 is quite close to the value value of 1.46 used
by [6] to better fit heat transfer in a tube by direct analytical integration.

There are indication [2] that Prt and therefore also Pr0 is about 0.85 for very
large νt/ν. We do not know the behavior of Pr0 for lower values. Nevertheless,
we expect a rather constant behavior down to (close to) the Kolmogorov scale
when the laminar viscosity dominates the turbulent one. In this later case, the
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hypothesis of independence of the stochastic processes becomes questionable. It
is also interesting to observe that for medium and high Pr, then Prt in formula
(12) to not significantly departs from Pr0.

While the derived formula is thought to be used within a turbulence model it
can be so only if the turbulence model correctly predicts the turbulent viscosity,
not only in the viscous boundary layer but also and principally in the bulk. The
problem is that the turbulence models mainly focus on a correct boundary layer
turbulent viscosity profile, as it is the place where almost all the pressure drop
is built. The turbulent viscosity profile in the bulk is normally of no practical
importance, except for thermal flows of low Prandtl fluids.

3 Conclusion

We consider that turbulent and molecular viscosity are originated from two
independent stochastic processes whose intensity is square additive. We make
the same consideration for the turbulent and the thermal conductivity. As a
direct consequence, comes a simple expression for the Prandtl number which first
order approximation is very similar to a variant of Kays’ correlation, the only
non-trivial correlation exclusively based on local parameters and thus suited
for arbitrary CFD simulations. The formula introduces and depends on only
one parameter, the asymptotic Prandtl number which is built to be the less
possible dependent on the fluid physical properties and is basically known at
large turbulence.
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