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ii Abstract 

 

Abstract 
The aim of this document is to check whether the sloshing phenomena can be satisfactorily 

addressed by CFD simulations. The modelling approach needs to be compatible with the overall 

primary coolant simulation of pool-type GEN-IV HLM fast reactors such as ALFRED and MYRRHA. 

In the introduction, we describe the basic phenomenology, its relation to safety, and our operating 

strategy. 

The CFD modelling needs to be validated by comparison with experimental results. In the first 

part, we expose the rationales for the definition of an experimental campaign to be realized by VKI 

on the SHAKESPEARE platform. We justify the use of water in a cylindrical tank of diameter 60 cm 

also giving elements of dimensional analysis.  

Second, we describe the sloshing modelling and its CFD implementation. The Realizable k-e model 

is used with recommended STARCCM+ sub-models and parameter settings. Convection and 

temporal discretization are second order. Adaptive refinement of the free-surface is 

contemplated. A method to obtain with high accuracy the height of the free-surface in coincidence 

with a line-probe is described. The parameters determining the tank displacement are explicated. 

Numerical measures aimed both at controlling and maintaining the free-surface integrity are also 

described.  

An experimental test by VKI is used for comparison is used to refine, adapt and validate the CFD 

modelling, leading to abandon the turbulent setting in favor of the laminar one. The experimental 

abrupt transition from the planar to the chaotic mode is reproduced with high precision by the 

CFD simulation. It is found out that the transition does not take place where expected from 

literature. For different forcing amplitudes, new frequency transition values are numerically 

determined and if later proved correct experimentally will demonstrate the capability of CFD to 

capture the essential sloshing phenomena. 
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1 Sloshing CFD modeling and validation with SHAKESPEARE first experimental campaign 

1 Introduction 
This document is addressing the second argument in the objectives of WP4 as quoted below: 

“(ii) To further enhance the modelling and computational readiness level of sloshing dynamics in 

compact liquid-metal filled pools and to retrieve the expected impact forces and dislocations on 

the involved components for a reference system (e.g. ALFRED)”. 

1.1 Basic phenomenology 
Sloshing is the phenomena appearing when a tank partially filled with a liquid with a free-surface 

is “agitated”: the free-surface acquires momentum and deforms in a variety of time dependent 

ways. 

Usually when a tank is partially filled with a liquid, the liquid settles at the bottom of the tank due 

to the gravity force. If the tank is displaced or rotated, it applies an acceleration to external border 

of the fluid. The fluid inside will adapt to the tank acceleration by building an internal pressure 

gradient that is then transformed in motion of the fluid. Only in rare cases, the fluid motion, 

governed by the equations of the fluid-dynamics will coincide with the tank motion. In general, the 

fluid will exhibit a motion relatively to the tank reference frame, inducing and comprising a 

deformation of its free-surface. If the forcing has a strong periodic component near the natural 

frequencies of the tank then a coupling can appear and lead to a liquid displacement much higher 

than the forcing amplitude. In this case, the force exerted by the fluid on the tank can endanger 

the structural integrity of the tank and its supporting structure or even the stability of the vehicle 

holding the tank. 

1.2  Relation to safety 
Historically, sloshing induces a safety hazard in the transport of most if not all fluids. When the 

container is open, sloshing can make the fluid spill over, make people get dirty or be lost and 

contaminate the environment. When the container is closed, like in car reservoir, but more 

critically, in a tanker-truck or a super-tanker, sloshing can compromise the stability of the vector. 

In aeronautics and “rocket” science, the situation is even more critical as the accelerations can 

largely overcome the stability induced by gravity. 

In this context, sloshing has been intensively and extensively investigated, bringing a large mole of 

available material and technical-scientific understanding. This is a good basis, even if our concern 

lays in a quite different framework. 

What we want to evaluate is the effective possibility that sloshing can impact the resilience of the 

ALFRED main Vessel and internal components to seismic forcing. 

1.3 Operative strategy 
The design of ALFRED must take into account the possible effects of sloshing under seismic load. It 

is unrealistic to build a full scale model of ALFRED and put it on a shaking table to verify by trial 



 

 

2 Rationales for the experimental campaign definition 

and error that everything goes safely and tests variants until a satisfying configuration is found. A 

more articulated and progressive approach is required. 

First, we must understand the basics of the phenomena, the underlying physics and the controlling 

parameters. This can be done through literature review. 

We must interpret this preliminary knowledge in terms useful to define a preliminary 

experimental campaign, compatibly with a series of constraints: 

• the capabilities of the SHAKESPEARE shaking table operation; 

• the possibility to make available a sound instrumentation; 

• the possibility to numerically replicate the experimental campaign by mean of our CFD 

tools; 

• the possibility to compare meaningful experimental measures with numerical result, 

hopefully allowing to validate these later; 

• the possibility to proceed naturally towards further experimental campaigns progressively 

more obviously related to the seismic forcing of ALFRED. 

In parallel, we must ensure the capability of our CFD instruments to replicate the experimental 

campaign and develop the necessary tools to make the CFD related constraints on the experiment 

essentially irrelevant. In other terms, the CFD tool must demonstrate sufficient versatility such 

that it allows comparison with whatever experimental data may come out.  

2 Rationales for the experimental campaign 
definition 

The rationales behind the definition of the first experimental campaign come from the integration 

of several considerations and analysis that are exposed in this part. 

2.1 Liquid choice 
We explain here briefly why water is a good choice for our experimental campaign, keeping in 

mind later check with mercury. 

• Lead or LBE. Ideally, the fluid should be Lead or LBE. However, they cannot be used in this 

framework because they are not liquid at room temperature and it is way too costly to 

build a “hot” sloshing experimental setup. 

• Mercury. The only heavy metal liquid at room temperature and relatively easy to 

purchase in sufficient quantities. It is very heavy and opaque. Its specific weight limits the 

volume operable. Its opacity limits the instrumentation. Use of mercury is subject to 

health safety concern. 

• Water. Unlimited availability without particular safety concern. Low density allows larger 

volume and more easy and precise instrumentation. However, the density being much 

different from the Lead one, we must demonstrate why this is not an issue. Transparency 

allows more instrumentation options. 



 

 
 

3 Sloshing CFD modeling and validation with SHAKESPEARE first experimental campaign 

Dimensional analysis will show that in the present framework water can be representative of Lead 

or LBE upon applying the correct scaling. The main experimental campaign should be performed 

with the larger amount of water that can be easily handled and stored on the shaking table. 

Reduced scale experiments with mercury can be performed later on to demonstrate a posteriori 

the correctness of the dimensional analysis. This must be performed at the latest stages of the 

work program, at a time when the features to be scaled and reproduced are well understood. 

2.2 Experimental focus and vessel rationales  
Driven by the simplicity requirement and also a rapid literature survey, see [1],[2] and their 

references, we chose to have a cylindrical tank partially filled with tap water and make it subject to 

periodic unidimensional horizontal solicitation. We know from the literature survey the diagram 

frequency-amplitude solicitation diagram and its regions of interest to demonstrate experimental 

control and validate the numerical representation. 

When the cylindrical tank water filling height is at least 1.5 times its radius, then the inviscid 

theory tells us that the effect of the bottom becomes negligible. The shaking table must allow this 

factor 1.5. Lower filling can still be foreseen at a later stage to inquire on more shallow 

configurations. 

The larger transparent (Plexiglas) cylindrical vessel easily purchasable, that can be operated by the 

table with 1.5 radius water filling, has a diameter of ~60 cm. 

 

Figure 1. From [1]. Amplitude-frequency diagram for four different forcing amplitudes 𝑨𝒇 𝑹⁄ : , planar wave mode 1;  , swirling 

wave mode for 𝑨𝒇 𝑹⁄  = 0.0266; , , 𝑨𝒇 𝑹⁄  = 0.0133; , , 𝑨𝒇 𝑹⁄  = 0.0066; ◦, •, 𝑨𝒇 𝑹⁄  = 0.0033. A stable swirling wave (shaded 

region) exists between the filled symbols and chaos is observed to the left of it (hatched region). The dotted branches are the 

bounds of swirl of Abramson (ref. [4] in [1]). The upper horizontal line indicates 𝒃𝝎𝟐 = 𝒈, giving 𝒃 𝝀⁄  = 0.16 (𝝀 = 3.411 𝑹). The 
tank, filled with water to 𝒉 𝑹⁄  ≈ 1.5, has a radius 𝑹 = 78 mm. 

 

2.3 Justification: elements of dimensional analysis 
From the inviscid analysis of an infinite cylinder or radius 𝑅 partially filled with a liquid (and no 

cover gas), we obtain the first asymmetrical natural frequency formula for the free-surface. It 



 

 

4 Rationales for the experimental campaign definition 

makes use of the important geometrical parameter 𝑘11 = 1.841 𝑅⁄ . With this parameter, the 

simplified dispersion relation is: 

𝜔11
2 = 𝑔𝑘11(1 + 𝜎𝑘11

2 𝜌 𝑔⁄ ) 

where 𝜔11 is the first asymmetrical pulsation (in Rad/s), 𝑔 the gravity acceleration, 𝜌 the fluid 

density and 𝜎 its surface tension. 

Apparently, the natural frequency depends on the cylinder radius, gravity, fluid density and fluid 

surface tension. But density and surface tension only appear once and coupled in the form 𝜎 𝜌⁄ . 

Thus, the kinematic of the free-surface depends effectively on (1) only one fluid related property, 

the kinematic surface tension 𝜎 𝜌⁄  (in m3/s2), (2) the cylinder radius and (3) the acceleration of 

gravity. As we do not intend to leave the earth surface, we can consider the gravity acceleration as 

a constant of our framework. The relative effect of the (kinematic) surface tension on the 

pulsation scales down with the square of the cylinder radius. So, the larger the radius, the less the 

effect of surface tension. This is quite in line with the common intuition. As our objective is to have 

valid extrapolations for ALFRED or MYRRHA whose vessel is essentially a cylinder several meters 

wide, surface tension is only a parasite of our experimental setup. This is an additional reason why 

we prefer to have the experimental vessel as large as possible. 

Taking for granted that the surface tension effect can be made negligible, the dispersion relation 

simplifies to 𝜔0
2 = 𝑔𝑘11 = 1.841 𝑔 𝑅⁄ . The natural frequency is higher for smaller cylinders. 

Measure instruments have usually a finite precision and have therefore a better relative precision 

for larger radii and smaller frequency. This arguments comfort the choice of a large cylinder. 

To get a better insight on the possible parasite effect of surface tension, some relevant quantities 

are given in Table 1 both for water and mercury. This is however related to perturbations 

according to the inviscid theory. For real liquids, the fluid sticks to the walls instead of being free 

to slide effortlessly. Without entering considerations on the attachment angle and its possible 

hysteresis, we make a simple evaluation of a possible induced perturbation. 

First, let us consider the length 𝐿 at which effects of surface tension and gravity are similar, i.e. 

𝜎 𝜌 𝐿2⁄ = 𝑔 or 𝐿 = (𝜎 𝜌𝑔⁄ )1 2⁄ . On a border of width 𝐿, all around the cylinder, surface tension is 

expected to matter. Now, let’s see what is the proportion 𝑃 of the free-surface concerned: 

𝑃 = 2𝜋 𝐿𝑅 𝜋𝑅2⁄ = 2𝐿 𝑅⁄  

For water at ambient temperature 𝐿 = 2.7 mm. This mean that for a tank radius of 7.8 cm like the 

one used in [1], deviation from the inviscid theory is likely to appear for about 7% of the free-

surface. This effect is potentially much larger than the deviations of the natural frequency and in 

an optic of extrapolation to ALFRED and MYRRHA vessels, it justifies better the need for the largest 

cylinder affordable. 

With regard to the 1.5 radius filling requirement, it is clear that it comes from the inviscid theory in 

the limit of small displacements. For large displacements, the vessel bottom “comes closer” to the 

free surface and the volumes that are displaced below the free-surface feel more strongly the 

limitations of available space. We will see that this constraint induces a dissymmetry, not present 

in the inviscid analysis, of the waves with regards to the mean free-surface horizontal plane. This is 
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not a real issue but rather a feature useful to measure so as to better check the numerical 

implementation. 

Table 1: perturbation effects of surface tension and natural frequency for different cylinder radii at ambient temperature. 

 Water Mercury 

Density 𝜌 [kg/m3] 998 13,534 

Surface tension 𝜎 [N/m] 0.073 0.486 

𝜎 𝜌⁄  [m3/s2]  7.3 E-5 3.6 E-5 

𝜎𝑘11
2 𝜌𝑔⁄  [adim] 25.2E-6/𝑅2 12.4E-6/𝑅2 

𝜎𝑘11
2 𝜌𝑔⁄  [adim] 𝑅 = 1 cm 0.252 0.124 

𝜎𝑘11
2 𝜌𝑔⁄  [adim] 𝑅 = 7.8 cm 0.0041 0.0020 

𝜎𝑘11
2 𝜌𝑔⁄  [adim] 𝑅 = 30 cm 0.00028 0.000138 

𝜎𝑘11
2 𝜌𝑔⁄  [adim] 𝑅 = 1 m 0.0000252 0.0000124 

𝜔0 = (𝑔𝑘11)1 2⁄  [Rad/s] 4.25/𝑅1 2⁄  

𝑓0 = 𝜔0 2𝜋⁄  [1/s] 0.667/𝑅1 2⁄  

𝑓0 = 𝜔0 2𝜋⁄ , 𝑅 = 1 cm 6.67 

𝑓0 = 𝜔0 2𝜋⁄ , 𝑅 = 7.8 cm 2.39 

𝑓0 = 𝜔0 2𝜋⁄ , 𝑅 = 30 cm 1.22 

𝑓0 = 𝜔0 2𝜋⁄ , 𝑅 = 1 m 0.667 

𝜔11 𝜔0⁄ − 1 [adim] (1+25.2E-6/𝑅2)1/2-1 (1+12.4E-6/𝑅2)1/2-1 

𝜔11 𝜔0⁄ − 1 [adim] 𝑅 = 1 cm 0.119 0.060 

𝜔11 𝜔0⁄ − 1 [adim] 𝑅 = 7.8 cm 0.0021 0.0010 

𝜔11 𝜔0⁄ − 1 [adim] 𝑅 = 30 cm 0.00014 0.000069 

𝜔11 𝜔0⁄ − 1 [adim] 𝑅 = 1 m 1.3E-5 6.2E-6 

3 Sloshing Modeling and CFD implementation 
The first experimental campaign investigate the behavior of water filling for 45 cm height a 

cylindrical vessel with flat bottom or radius 30 cm. The vessel is positioned on and fixed to the 

SHAKESPEARE seismic platform which will impose periodic horizontal displacements of various 

intensities but below the centimeter range at a main frequency in the vicinity of the first 

asymmetric resonance. 

The maximum free surface height is monitored as well as the free-surface height at a few 

horizontal positions. 

Modelling of sloshing in view of its CFD implementation requires to comply a priori with several 

feature requirements: 

• acceptable requirement of computational resources; 

• compatibility with extension to the general ALFRED-MYRRHA CFD current modelling; 

• easily adaptable to seismic input signals; 

• fluid and (incompressible) flow independent; 

• valid for laminar and turbulent flows; 

• synergy and compatibility with the SHAKESPEARE seismic table. 



 

 

6 Sloshing Modeling and CFD implementation 

3.1 Turbulence 
The determination a priori of the turbulent character or not of the flow is aided by the 

determination of some Reynolds number: Re = 𝑈𝐿 𝜈⁄ , where 𝑈 is a characteristic velocity, 𝐿 a 

characteristic length and ν the kinematic viscosity. Viscosity of water at ambient temperature is 

about ν = 10-6 m2/s. It is common usage to take the hydraulic radius as characteristic length 

𝑅ℎ = 𝐷 4⁄  where 𝐷 is the cylinder diameter. In our case 𝑅ℎ = 7.5 cm. 

The characteristic velocity can be inferred from Figure 1. Remarking that for our vessel the y-axis 

gives approximately the height in meters, we expect sinusoidal waves of amplitude in the range 2-

14 cm. The frequency is about 𝑓0 = 1.2 Hz and the pulsation about 𝜔0 = 8 /s giving a maximum 

velocity when the free-surface is flat between 0.16 and 1.1 m/s. As a result Re > 12,000, a clear 

indication that the flow is turbulent or should soon become turbulent if it starts at rest. 

So, until proof of contrary, the flow is expected turbulent and modelled as such. This has been the 

case for the first 18-24 month of the project, until controlled experimental result were shared and 

could be compared with the numerical results. The matching was absolutely not satisfying. In the 

meantime, VKI made also simulations but considering a laminar flow and had excellent matching, 

indicating with very little doubt and against any a priori expectation that the flow is indeed 

laminar. 

Laminar flows are generally more easy to handle than turbulent flows, especially free-surface 

flows. Issues like mass conservation, stability, and spurious currents do not arise so critically. 

While useless for the first experimental campaign, the determination of a suitable setting for 

turbulent free-surface flows may reveal useful for extrapolation to much wider domains related to 

ALFRED or MYRRHA in which the Reynolds number can be one or two orders of magnitude higher. 

Besides, some settings are independent of the turbulent nature of the flow. 

In the following, we will describe the turbulent setting that as been built. 

3.2 Turbulence Settings 
Simulations performed under the turbulent setting are using the RANS averaged Realizable k-ε 

model with ALL y+ boundary layer. Unless otherwise précised, STARCCM+ default setting are used. 

Convection and time discretization are second order. 

3.3 Dynamical refinement 
From version 17 of STARCCM+ (installed in 2022), it is now possible to dynamically refine the 

computational grid in vicinity of the free-surface and reset it when the free-surface moves away. 

This feature is particularly interesting in our case because the free-surface displacement 

encompass a very large part of the computational domain for which a permanent refined state is 

costly. In other words, this dynamical refinement allows a better free-surface capture at parity of 

global number of control volumes. 

The dynamical refinement has been widely used during the preparatory phase. It seems very well 

adapted for some contexts, mainly open flows. In our case, we need very clean and precise results. 

Remeshing takes time so it must not be performed at each time step. It is suggested to remesh 



 

 
 

7 Sloshing CFD modeling and validation with SHAKESPEARE first experimental campaign 

every 5 time steps or so. We notice burst of pressure and maximum velocity after each remeshing, 

which are mostly absorbed during the next 4 time steps before the next remeshing starts. After 

other issues have been solved, one level of refinement works pretty well while with two levels of 

refinements, some small instabilities order 1 cm/s appear in the velocity field. 

3.4 Case control 
During the preparatory phase, there has been a progressive increase in the use of global 

parameters to control the simulation only at a top level without modifying directly field functions. 

A typical simulation requires to define and is completely controlled by the following parameters: 

• time laps of flow at rest (without forcing); 

• asymptotic forcing amplitude; 

• asymptotic forcing frequency as a multiple of the natural frequency; 

• number of periods to reach the asymptotic amplitude; 

• number of periods of steady periodic forcing; 

• number of periods to get back to zero forcing. 

3.5 Measures 
There are basically two types of measurements that are performed on the simulation: 

• the measurements that can be compared with the experimental one; 

• the measurements that serve to check that the simulation is performing correctly. 

This part deals with the first king of measurements. 

The experiment is measuring: 

1. the maximum free-surface height from post processing of images from a video of the 

experiment; 

2. the free-surface position in correspondence with four vertical line probes located near the 

cylinder wall symmetrically on the reference axis with one axe collinear to the forcing; 

3. the displacement of the vessel as a control of the displacement input; 

4. free-surface integrity. 

The corresponding numerical measures are obtained by use of parts, field functions, reports, 

monitors and plots. 

The parts are primarily the geometrical constituent of the computational grid, mainly the volumes, 

their interfaces and their boundaries. Many types of derived parts can be built from these 

constituents, making use of geometrical and physical considerations. Points, lines, line probes, iso-

surfaces of physical quantities, cell sets and streamlines are among the more common examples. 

The field functions allow to recover all and any field that can be built from existing fields such as 

velocity, volume fraction, density, pressure, temperature, viscosity, turbulent energy and so on. 

Many fields are built-in and directly accessible, other fields can be built from them by use of field 

functions. 



 

 

8 Sloshing Modeling and CFD implementation 

The reports can access all field functions separately on whatever relevant group of parts and can 

return indicator such as minimum, maximum, average, sum or integral value of the field function. 

The monitors register the value returned by the reports on an iteration or time-step or time 

interval basis. The data can be further assembled in plot representations. 

We are now in condition to explain how the experimental measures can be replicated numerically. 

3.5.1 Maximum free-surface height 
A derived part is constructed in the form of the iso-surface of the water volume fraction, at value 

0.5, over the entire fluid domain. A report takes the maximum value of the height over this iso-

surface and is registered by a monitor and assembled in a dedicated plot. 

3.5.2 Free-surface at vertical line probes 
The numerical representation initially implemented was not totally satisfying and a different, 

better one, had to be found out. 

3.5.2.1 First representation 
For each experimental line probe, a corresponding vertical line probe as been constructed. It 

consists in a series of points separated by a constant interval. A derived part is defined by taking 

only the points for which the water volume fraction is above 0.5. Then a report returns the 

maximum height value on this derived part. 

The volume fraction in each point is in fact the value given to the control volume it falls into. If 

more than one point lies in the same control volume, they all share the same volume fraction 

value. This means that the precision of the measure is strongly limited by the control volume 

vertical size. At first glance, this approach seems optimum. An illustration is given below. 

 

Figure 2. Example of the time history of the position of the free-surface at a vertical probe. 
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3.5.2.2 Second and final representation 
Remarking that the signal given by the maximum free-surface height was way much smoother and 

precise that the one on the vertical lines, we inquired on a way to obtain the same signal quality. 

The overall free-surface derived part already being available, new derived parts were defined by 

restricting the free-surface to a small surrounding of the line probe horizontal position. Then a 

report returns the surface averaged height on this surrounding. The surrounding is large enough 

only to always contain at list one cell of the free-surface part. If too small, the signal can be 

occasionally lost. If too large, it can be smeared. The surrounding depends on the computational 

grid and must be checked each time this later is changed. However, the final signal is extremely 

smooth and able to report periodic oscillations at the micron size with control volumes in the 

millimeter range. This is useful to determine accurately the numerical natural frequency and its 

decay characteristics. 

In Figure 3, we show the free-surface height at the four measured positions in a case let settled for 

quite a long time, until no residual periodic oscillation could be clearly identified. The signal is very 

smooth, especially considering that the vertical scale span a range of 0.2 μm. 

 

Figure 3. Height of the free-surface at four position in a 1 s time lap. 

3.5.3 Displacement 
The displacement being oriented along the x-axis, a report returns the maximum x-coordinate 

over the vessel bottom. It is stored in a dedicated monitor from which it can be plotted. This kind 

of report is operated only on an existing small part to avoid useless calculations. The signal is also 

easy to further scale and translate at the plot stage. 

Similarly to the experiment, the displacement is imposed by setting either a displacement or a 

velocity law. It is however measured a posteriori for consistency check. 

3.5.4 Free-surface integrity 
Thanks to the transparency of the medium and of the vessel, it can be controlled visually that 

there is no relevant occurrence of bubble inclusion or droplets ejections. In fact, in this first 
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experimental campaign, we want to explore the space of parameters in which this feature remains 

true. 

Numerically, thinks can easily become tricky. It is very easy that the free-surface become smeared 

or that blobs of low air volume fraction unphysically wander into the water, slowly developing end 

finally jeopardizing the simulation. It is very easy to stay unaware of such phenomena until it is too 

late because if the air volume fraction is below a few percent, then it is not individuated by a usual 

color map spanning the volume fraction from 0 to 100%. 

To get rid of the phenomena, one must first be able to observe it the sooner the better. 

Pollution of one phase into the other can be monitored by creating (dynamical) cell sets containing 

all the control volumes for which the volume faction is very low but not irrelevant. By default, a 

volume fraction of any phase is bounded low at 10-10 for stability or the simulation. So, except 

occasionally at the free-surface, a volume fraction in the range [10-8; 10-3] or so is indication of 

spurious inclusion in the other phase. 

The volume of such cell sets is then monitored. As said before, due to the free-surface, it cannot 

be null. But monitoring allows to capture an anomalous increase of the phenomena. On a more 

qualitative point of view an accurate choice of volume fraction range allows to pinpoint the 

phenomena on classical representation scenes. This is illustrated in Figure 4, hereafter. 

 

Figure 4. Illustrations of methods to observe and monitor anomalous phase inclusions. 

3.6 Further numerical control and measures 
While the number of experimental measures is by force limited, this is much less true for 

numerical measures. Because there cannot be direct comparison, further numerical measure 

cannot really serve to validate the simulation. Instead, they can serve to: 

• check the internal simulation consistency; 

• infer possible flow features that cannot be measured; 

• provide input for future experimental measurements. 

We now expand the argument with some illustrative examples. 



 

 
 

11 Sloshing CFD modeling and validation with SHAKESPEARE first experimental campaign 

3.6.1 Wall pressure measurements 
Sloshing induces a variable pressure load on the vessel. This load can be numerically reported by 

integrating the product pressure per normal vector over the entire vessel wall. Once again, the 

pressure components can be shifted and rescaled at plotting time, for example by removing the 

vertical component of the pressure load at rest. 

As pressure gauge measurements on the walls are expected at a later stage, it is useful to start 

checking the effective numerical availability. 

While not tested here, if necessary, also torque similar numerical measurements can be 

performed. 

3.6.2 Velocity check 
The velocity field is readily available from the simulation in every point of the computational 

domain. Spurious velocities on or near the free-surface are a widely known candidate for 

unphysical behavior of the free-surface. In fact, an initial difficult task is to stabilize a simulation 

with an initial free-surface and the fluids (almost) completely at rest. It is therefore useful to 

monitor the maximum velocity in time in the computational domain. This is not sufficient because 

is case of spurious velocities, it is also useful to know where they appear. This is done in two 

complementary steps. 

First the overall maximum velocity is monitored, but also the maximum velocity weighted by each 

of the two volume fractions and finally the maximum velocity restricted to the free-surface 

derived part. So, in case a spurious velocity appears as indicated by the first monitor, we can infer 

from the other ones whether is appears in the water, in the air or at the free-surface. If neither of 

the last three monitors indicate a spurious velocity, it means the this later appears in the 

immediate vicinity of the free surface but not exactly on it. 

The secondary step consists in building a dynamical cell set with all computational volumes 

showing a velocity above a certain threshold which must be determined on a case by case basis. 

The first step is partially illustrated in Figure 5 where we can see the maximum velocity in the 

water (in green) gently following the sloshing oscillation while unphysical burst of velocities (in 

red) appear globally and thus somewhere above the free-surface. In this particular case, different 

behaviors can be seen as the result of partially failed attempts to solve the issue by changes in the 

numerical setting. 
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Figure 5. Partial history of a maximum velocity monitor and a maximum water volume fraction weighted velocity monitor. 

3.6.3 Mass conservation and spurious phase diffusion. 
A known issue in the simulation of multiphase flows is the frequent occurrence of mass loss or 

mass gain. In open domains, usually nobody cares because the gain or loss is small and the 

residence time is limited so that there cannot be accumulation in time. The issue is much more 

critical for closed domains subject to long transient flows. In effect, a small mass gain in time can 

accumulate up to the point that the volume occupied by the phase is macroscopically increasing, 

for example leading to a slow drift in the mean height of a free-surface. From preliminary 

simulation, we expect that asymptotic behaviors can be reached only after several hundreds of 

forcing periods, which puts us in this later case. 

It is therefore necessary to monitor in time the inventory of each phase. This is done by a report 

returning the integral of the volume fraction over the whole computational domain. It is often 

difficult to know why there is a mass drift and how to remove the cause. In some case, we have do 

get along with it and make artificial corrections. The method for the correction is the following: 

1. measure the mass error of one phase; 

2. localize a “quiet” region where the phase volume fraction is unit; 

3. set a volume fraction source term in this region, proportional to the mass error and divided 

by a characteristic time suitably dimensioned; 

4. perform steps 2 and 3 for the other phase in such a way to avoid overall creation of 

volume. 

Creation of volume in a closed domain is physically inconsistent. Numerically this is resolved by 

bad convergence of the pressure correction which in turn tends to concentrate the error and 

brings the appearance of local possibly high spurious velocities. One thus must be very cautious 

playing with volume fraction sources in closed domains. 

As mentioned before, the minimum volume fraction of a phase is bounded below to 10-10 for 

numerical stability reasons. The exponent can be modified at the risk of the user and we will not 

explore this possibility here. So, there is always at least a tiny seed for the phases. Various 

phenomena can bring the simulation locally into a state where the sum of the volume fraction is 
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not exactly unit. The way the software resolve the situation is by applying a pressure correction 

and/or renormalize in some way the volume fractions. Details are complex and not completely 

known. Fact is that the very dispersed phase often tends to see its volume fraction grow and this 

growth seem to be quite exponential at the beginning, meaning that the growth rate is 

proportional to the current volume fraction. This also means that if the phenomena is contrasted 

at its very beginning then the cure can be extremely light and have whatsoever no measurable 

impact on the quality of the simulation. 

The cure is performed as follows: 

1. an air volume fraction sink is defined and applied in the water region. The term is 

proportional to the air volume fraction and the coefficient of proportionality is 

representative of a carefully set characteristic time. To localize the sink term in the water 

region, it is multiplied by the water volume fraction; 

2. the integral of the sink term is monitored; 

3. an equivalent source term is applied in a “quiet” air region; 

4. steps 1 to 3 are replicated for water. 

In the end the source/sink terms in the “quiet” region are the sum of two contributions, one 

aimed at preserving the overall phase inventory and the other the compensate the cleaning of the 

phase in the other phase domain. 

The characteristic times are stored as parameters so as to be easily changed without modifying the 

writing of the user functions. 

An extreme care must be taken to ensure that the global volume balance is at null sum. In 

particular, it is not enough that the null sum is reach only at a single precision level. Here we 

explain how a very slight error contributed to an extremely large quantity of trouble. 

The target volume inventory of each phase is measured at the simulation initialization or is 

calculated analytically. Same thing for the total volume of the computational domain. The total 

volume is stored as a parameter. 

Once the target water volume is decided, to be cautious, the target air volume is defined by 

difference with the total volume and both are stored as parameters. Except that the total volume 

is neither exactly the analytical volume nor the volume given (in single precision) by the report in 

the output window of the software. There is a small imbalance because the source terms objective 

was to fill a slightly different volume than available. 

To solve the issue a report is built as the difference between the former report and its single value 

precision value. From the difference, the total volume could be adjusted to a sufficiently higher 

number of digits. This correction greatly contributed to remove the spurious velocity issue. 
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4 Numerical model 

4.1 Historic 
A very large number of simulation as been performed in order both to help determine the 

experimental setting and also to find a satisfying numerical setting. Truth is that the simulations 

have been plagued for a very long time with excessive bursts of spurious velocities near the walls 

or close to the free surface or randomly appearing in the air bulk. Until the very precisely 

controlled experimental result from VKI were available, the aim was to have “clean” simulation 

with plausible results. By clean, we mean simulations without unphysical bursts of velocity and 

without mutual pollution of the phases. The process to get clean simulation has been long and 

non-linear and brought us to stick to some empirical but necessary consideration: 

• the temporal discretization must be set second order; 

• the pressure under-relaxation factor must be raised from the multi-phase default 0.2 up to 

0.4 or 0.5 (it is still not clear which is better); 

• the velocity under-relaxation factor must be set to 0.7; 

• strong refinement at the wall, maybe in conjunction with high cell aspect ratio, conflicts 

with the surface tension treatment. Happened only for small vessels (7.8 cm radius) and 

water; 

• volumetric source terms are both necessary and must be handled very carefully and 

precisely. 

The more surprising requirement is on the pressure under-relaxation factor. It must be 

understood under the condition of 5 iteration per time step and CFL controlled time step. Usually, 

in situation when numerical convergence is at risk, it is good practice to reduce the under 

relaxation factors. It is the contrary in our case. Our interpretation is that pressure is bound to 

adapt fast to variations of the free surface. In particular the pressure gradient is very different 

both sides of the free-surface. If pressure adaptation lags, then spurious velocities develop. 

In Figure 6, we show on a non-better described sloshing test case what happens to the spurious 

maximum velocity in red when correction actions are taken. On the left, we see the effect of 

raising the pressure under-relaxation factor from 0.2 to 0.5 at time 65 s. Apart from the sudden 

drop at time 65 s, we also see a slow rising instability however at a much lower intensity. The full 

time of the simulation is shown on the right. The disappearance of the residual flow instability at 

time about 115 s is due to the improved handling of the volume fraction source terms. 
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Figure 6. Time history of the maximum velocity in a test case in which the spurious velocity has finally been vanquished. 

4.2 Experimental reference configuration 
The VKI experiment is performed on a vertical cylinder of internal radius 𝑅 = 29.9 cm and flat 

bottom. It is filled with tap water up to 1.5 𝑅. 

The first experimental tests results have been illustrated by VKI at mid September 2022. Then, the 

post processing and sharing of some of the tests results followed. In particular, three tests have 

been shared: 

• 92% natural frequency (linear test); 

• 92.55% (near transition); 

• 92.75% (transition). 

The exact geometry of the test section was provided and the input conditions. The table X-

displacement in time (time step 0.01 s) was provided both as input to the table and as measured 

experimentally by laser. The heights of the free surface level at four positions were provided as 

tests results, still at 100 Hz. 

The numerical geometry has been updated to reflect the experimental one. In particular, the 

vertical probes have been positioned at 5 cm of the vessel wall. 

The precise value of the natural pulsation under the inviscid linear theory is 𝜔11 = 7.77 rad/s 

corresponding to the frequency 𝑓11 = 1.236 Hz. 

4.3 Numerical setup 
Here are the main numerical setup for the simulation of the linear test case 92% natural frequency 

and sinusoidal forcing with amplitude 𝐴𝑓 = 3.98 mm. This setup is built in the turbulence 

framework and later changes are indicated. When a setting is not indicated it is normally the 

default one: 

o base mesh size = 0.02 m (for faster run). Later on, the mesh was refined (1 cm); 

o adaptive mesh with 1 or 2 refinement levels. Later on, with refined mesh and turbulent 

setting, the adaptive mesh was disabled; 
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o adaptive time-step: Convective & Free surface CFL condition (Default). Maximum time 

step: 0.01 s; 

o iterations per time-step: 5; 

o different turbulent regimes were tested: RANS Realizable K-ε and LES; 

o also laminar regime was tested; 

o convection 2nd order; time discretization: 2nd order; 

o pressure under–relaxation factor: 0.5; 

o velocity under-relaxation factor: 0.7. 

For a consistent comparison, the VKI Table input (X-displacement ) was imported in STAR-CCM+ 

and used directly. Motion was defined as trajectory and displacement along trajectory through an 

imported table by linear interpolation with only X-displacement (hence, putting y = z = 0). 

The simulation is initialized and stabilized for about 5 s. Initialization is performed as follows: 

• the volume fractions are initialized as requires; 

• time step is set to a very low value: 10-10 s and the automatic increase of time-step is 

bounded to 2. This allows the pressure to adapt without creating high initial spurious 

velocities; 

• the time-step reaches is maximum value 0.01 s after about 25 time-steps; 

• the displacement is initiated only after a few seconds to let possible small induced 

currents settle. 

Comparison with the experiment is done on the evolution of the free-surface at two positions, on 

the reference coordinate axis X and Y. For the linear forcing the two remnant positions are 

redundant. 

4.3.1 Comparison with the turbulent simulation. 
The k- ε model is used with Two-Layer wall functions. 

Comparison of the evolution of the free-surface position during the first 60 s of the test is shown 

on Figure 7. First a comment on the experimental result. The modulation of the signal is due to the 

interference of the forcing frequency with the natural frequency. The signal at the forcing 

frequency builds up very fast to a constant amplitude while the natural frequency signal is built up 

at the beginning and then shows a slow exponential decay. The overall shape of the curve and of 

its envelop furnish the framework of critical parameters that the simulation must correctly 

reproduce: 

• the envelop first maximum (and minimum) amplitude; 

• the time of this envelop first maximum (and minimum); 

• the time of the interference first nodes; 

• the envelop amplitude at these times; 

• the decay rate between successive envelop maximums; 

• the asymptotic amplitude. 
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From the figure, we can see verify that the correct forcing frequency has been set. We can also see 

that the initial growth of the envelop is well reproduced. For the rest, nothing goes satisfactorily: 

the envelop first maximum is higher and later, the first node is strongly delayed is much weaker 

and finally the asymptotic amplitude is reached much too soon and at a too high value. 

All these defects points to an excess of the signal initial build up combined with a later excessive 

decay of the natural frequency part of the signal. 

This means that, in spite of consolidated practice of a priori evaluation, the flow could still be 

laminar. This observation was already interiorized by our VKI colleagues and it is time for us to 

follow their lead and test laminar settings. 

 

Figure 7. K-ε numerical (green) and experimental (Black) free surface height for East probe 

 

4.3.2 Laminar simulations 
In the following, we show the comparison of the experiment with laminar simulation. The first 

laminar simulation showed decisive improvement but was not yet satisfying. It allowed to inquire 

on secondary features of the experiment that were not well understood and implemented. 

Switching from a turbulent simulation setting to a laminar one is straightforward in the STARCCM+ 

framework. One open the “select model” window, deactivate all turbulence related models and 

activate the laminar one. And that’s it. 

4.3.2.1 Laminar simulation from direct setting change. 
The result of the simulation is shown on Figure 8. The result is much better than before. In 

particular: 

• the first envelop maximum is captured; 

• the decay of the envelop successive maxima looks quite well; 

• the envelop nodes are much more pronounced. 

However, other features are still not satisfying: 
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• the first node is strongly retarded; 

• the envelop minima do not behave too well. 

 

Figure 8. First laminar simulation. 

 

The laminar approach seems definitively more adapted than the turbulent one. 

4.3.2.2 Simulation with suggested analytical forcing  
The previous simulations have been performed using the measured displacement and a slight 

regularization of it. Some regularization was necessary because the small rumor in the 

displacement signal led by driving twice to an acceleration dominate by rumor. 

As we suspect to introduce an additional uncertainty on the forcing rather than imposing the 

correct signal, we redo the simulation with the analytical forcing that has been initially suggested. 

We also take the occasion to adjust the curve origin. The free-surface height comparison 

experimental-numerical with suggested input displacement is shown in Figure 9. While there is 

still some discrepancy, the simulation results are now close to the experimental one with only a 

slight lag for the first envelop node. This lag appears at the beginning but do not increase for the 

later nodes. This means that the interference pattern is now correctly captured. The convergence 

towards the asymptotic cycle seems also reasonable. 

All in all, this means that the analytical input signal is most probably much closer to the real one 

than the measured one. 
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Figure 9. Free-surface height comparison experimental-numerical with suggested input displacement. 

4.3.2.3 Simulation with implemented numerical forcing. 
In Figure 10, we compare three forcing signals: measured, suggested and implemented. As already 

mentioned, the measured signal lacks regularity and at the smaller scale even unrealistic close to 

the extremes. We also notice that the implemented signal, while identical to the suggested one 

after 3.5 s, is slightly different to it during the first 3 s. In the suggested signal, the envelop was 

controlled by squared sinus shape. But the implement input the square was omitted leading to a 

sharper and faster increase. 

The simulation is redone therefore with the effective implemented input forcing signal. The result 

is shown in Figure 11. We can see that the rather small difference in the initial input signal has a 

non-negligible effect on the numerical results. In particular the discrepancy with the experimental 

results has been about halved. 

There are several sources of uncertainty. From the experimental wide, we have: the real output 

signal, the exact position of the probe and the precision of the measure. From the numerical side, 

we have: mesh dependence, numerical scheme dependence, time step, etc. While we can still 

improve the numerical precision, the comparison with the experimental data is already so good 

that any further improvement maybe purely casual and not necessarily also related to a simulation 

improvement. 



 

 

20 Numerical model 

 

Figure 10. Comparison between the three input displacement signal: measured in blue, input in the table in red and initially 
suggested in dashed black. 

 

Figure 11. Free-surface height comparison experimental-numerical with implemented input displacement. 

4.4 Physical setup dependency 
The previous simulation has been reviewed and a few second order correction to the setting 

performed: residual initial Y-displacement removed, initial X-displacement set as velocity and 

further corrected. Also, included Surface Tension 0.072 N/m, Interface Artificial Viscosity 0.1 adim 

and Semi-implicit Surface Tension. 
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Figure 12. Probe East free-surface comparison with experiment. Reference case for perturbation analysis. 

4.4.1 Initialization setup 
Free-surface flows are always difficult to initialize. Here is how we did it this time. 

• Set an initial volume fraction profile: center cells bellow 45 cm are Water, otherwise Air. 

• Measure precisely the water volume. This number depends on the discretization and 

serves to have consistent volume fraction source terms. 

• Set the initial pressure from a dedicated function consistently with the Water level. 

• Set a 100 iteration ramp (regular timestep 0.002s, 5 iterations/timestep) for all solvers: 

velocity, pressure and volume fraction. 

• Deactivate the displacement. 

• Run for a few seconds. (Check flow is relatively quiet) 

• Reset time/iterations. 

• Reactivate the displacement. 

• Run. 

4.4.2 Reference case attempt 
The reference case is run for 180 s. The comparison with the experiment is much worse than 

before. We are missing something. 

In relation to the coming perturbation analysis, here are its parameters under scrutiny: 

• signal amplitude: 𝐴𝑓 = 3.98 mm; 

• temperature: 30 °C -> Water dynamic viscosity 𝜇 = 0.8E-3 Pa s; 

• trimmed mesh: 1 cm top and bottom, 0.5 cm center. No Boundary Layer. 

When the flow was thought to be turbulent and modelled as such, a check on the effect of 

temperature induced change of viscosity showed no visible effect. It is possible that with this low 

viscosity, there is a mild transition towards turbulence in time. In effect after a while the north 

numerical probe exhibits a small chaotic behavior, as shown in Figure 13. 
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Figure 13. Trimmed mesh. Viscosity 0.8E-3 Pa s. Comparison numerical-experimental free surface height at East probe. 

 

4.4.3 Perturbation analysis 
Upon the hypothesis that the discrepancy could be due to physical reasons. We first redo the 

simulation increasing the viscosity to 1.3E-3 Pa s, as for water temperature of 10 °C. The result is 

almost identical during the first 60 s with a very small reduced lag. 

 

Figure 14. Trimmed mesh. Viscosity 1.3E-3 Pa s. Comparison numerical-experimental free surface height at East probe. 

 

A new simulation with viscosity increased to 3.E-3 Pa s shows a much better improvement and a 

very good matching during the first 30 s. There is still a tiny lag though. 
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Figure 15. Trimmed mesh. Viscosity 3.E-3 Pa s. Comparison numerical-experimental free surface height at East probe. 

Two hypotheses can be formulated: 

• the experimental water was contaminated somehow and has a much higher viscosity; 

• the energy transfer to the natural frequency relies mostly to the boundary layer correct 

capture and a numerical boundary layer must be added. 

Moreover, a large numerical dissipation could also do the job. 

A new simulation with a 3 cell BL of total size 2.5 mm is run, this time with a viscosity of 1.E-3 Pa s, 

as for a 20 °C temperature. 

Results remain quite similar. But as it is more likely to have a temperature at 20 °C rather than at 

30 °C, this case becomes the reference case. 

 

Figure 16. Trimmed mesh with BL. Viscosity 1.0E-3 Pa s. Comparison numerical-experimental free surface height at East probe. 

4.5 Numerical setup dependency 
Now that we have asserted that it is possible to reproduce correctly a simple sloshing case, we 

explore the space of numerical parameters allowing to keep this feature of even to improve it, 

taking into account the model complexity, the computational requirement and the extrapolation 

potentiality. 
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4.5.1 Adaptive mesh with two refinements level and 
time-step CFL controls. 

The last reference case is rerun after including time step controls related to the CFL and to the 

free-surface, and also including two levels of adaptive mesh refinement, all with default 

parameters. 

The result is indicated in Figure 17. We can see that now the first three modulations are almost 

perfectly captured in the direction of the forcing, with a first peak of 100 mm amplitude. Then, 

there is a progressive deviation but the modulation frequency is preserved. The numerical solution 

converges more slowly towards the limit cycle but seems to do so at a similar amplitude about 

40 mm. 

 

Figure 17. Reference case with two levels of adapted mesh and CFL control. 

 

Figure 18. Reference case with two levels of adapted mesh and CFL control. First 30s and orthogonal displacement added. 

4.5.2 Adaptive mesh with only one refinements level 
and time-step CFL controls. 

The reference case is run with only one level of mesh refinement instead of two. The maximum 

amplitude at each modulation in now clearly below the experimental one. The modulation 

frequency remains correct. The limit cycle is approached faster but its amplitude is very close to 
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the experimental one. There is therefore a non-negligible effect of the free-surface refinement. 

The orthogonal numerical oscillation remains about half the experimental one. See Figure 19. 

 

Figure 19. Reference case with only one levels of adaptive refinement. 

4.5.3 Only time-step CFL controls 
No adaptive refinement but still time-step controlled by CFL and free-surface speed. The 

irregularity of the local maximum indicates the appearance of some possible parasite waves. 

These are not present in the more refined simulations and are therefore likely to be purely of 

numerical nature. 
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Figure 20. Reference case without adapted mesh and but with CFL control. 

 

4.6 Physical setup dependency 

4.6.1 Effect of increased viscosity 
A comparison is performed with the exact same case apart from a viscosity raised to 3.E-3 Pa s. 

Some minor difference appears more clearly during the second modulation in which the 

augmented viscosity induces a slightly reduced maximum amplitude. This is illustrated in Figure 

21. 

 

Figure 21. Reference case with two levels of adaptive refinement, left viscosity 1.E-3 Pa s, right viscosity 3.E-3 Pa s. 
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4.6.2 Effect of increased amplitude. 
There is a discrepancy between the forcing amplitude imposed and the one measured, with this 

later being about 0.3 mm higher. However the measured amplitude is subject to some noise and 

so is its maximum. To estimate the possible error induced numerically, we redo the reference case 

with the amplitude raised from 3.98 to 4.20 mm. 

The increase of forcing amplitude gives rise to an increase of the wave height and an increase of 

the modulation maximum. The first modulation node is also neatly delayed. This is a clear 

confirmation that the SHAKSPEARE input signal is to be trusted rather than the measured one.  

The comparison is performed with the full refined numerical setup as indicated a little later: 2 

levels of mesh adaption and time step controlled by CFL and free-surface displacement. 

 

Figure 22. Amplitude increased to 4.2 mm with two levels of adaptive refinement and viscosity 1.E-3 Pa s. 

4.7 Lower transition to chaos 
Chaos arises numerically when the frequency is set to 0.925𝑓0, see Figure 23, slightly before the 

experiment in which is appears and only occasionally at 0.9255𝑓0. At 0.9275𝑓0, see Figure 24, the 

oscillation initially rises much higher numerically than experimentally, delaying somewhat the 

appearance of the perpendicular motion. However the global behavior is quite similar. We look 

here at what are the onset features of the transition by simulating also the frequencies 0.923𝑓0 

and 0.924𝑓0, respectively Figure 25 and Figure 26. 

To fix the ideas, a wave acceleration overcomes gravity when its maximum amplitude is about 

190 mm. 

It takes about 20 to 25 s for the 0.925𝑓0 simulation to clearly go critical, as shown on Figure 23 

where the experimental probe height at 0.9255𝑓0 is also indicated for comparison. 

In comparison with the reference case at 0.92𝑓0 the frequency increases to 0.923𝑓0 as the effect of 

increasing the maximum amplitude and to delay the first modulation node. This is practically 

identical to what happens when the forcing amplitude is slightly increased. 

Increasing further the frequency to 0.924𝑓0, the maximum amplitude is further increased and the 

first node further delayed. This is perfectly consistent with the experiment showing the same 
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trend. We can thus conclude that the bifurcation is captured within 0.1% of the frequency. This is 

particularly impressive considering that around the bifurcation the experiment is not fully 

reproducible, probably due to long time surviving slow internal coherent recirculation flows. 

 

Figure 23. From reference case with two refinement levels and the frequency raised to 0.925𝑓
0

. 

 

Figure 24. From reference case with two refinement levels and the frequency raised to 0.9275𝑓
0

 

 

Figure 25. From reference case with two refinement levels and the frequency raised to 0.923 𝑓
0

. 
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Figure 26. From reference case with two refinement levels and the frequency raised to 0.924 𝑓
0

. 

5 The extrapolation issue 
In the map shown in Figure 1 from [1], the bifurcation for the corresponding amplitude arises at 

about 94.5% of the first asymmetrical mode, while in our experimental setup it appears about 

92.5%. This is further confirmed by the numerical simulation. This means that the map is much less 

universal than expected. 

The main differences between the experiments is the radius of the water vessel. It is 7.8 cm in [1] 

and 29.8 cm, or about four times more in our case. As already noticed, the flow below the 

bifurcation is laminar. This means that it also critically depends on the viscous effects, or in 

adimensional form on the Reynolds number. 

For the same fluid near resonance, the Reynolds number scales like the characteristic dimension 𝐿 

of the vessel and the characteristic speed which scales like 𝐿0.5 due to the combined effect of the 

larger height and the slightly lower frequency. That is, the Reynolds number for sloshing at a given 

percentage of the first asymmetrical mode scales like the power 1.5 of the radius. The 

SHAKESPEARE Reynolds number is about 7.5 times higher than the Hopfinger [1] one. 

Anticipating the results of further simulations, we reproduce again Figure 1 with the addition of 

the results of our simulations giving the planar mode and the limit above which arises the chaotic 

mode, see Figure 27. No values are given in the swirling region because the simulations would 

require a much higher physical time to infer an asymptotic amplitude, if any would arise. 
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Figure 27. Same as Figure 1, with the corresponding simulation values in red for the planar mode and vessel radius of ~30 cm. 
Above the dotted red line indicates where further simulations exhibit the chaotic mode. 

6 Additional boundary estimates 
Now that the numerical setup is considered satisfying, we make some additional simulations to get 

a better idea of the envelop of the different sloshing modes. For frequencies below resonance, 

there is an abrupt transition from the planar more to the chaotic mode. Here, the chaotic mode is 

characterized by two different aspects: (i) breaking of the wave with formation of droplets and 

bubbles and (ii) alternate planar and swirling modes with the swirling modes also alternating sense 

of rotation. 

For frequencies very slightly below and slightly above resonance, there is a swirling mode 

alternating with an almost planar mode but with swirling always in the same sense of rotation. The 

more we get close to the chaotic regime the more the almost planar mode develops. 

For frequencies clearly above resonance, the planar more is found again. For frequencies slightly 

above resonance, the swirling mode may take quite a while to develop. But from literature, once 

developed, it is known to be very stable under frequency increase. This means also that the 

swirling mode depends on the initial conditions which cannot be totally controlled and on the path 

chosen for the forcing. For this reason, the establishment of very precise asymptotic mode 

boundaries in this frequency region is not really meaningful. 

6.1 At resonance f0 
At resonance we choose to decrease progressively the forced displacement amplitude starting 

from 2 mm down to 1 mm. We can see that the flow always enters the swirling mode in the 
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forcing range [1-2] mm however the time to enter the swirling mode increase with the decrease of 

the forcing amplitude. This is illustrated in the following. 

6.1.1 Displacement 2 mm. 
First peak amplitude at 113 mm. No bifurcation before the second modulation minimum at about 

50 s. Then bifurcation occurs. Run for 180 s. Large variations of both amplitudes but no change in 

the rotation direction. So the mode is rather swirling than chaotic. 

 

Figure 28. Reference mesh and setting, 𝒇 = 1.0 𝒇𝟎, 𝑨 = 2.0 mm. 

6.1.2 Displacement 1.8 mm 
First peak amplitude at 107 mm. Minimum after the second peak at about 50 s. Then bifurcation. 

Run for 138 s. 

 

Figure 29. Reference mesh and setting, 𝒇 = 1.0 𝒇𝟎, 𝑨 = 1.8 mm. 

6.1.3 Displacement 1.5 mm. 
First peak amplitude at 96 mm. The local minimum after the second maximum happens at about 

60 s. Bifurcation occurs after about 70 s. Run for 110 s. 
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Figure 30. Reference mesh and setting. 𝒇 = 1.0 𝒇𝟎, 𝑨 = 1.5 mm. 

6.1.4 Displacement 1.0 mm 
First peak amplitude at 74 mm after 56 s. Second local minimum after 78 s. Bifurcation starts after 

~85 s. Run for 178 s. Apparent stable swirling mode. No test for even lower displacement because 

potential bifurcation, if ever, would be very long to appear. 

 

Figure 31. Reference mesh and setting. 𝒇 = 1.0 𝒇𝟎, 𝑨 = 1.0 mm. 

6.2 At 3.98 mm displacement for f > f0 
The objective is to capture the bifurcation from planar to circular mode, starting from an a priori 

high enough frequency and then running successive simulations with lower frequencies. We found 

the bifurcation very close to 1.025𝑓0 with an asymptotic amplitude near 75 mm. Experimentally, 

the bifurcation occurs “sooner” at about 1.035𝑓0. This may due to the combined effect of the 

stability of the swirling mode and the impossibility to start the experiment with a fluid sufficiently 

at rest. 

6.2.1 f = 1.08 f0 
The first modulation peak is at about 68 mm far from the apparent critical value around 110 mm. 

Run for 68 s. Asymptotic amplitude estimated about 35 mm. 
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Figure 32. Reference mesh and setting. 𝒇 = 1.08 𝒇𝟎, 𝑨 = 3.98 mm. 

6.2.2 f = 1.06 f0 
Run for 140 s without showing onset of bifurcation. Asymptotic amplitude about 46 mm. 

 

Figure 33. Reference mesh and setting. 𝒇 = 1.06 𝒇𝟎, 𝑨 = 3.98 mm. 

6.2.3 f = 1.04 f0 
Run for 140 s without showing onset of bifurcation. Asymptotic amplitude about 60 mm. 

 

Figure 34. Reference mesh and setting. 𝒇 = 1.04 𝒇𝟎, 𝑨 = 3.98 mm. 
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6.2.4 f = 1.03 f0 
First modulation at 112 mm. No bifurcation for the first 180 s. Some tiny orthogonal displacement 

between 75 s and 130 s, dying afterward. Seemingly asymptotic amplitude about 67 mm. 

 

Figure 35. Reference mesh and setting. 𝒇 = 1.03 𝒇𝟎, 𝑨 = 3.98 mm. 

6.2.5 f = 1.02 f0 
First modulation peak at 130 mm then bifurcation after 70 s. Run for 162.7 s. Seems to converge 

towards a stable swirling motion, but still modulated. 

 

Figure 36. Reference mesh and setting. 𝒇 = 1.02 𝒇𝟎, 𝑨 = 3.98 mm. 

 

6.2.6 f = 1.025 f0 
First modulation maximum at 122 mm after 7.8 s. Top amplitude tends to stabilize at about 

70 mm. After about 120 s a very slight change in the North-South small oscillation occurs. The 

oscillation then grows very slowly at first then more and more rapidly up to a maximum of 

192 mm at 236 s. Run until 240 s. During the North-South increase, the East-West oscillation 

remains very stable at 75 mm up to 200 s then follow the same trend as the North-South one. 
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Figure 37. Reference mesh and setting. 𝒇 = 1.025 𝒇𝟎, 𝑨 = 3.98 mm. 

6.3 At f = 0.9275 f0, 3.98 mm displacement 
Experimentally, this case gives a very high amplitude from the beginning leading to splashing and 

further chaos behavior. Numerically, the behavior is quite similar. We must acknowledge that 

when the wave becomes high, its tip is no longer in the refined region and even if there still are 

two levels of adaptive refinement, the cell size remains much larger than below. This cuts the 

possibility to make accurate small droplets and creates de facto a more smeared interface. 

Moreover, with very large displacements, it is unlikely that the flow remains laminar so that when 

the wave becomes very high, the accuracy of the simulation becomes questionable. Run for 

106.5 s. 

 

Figure 38. Reference mesh and setting. 𝒇 = 92.75 𝒇𝟎, 𝑨 = 3.98 mm. 

 

6.4 Displacement 2 mm. 
Considering that bifurcation to chaos for 3.98 mm displacement appears quite before expected, 

we inquire whether this is also the case for a smaller amplitude. We thus run some simulations 

with imposed displacement amplitude of 2 mm. 
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6.4.1 f = 0.96 f0 
Runaway is clear from the beginning and a chaotic behavior seems to establish itself. 

 

Figure 39. Reference mesh and setting, 𝒇 = 0.96 𝒇𝟎, 𝑨 = 2 mm. 

6.4.2 f = 0.95 f0 
It takes 20 s for the runaway configuration to take place. Orthogonal displacement develops after 

about 45 s. Then the chaotic mode develops. 

 

Figure 40. Reference mesh and setting, 𝒇 = 0.95 𝒇𝟎, 𝑨 = 2 mm. 

6.4.3 f = 0.94 f0 
The simulation is run for 220 s and the mode remains planar with asymptotic amplitude about 

29 mm. 
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Figure 41. Reference mesh and setting, 𝒇 = 0.94 𝒇𝟎, 𝑨 = 2 mm. 

6.4.4 f = 1.04 f0 
Simulation run for 140 s indicating planar mode and asymptotic amplitude about 58 mm. 

 

 

Figure 42. Reference mesh and setting, 𝒇 = 1.04 𝒇𝟎, 𝑨 = 2 mm. 

6.4.5 f = 1.02 f0 
The simulation is run for 290 s as there was some tiny onset of asymmetrical orthogonal 

displacement, which however did not develop. It seems that we are close to a bifurcation. 

Asymptotic amplitude about 47 mm. 
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Figure 43. Reference mesh and setting, 𝒇 = 1.02 𝒇𝟎, 𝑨 = 2 mm. 

6.4.6 f = 1.01 f0 
It takes about 100 s before the flow slow bifurcation towards apparently swirling mode. The 

simulation is run for 180 s so the stability of the swirling mode or an asymptotic amplitude cannot 

be yet seen. The time to develop the bifurcation mode is interpreted as being very close to the 

stability boundary of the planar mode. 

 

Figure 44. Reference mesh and setting, 𝒇 = 1.01 𝒇𝟎, 𝑨 = 2 mm. 

6.4.7 f = 0.99 f0 
It takes about 50 s to enter swirling mode alternating with slanted planar mode but initially not 

changing rotation direction. It changes direction after 140 s. This is interpreted as limit to the 

chaotic regime. 
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Figure 45. Reference mesh and setting, 𝒇 = 0.99 𝒇𝟎, 𝑨 = 2 mm. 

 

6.4.8 f = 0.98 f0 
The first peak is above 180 mm after ~17 s, then the flow enters the chaotic mode after 40 s with 

alternate rotation directions and planar modes. 

 

Figure 46. Reference mesh and setting, 𝒇 = 0.98 𝒇𝟎, 𝑨 = 2 mm. 

6.5 Displacement 1 mm 
To pursue the location of the bifurcation towards chaotic or swirling flow, we perform some 

simulations with the frequency very close to the resonance one and only 1 mm forcing amplitude. 

6.5.1 f = 0.96 f0 
The modulation decays quite rapidly and is negligible at the simulation end after 135 s. The mode 

is clearly planar. 
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Figure 47. Reference mesh and setting, 𝒇 = 0.96 𝒇𝟎, 𝑨 = 1 mm. 

6.5.2 f = 0.97 f0 
After about 50 s, it is clear that the flow will not pursue the planar wave mode. Then it enters a 

complex pattern typical of the chaotic flow. The simulation is run for 280 s. 

 

Figure 48. Reference mesh and setting, 𝒇 = 0.97 𝒇𝟎, 𝑨 = 1 mm. 

6.5.3 f = 0.98 f0 
A clear bifurcation towards the chaotic mode appears after about 60 s. Then the flow enters a 

complex pattern typical of the chaotic flow. The simulation is run for 240 s. 
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Figure 49. Reference mesh and setting, 𝒇 = 0.98 𝒇𝟎, 𝑨 = 1 mm. 

6.5.4 f = 0.99 f0 
A clear bifurcation appears after about 60 s. It is not initially clear whether it is towards the 

swirling or the chaotic mode but at a later stage the probes register a behavior typical of the 

chaotic mode. The simulation is run for 240 s. 

 

Figure 50. Reference mesh and setting, 𝒇 = 0.99 𝒇𝟎, 𝑨 = 1 mm. 

6.5.5 f = 1.01 f0 
First peak at 56 mm after 15 s. Then for 150 s, the amplitude seems to slowly settle to 34 mm. 

From 105 s on, a tiny orthogonal signal slowly grows very slowly but eventually collapses after 

220 s. 
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Figure 51. Reference mesh and setting, 𝒇 = 1.01 𝒇𝟎, 𝑨 = 1 mm. 

6.6 Displacement 8 mm. 
A few additional simulations are performed with the maximum displacement ratio that can be 

compared with Figure 1. We want to determine the transition frequency from planar to chaotic 

mode and verify that the trend observed at lower forcing is confirmed. 

6.6.1 f = 0.90 f0 
The flow amplitude rises very fast up the lid with large wave breaking, bubbles formation and 

droplets ejection 

6.6.2 f = 0.85 f0 
The flow is clearly in planar mode with an asymptotic amplitude about 36 mm quite below the 

reference one at an equivalent about 45 mm. With the previous simulation, we get a preliminary 

envelop for the transition that we now try to refine. 

 

Figure 52. Reference mesh and setting, 𝒇 = 0.85 𝒇𝟎, 𝑨 = 8 mm. 

6.6.3 f = 0.88 f0 
The flow remains in planar mode with a first peak at 106 mm after 6 s and an asymptotic 

amplitude about 50 mm. 
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Figure 53. Reference mesh and setting, 𝒇 = 0.88 𝒇𝟎, 𝑨 = 8 mm. 

6.6.4 f = 0.89 f0 
The flow seems to remain in planar mode. First peak at 130 mm after 6.7 s. Asymptotic amplitude 

near 59 mm. 

 

Figure 54. Reference mesh and setting, 𝒇 = 0.89 𝒇𝟎, 𝑨 = 8 mm. 

6.6.5 f = 0.895 f0 
The flow runs wild from the start reaching an amplitude of 300 mm in 15 s and subsequent wave 

breaking. 
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7 Conclusions 
We have checked that CFD was qualified to simulate the sloshing phenomena. For this, it was 

decided to set an experimental campaign consisting in a water cylinder of 60 cm diameter with flat 

bottom filled up to 45 cm, solicited by a sinusoidal horizontal linear forcing with frequencies 

spanning around the first asymmetrical natural mode 𝑓0 = 1.236 Hz and with 4 mm amplitude. 

From the experimental test at 0.92 𝑓0, it was found out that 

• turbulence setup is excessively dissipating and must be discarded; 

• the laminar setup can be accurate; 

• the flow is very sensitive to the forcing characteristics; 

• the free-surface must be accurately discretized for acceptable numerical matching. 

Under these conditions, a very good reproduction of the experimental flow could be obtained. 

There is a precise transition frequency across which the planar flow becomes chaotic with a fast 

and large initial amplitude growth up to wave breaking. The experimental bifurcation value is 

0.9255 𝑓0. Numerically the value is found somewhere inside the interval [0.924, 0.925] 𝑓0, that is 

within 0.1% of the experimental value. This result is a clear validation of the CFD modelling. 

The transition frequency is quite far away from the one expected from literature, above 94%, 

found with a much smaller tank of 7.8 cm radius. This means that the transition frequency changes 

with the tank radius in such a way that the chaotic region in the phase parameter map grows with 

the radius. The 60 cm water tank diameter was chosen as the largest one easy to handle by 

SHAKESPEARE, so that surface tension effect on the natural frequency is totally negligible, and the 

results could be safely extrapolated to much larger dimensions representative of ALFRED or 

MYRRHA. It turns out that we now know that it is not the case. 

Probably related to the transition frequency change, larger vessel radii lead to larger Reynolds 

numbers and more likelihood to have a turbulent flow for which the current CFD modelling is not 

suited. 

The CFD modelling has been calibrated on the 0.92 𝑓0 / 4 mm experiment. We need to know if the 

modelling remains valid in other configurations and has predictive capabilities. For this reason, 

several simulations have been performed to characterize the flow and in particular, to give 

estimates of the bifurcation value at different forcing amplitudes. At the moment of writing the 

conclusions (May 2023), the corresponding experiments have not been performed. They have 

some likelihood to be performed during summer and could validate further or invalidate the 

current CFD modelling. 
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Appendix A: Smooth connecting functions 
The objective of this part is to help deriving a sound reference test case for sloshing using the 

SHAKESPEAR seismic table at VKI and its numerical counterpart. 

Taking input from the literature, we can choose a sinusoidal 1D excitation near the first 

asymmetric resonance mode. It is known than at sufficient amplitude, the asymmetric oscillation 

can transforms after a (short) while of a few seconds in a modulated rotatory motion. However, at 

lower forcing amplitudes, the secondary modes are not activated. 

With this approach, we can be faced with an initial value problem. In absolute and in exact math, 

starting from flow at rest, and with 1D oscillation, the asymmetric mode is activated but transfer 

to the rotational mode cannot appear. In practice, the rotational mode is indeed activated 

because the liquid can never be completely and absolutely initially at rest and because absolute 

axial-symmetry and verticality of the setup is obtained only within a certain tolerance. The number 

of periods necessary to have a relevant transfer to the rotational mode depends however on this 

unknown residual component, or shape/positional defect. Numerically, it depends on the quality 

of the initial condition and maybe also of the non-perfectly cylindrical geometrical discretization. It 

is thus impossible to have a good experimental-numerical matching during all the initial transition 

phase. 

In order to remedy, we need to gain a better control on the initial condition and bring the system 

in a controlled way in a configuration in which the asymmetric mode is already measurably 

activated, that is giving for a short time some displacement in the orthogonal direction. This is not 

necessary if no bifurcation behavior is expected. 

A better control is obtained with smooth displacements which are also more easily reproduced 

numerically. Smooth displacements are expected not to excite strongly high resonance modes 

difficult to capture numerically. 

The SHAKESPEARE table is activated through excel files indicating displacement at 100 Hz. 

Our current objective is to exhibit a set of functions allowing to smoothly connect the initial 

condition at rest to a periodic 1D horizontal oscillation centered on the initial position. The 

connection is due to happen after exactly a small integer multiple of one period. During this time, 

displacement in the orthogonal planar direction must go back to the initial position for a 1D 

periodic movement. 

We need the time displacement functions (𝑋(𝑡), 𝑌(𝑡)), and check that the corresponding 

velocities (𝑉𝑥(𝑡), 𝑉𝑦(𝑡)) and accelerations (𝐴𝑥(𝑡), 𝐴𝑦(𝑡)) all match the periodic motion after a 

small number 𝑁 of period 𝑇. 

Notation: time 𝑡, period 𝑇, frequency 𝑓 and angular frequency 𝜔. The triplet (𝑇, 𝑓, 𝜔) is connected 

by the relation 𝜔 = 2𝜋 𝑇⁄ = 2𝜋𝑓. 

For commodity, we consider a unit displacement amplitude. After 𝑁 periods, we are supposed to 

have: 

(𝑋(𝑡), 𝑌(𝑡)) = (sin(𝜔𝑡) , 0) 
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Continuity and smoothness at the initial displacement time implies: 

𝑋(0) = 𝑌(0) = 𝑉𝑥(0) = 𝑉𝑦(0) = 𝐴𝑥(0) = 𝐴𝑦(0) 

At time 𝑡 = 𝑁𝑇: 

(𝑋(𝑁𝑇), 𝑌(𝑁𝑇)) = (0,0) 

(𝑉𝑥(𝑁𝑇), 𝑉𝑦(𝑁𝑇)) = (𝜔, 0) 

(𝐴𝑥(𝑁𝑇), 𝐴𝑦(𝑁𝑇)) = (0,0) 

That is the position on the X-axis must turn back to zero but with speed 𝜔 and no acceleration. 

The functions 𝑋 and 𝑌 have each 6 constraints to fulfill. In principle, this can be done with a 5th 

order polynomial. This would be however of relatively difficult interpretation. Instead, through 

trial and errors, we have arrived to more easily interpretable simple trigonometric functions. 

The function 𝑋(𝑡) defined by: 

𝑋(𝑡) = 𝐴(𝑡) sin(𝜔𝑡) 

with 

𝐴(𝑡) = 𝐴0 sin2(𝜔𝑡 4𝑁⁄ ) 

𝑡 in [0, 𝑁𝑇]. 

Giving in turn 

𝑉𝑥(𝑡) = 𝐴0𝜔 [sin2(𝜔𝑡 4𝑁⁄ ) cos(𝜔𝑡) +
1

2𝑁
sin(𝜔𝑡 4𝑁⁄ ) cos(𝜔𝑡 4𝑁⁄ ) sin(𝜔𝑡)] 

𝑉𝑥(𝑡) = 𝐴0𝜔 [sin2(𝜔𝑡 4𝑁⁄ ) cos(𝜔𝑡) +
1

4𝑁
sin(𝜔𝑡 4𝑁⁄ ) sin(𝜔𝑡)] 

where 𝑁 is the number of cycles in which we want to reach the asymptotic amplitude. 

𝑋(𝑡) satisfies all 6 constraints (3 at time 𝑡 = 0 and 3 at time 𝑡 = 𝑁𝑇). 

The 𝑌 function must connect both sides of the interval of application with the null function. 

Moreover the transversal kick (the 𝑌(𝑡) function) can be delayed until the transitory 𝑋(𝑡) is 

finished. It can be done just on one side or involve both sides. Several choices are possible, such 

as: 

𝑌(𝑡) = sin3(𝜔𝑡 2𝑁⁄ ) 

or 

𝑌(𝑡) = sin3(𝜔𝑡 2𝑁⁄ ) sin3(𝜔𝑡) 

Conversely, for damping after 𝑛 periods 𝑇, we can take 

𝐴(𝑡) = 𝐴0 cos2(𝜔(𝑡 − 𝑛𝑇) 4𝑁⁄ ) 
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which will bring back smoothly the displacement do zero in 𝑁 periods. 

In practice, in the VKI implementation, the square in the 𝐴(𝑡) definition has been omitted, leading 

to small discontinuities (of 𝐴0𝜔2 2𝑁⁄ ) of the acceleration but also to a simpler formula for the 

velocity: if 

𝐴(𝑡) = 𝐴0 sin(𝜔𝑡 4𝑁⁄ ) 

𝑡 in [0, 𝑁𝑇], then 

𝑉𝑥(𝑡) = 𝐴0𝜔 [sin(𝜔𝑡 4𝑁⁄ ) cos(𝜔𝑡) +
1

4𝑁
cos(𝜔𝑡 4𝑁⁄ ) sin(𝜔𝑡)] 

𝑡 in [0, 𝑁𝑇]. 

Numerically, it is possible to implement the table oscillation either as a displacement or as a 

velocity. 


