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We present a practical solution to create a relightable model from small Multi-light Image Collections (MLICs) acquired using
standard acquisition pipelines. The approach targets the di�cult but very common situation in which the optical behavior
of a �at, but visually and geometrically rich object, such as a painting or a bas relief, is measured using a �xed camera
taking few images with a di�erent local illumination. By exploiting information from neighboring pixels through a carefully
crafted weighting and regularization scheme, we are able to e�ciently infer subtle and visually pleasing per-pixel analytical
Bidirectional Re�ectance Distribution Functions (BRDFs) representations from few per-pixel samples. The method has a low
memory footprint and is easily parallelizabile. We qualitatively and quantitatively evaluated it on both synthetic and real data
in the scope of image-based relighting applications.

CCS Concepts: • Computing methodologies → Appearance and texture representations; Re�ectance modeling;
Scene understanding.

Additional Key Words and Phrases: MLIC, Re�ectance computation, BRDF �tting, Virtual Relighting, Paintings, Bas-reliefs

ACM Reference Format:

Ruggero Pintus, Moonisa Ahsan, Antonio Zorcolo, Fabio Bettio, Fabio Marton, and Enrico Gobbetti. 2022. Exploiting Local
Shape and Material Similarity for E�ective SV-BRDF Reconstruction from Sparse Multi-Light Image Collections. ACM J.

Comput. Cult. Herit. 1, 1 (September 2022), 31 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

A Multi-Light Image Collection (MLIC) is a series of photographs of an object taken from a �xed point of view
while changing the lighting condition. They are a powerful source of information on the state of an object, that
has found a variety of application in many domains, ranging from Cultural Heritage, natural science, industry,
underwater investigation, medical imaging and many more [23].
The most common use case is the measuring and inspection of objects that have a preferential viewing

direction from which the overall depth variation is very small, such as a painting or a bas-relief. Such a globally
planar shape is combined with a locally complex geometry at various scales, e.g., variations in roughness or
curvature, and a rich optical behavior, with many subtle local variations due to the combination of original
material (e.g., brush strokes for a painting) with aging e�ects. Many practical and a�ordable acquisition protocols
and solutions [5, 9, 18, 27] have been targeting this use case. In these approaches, objects are measured using a
�xed camera position, taking a limited number of high-resolution images with di�erent local illumination from
point lights, using a variety of setups targeting both professional and casual users [23]. The resulting data is then
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Fig. 1. Capture and relighting of a painting (panel of the polyptych retable of Saint Bernardino (1455), Cagliari, Italy). The

optical response of the painting surface to variable illumination is measured by taking a few tens of photos using a fixed

reflex camera and a hand-held LED (le�). The Multi-Light Image Collection is then transformed to a shape and material

representation, which is used for interactive relighting (right)

�t to a compact model, which is exploited by interactive visual inspection tools [4, 5, 13, 15] to support virtual
relighting (Fig. 1). The widespread application of this single-view work�ow is not only due to the large di�usion
of appropriate objects and to the simplicity of the acquisition protocol, but also to the fact that relighting viewers
naturally support the analysis of �ne surface details with methods resembling the classical physical inspection
with raking light sources. Moreover, the restriction of camera motion to panning and zooming removes one of
the main di�culties of 3D exploration applications, reducing learning curves [12].
While classic virtual inspection solutions were restricted to exploiting low-frequency analytical relighting

representations, such as PTM or HSH [23], recent work started targeting physically-based rendering from
decoupled geometry and appearance representations in the form of spatially varying normal and Bidirectional
Re�ectance Distribution Functions (BRDF) maps that contain the parameters of an analytical model [13]. Having
a compact per-pixel normal and an analytical BRDF representation from sparsely sampled data is very appealing,
since it can be easily distributed using low-bitrate representations, it produces a physically reasonable result, and
it allows for natural integration with standard high-quality and real-time rendering solutions. However, while
normal estimation is a well-studied subject [31], the per-pixel extraction of Spatially Varying BRDF (SV-BRDF)
parameters of a multi-material object from the small number of samples typically available in sparsely sampled
single-view MLICs leads to an under-determined problem [10, 16]. For this reason, the application of standard
per-pixel �tting to MLICs with a small number of images may produce very noisy maps, especially in presence
of glossy materials. Heavily increasing the number of captured images increases capture complexity and e�ort
for the common dome-based and free-form setups used in CH, making the method much less appealing for the
practitioners. The available alternative solutions to produce compelling models from a small number of samples
try to solve the problem either by deriving extra knowledge from available training sets tuned for a particular
target object kind and/or by analyzing the entire object to �nd similar materials in areas with signi�cant normal
variation, so as to cover the largest possible angular sampling space. E�ectively combining data from di�erent
locations requires, however, the solution of complex material classi�cation problems (Sec. 2).

Since we primarily target planar objects that are visually and geometrically rich, such as paintings or bas-reliefs,
for each considered surface point, the probability of �nding a di�erent surface orientation is mostly independent
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from the distance to that point, while the probability of �nding the same exact optical behavior is much larger in
a small neighborhood than far from it.
Based on this consideration, we introduce a practical solution that computes the BRDF parameters of a pixel

by carefully combining all the observations available in a small neighborhood (Sec. 3). As for usual �tting
pipelines, BRDF �tting is formulated as an optimization for the set of BRDF parameters that minimizes the sum
of weighted squared di�erences between measured surface re�ectance samples and the corresponding values
from the analytical BRDF model. In our case, however, the weights do not only measure the importance of the
particular measure, but determine our con�dence that the given measure comes from a surface area with the same
material as the computed pixel (Sec. 4). This allows us to expand the angular sampling, as local curvature and
roughness variations will modify the pixel’s normal, increasing the ability to recover high-frequency information,
e.g., in specular areas. Moreover, by including bilateral weighting, based on pixel distances and measured values,
we also obtain a non-linear, edge-preserving, and noise-reducing smoothing. The assignment of a higher weight
to close-by pixels of the same material (e.g., neighboring pixels from the same brush stroke), and a lower weight
for far pixels of di�erent optical behavior, is obtained by computing distances of simple pixel descriptors, a
much simpler problem than the material classi�cation required by methods dealing with material databases. A
regularization term is, in addition, included, to drive the solution to lower-frequency behaviors in case of severely
missing data (Sec. 5). While the method is applicable to improve the �tting of any parametric BRDF, our weighted
least squares formulation permits to apply important optimizations for the common case of a multi-lobe BRDF
composed of a sum of terms (Sec. 6). As a result of its design, our solver can directly replace the �tting module
inside all standard per-pixel BRDF �tting pipelines that estimate the parameters in parallel for each pixel of
the image, and can operate with little memory overhead, without requiring global access to all images (Sec. 7).
It generates, by construction, relightable models which recover specular information where su�cient data is
locally available and fall back to smooth regularized solutions without unwanted high-frequency artifacts in
other situations.

This article is an invited extended version of our contribution to the 19Cℎ Eurographics Workshop on Graphics

and Cultural Heritage (GCH 2021) [22]. Here, we provide a much more thorough exposition, as well as signi�cant
new material. Our main novel contributions with respect to the conference version include an improved similarity
metric among pixel descriptors (see Sec. 4.3.2), a novel technique for computing similarity weights inside a region
through the di�usion inside the pixel neighborhood (see Sec. 4.3.3), and a novel pruning technique for reducing
solution costs for large neighborhoods (see Sec. 7). We also present an extended and improved qualitative and
quantitative evaluation on synthetic and captured data, and discuss the application of the method to the free-form
capture and subsequent interactive relighting of a painting. Our results demonstrate signi�cant improvements
with respect to standard single-pixel solutions and to our previous work both in terms of accuracy of �tting and
perceptual quality of results (Sec. 8).

2 RELATED WORK

MLIC acquisition and processing, BRDF �tting, and relightable image modeling and visualization are vast and very
active areas, and we refer the reader to established surveys for a general coverage [10, 16, 23]. In the following,
we brie�y cover only the approaches most closely related to ours.

2.1 Relightable images

This class of methods directly approximates the re�ectance signal with an analytical formulation that provides
the mapping from lighting parameters to �nal renderable values, without explicitly separating shape and material
information. The seminal approach [19], called Polynomial Texture Mapping (PTM), stores per-pixel coe�cients of
a bi-quadratic polynomial that best �ts the color variations of the pixel as a function of the incident light direction.
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Di�erent methods try to increase the quality of the �nal result by changing the polynomial formulation [39],
or by improving the �tting algorithm with robust metrics [6, 24]. Rather than using simple polynomials, other
methods propose a Hemi-Spherical Harmonics (HSH) based models, which are known to work well to represent
functions on the surface of a sphere [3, 8], or a Discrete Modal Decomposition (DMD) [26]. Their compactness and
low complexity makes these techniques suitable for fast interactive relighting in local and remote visualization.
For this reason, PTM and HSH are the de-facto standard format for relighting applications from MLIC data.
Without extra information, however, these methods are limited to model only low-frequency behavior [6]. A
fundamental limitation of basic relightable image models is the lack of decoupling between shape and material
components, which limits shading manipulation and makes it di�cult to integrate them in full-�edged rendering
frameworks [23]

2.2 SV-BRDF fi�ing

A number of methods extract a geometric model from the MLIC, e.g., through photometric stereo, and associate
it to a material model, in particular in the form of a SV-BRDF [10]. The nature of common MLIC data, i.e., �xed
viewpoint and changing light directions, makes modeling SV-BRDF �elds very hard, since the measured per-pixel
appearance pro�le is a very sparse sampling of the high dimensional BRDF. For this reason, normal and BRDF
estimation is most commonly applied in hybrid setups, using, e.g., more viewpoints and additional instrument to
measure coarse shape for geometry bootstrapping [37]. Pure MLIC-based methods try to improve the SV-BRDF
reconstruction by de�ning some constraints, or by augmenting the material data at each pixel location. Several
solutions assume that the acquired object have a single BRDF or, conversely, have multiple BRDFs placed on
a perfectly planar surface (constant normal map) [1]. These methods are not applicable in the general case of
multi-material objects with geometric features. A common strategy is to de�ne the per-pixel BRDF as a weighted
sum of few, unknown reference BRDFs [17], to build a known BRDF dictionary and to model the material at
each location as a position in the non-negative span of the dictionary [11], or to extract base materials through a
global segmentation and subsequent clustering of appearance pro�les [34]. These techniques require solving a
non-trivial global material classi�cation problem, which is especially di�cult in the presence of large appearance
variations, e.g., due to mixtures. The non-local nature of these methods makes an e�cient out-of-core and parallel
implementation di�cult.

2.3 Learned priors

Recent methods try to bypass the formulation of an analytical model for implicit relightable models computation
or explicit SV-BRDF �tting by building neural networks that learn to perform the modeling by observing large
amount of relighting training examples [28, 29, 38]. The great advantage of those techniques is that they can
model e�ects such as interre�ections or cast shadows, and complex isotropic materials, with relatively small
number of images in a MLIC. However, neural networks depend a lot on the training set, and they tend to produce
artifacts and hallucinations when used within a general context.

3 METHOD OVERVIEW

Multi-light re�ectance data is acquired by taking from the same pixel-registered viewpoint a set of photographic
images of an object, with each image illuminated from a di�erent direction. As a result, a calibrated processing
pipeline receives as input a so-called per-pixel appearance pro�le, i.e., a list of pairs for each pixel ? that couple,
for each entry X , a viewing and lighting con�guration, consisting in a view direction +? , a light direction !?,X ,
and a light intensity �?,X , to the corresponding measured value<?,X . Any calibration pipeline can be applied to
obtain this information (for this article, we used the recently introduced method by Pintus et al. [25]). Moreover,

ACM J. Comput. Cult. Herit., Vol. 1, No. 1, Article . Publication date: September 2022.



SV-BRDF Reconstruction from Sparse MLICs • 5

the set of observations is trimmed, to discard shadow areas, which do not provide data, as well as under-exposed
and over-exposed pixels, which provide unreliable information.
Pixel saturation, where the incident light at a pixel causes one of the color channels of the camera sensor

to respond at its maximum value, produces an unreliable measure that cannot be used for �tting, as we only
know that the measured intensity is higher or equal to the pixel value. For this reasons, we consider those pixels
over-exposed, and discard them. Similarly, pixels that are too dark also to not provide a reliable measure, as it is
not easy to distinguish if the dark color is due to a cast shadow, and therefore should not be used for computing
the response of the source to the illumination coming from the light. Moreover, when the measured value is too
low, the incidence of noise is also high. In this work, we set a threshold for the lowest possible intensity value
equal to the 0.1% of the maximum possible value, and discard the under-exposed pixels with a measured intensity
below that threshold. This trimming results in a variable-size per-pixel appearance pro�le.
Surface shape and appearance can then be characterized for each pixel ? by converting this information to

shape and appearance descriptors. In this work, we assume that the shape is determined by the normal #? at each
pixel, computed using any of the available photometric stereo techniques (for our results, we use the method of
Pintus et al. [24]), and focus on the extraction of a per-pixel re�ectance mode by �tting the set of multi-light
measurments to a �xed analytical BRDF 5A parameterized by per-pixel parameters Π? . Prior to �tting, we further
reduce the size of appearance pro�les by discarding measurements at grazing +? · #? and !? · #? angles bigger
than 80 degrees, as performed by Ngan et al. [20] and demonstrated bene�cial for BRDF processing by Lavoué et
al. [16] to remove likely unreliable measurmements. This manipulation leads to a �nal appearance pro�le of size
Δ? , di�erent for each pixel ? .
Given shape, viewing, and lighting information for each pixel, we cast BRDF estimation of a pixel ? into a

weighted least squares problem of the form:

Π? = 0A6<8=
Π

∑
@∈Ω?

∑
X@ ∈Δ@

(
F2
?,@,X@



<@,X@ − 5A
(
Π, #@,+@, !@,X+@

)

2) + _'2? (1)

where Ω is a,G, window centered on ? , so that @ is a pixel in a local neighborhood, and<@,X@ is a normalized

measurement value that factors in incident light intensity,F?,@,X@ is a per-measurement weight (Sec. 4), and _'2?
is a regularization term (Sec. 5). In the following, we de�ne how we compute these values, before describing how
we e�ciently solve Equation 1 by focusing on multi-lobe BRDFs (Sec. 6) and by approximating the equation with
a �xed number of terms and distributing computation to avodi reduntant computations (Sec. 7).

4 WEIGHTING STRATEGY

The weightF?,@,X@ associated to each measure determines the importance of each error term in Equation 1. In
regular single-pixel approaches, it is de�ned to balance the e�ects of each of the measurements for the single
pixel, which are known to be of the same material since they come from a single surface point [16]. In this work,
the measurements that contribute to the �tting also come from a neighboring area in a multi-material object. For
this reason, we expand the concept of weight to also incorporate an estimation of the likelihood that they really
come from the same material of the computed pixel. We therefore de�ne the weight of a given error term as:

F?,@,X@ = F<40BDA4<4=C
@,X@

FA0380;
?,@ F

B8<8;0A8C~
?,@ (2)

whereF<40BDA4<4=C
@,X@

is a per-measurement weight associated to each entry in the appearance pro�le of pixel @,

FA0380;
?,@ is a radially decreasing weight that depends only on the spatial distance between the central pixel ? and

the neighboring pixel @, andF
B8<8;0A8C~
?,@ is a similarity weight that increases with the the distance between the

appearance pro�le of pixel ? and the pro�le of pixel @.
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4.1 Measurement weight

In the literature, many metrics have been presented that weight each error term so as to produce a more stable
and perceptually valid error metric [16]. In particular, it is customary to weight each term with the cosine
input angle #@ · !@ in order to compensate re�ection increase at grazing angles. Lavouè et al. [16] have, in
addition, shown how non-linearly compressing the measurement< and the BRDF 5A (...) with a cube root to
attenuate peak values before computing the �tting error greatly improves the perceptual quality of the �t, as
it avoids the over�tting of specularities, and the magni�cation of their measurement errors, at the expense of
all the other regions of the BRDF. Applying such a trasformation, however, would introduce a non-linearity
that could avoid the application of optimizations for the �tting of multi-lobe BRDFs (Sec. 6). We, therefore,
strive to achieve the same goal by linearly compressing the data through a measurement-dependent weight that
penalizes higher-magnitude samples. Given the good perceptual performance of the cube-root transformation,

we set the weight toF<40BDA4<4=C
@,X@

=<
−2/3
@,X@

, which applies the same compression to the measured value. Using a

measurement-dependent weight is also used in statistics to minimize relative rather than absolute errors [35].
Note that, here, we have no instability around zero here, since we trim appearance pro�le prior to �tting to
remove under-exposed and shadow areas. The measurement weight can also be extended by multiplying it with
other factors, e.g., the cosine input and output angle [16]. The results presented in this article do not include
those factors, since we did not appreciate signi�cant di�erences in results for our use cases. This is mainly due to
the pruning that discards the samples at grazing angles, for which these factors have the largest e�ect.

4.2 Radial weight

Due to material continuity, a pixel closer to the center has a higher probability of being of the same material as
the central pixel than a pixel far away from it. Hence, we de�ne a radial weighting function as:

FA0380;
?,@ = max

(
0, 1 −

(
A?@

'

)2)
, (3)

where A?,@ is the distance between the central pixel ? and the other pixel @, while ' =
,
2
is the radius of

the neighborhood. This function is equal to 1 at the central pixel and decreases to 0 at the boundary of the
neighborhood. The combination of this weight with the other weights plays the same role as the spatial closeness
factors in bilateral �ltering, as it drives the solver towards edge-preserving smoothed solutions.

4.3 Similarity weight

The similarity weightF
B8<8;0A8C~
?,@ encodes our estimation of the likelihood that the appearance pro�les of pixel

? and @ come from measurements of the same material at di�erent surface location. The core idea of using a
similarity metric is to have a way to e�ectively extend the sampling of a BRDF without requiring taking multiple

images, just by borrowing data from similar pixels. By including with a high weightF
B8<8;0A8C~
?,@ the samples from

a pixel @ with a similar normal of ? , we achieve denoising, while if @ has a di�erent normal we obtain the even
more important e�ect of increasing the angular sampling, eventually retrieving hard to capture specularities.

Intuitively, we must use a metric that will provide high similarity if the pro�les contain close measured values
at the same angles, and a low similarity if measurements at the same angles widely di�er. E�ciently and reliably
computing such a metric for two sets of sparsely sampled measurements is, however, non trivial, as we must
compute it for all pixels in the neighborhood and produce likely values also for pixels sampled at di�erent viewing
and light angles, hence with little overlap in angular sampling. Our solution relies on the following components:
�rst, we transform variable-sized appearance pro�les into compact �xed-size representions that capture the main
re�ectance characteristics; second, we introduce a distance function among descriptors that are computed from
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appearance pro�les that share sampling locations; �nally, we use a propagation technique to derive the �nal
similarity metric valid also for pixels with di�erent normals.

4.3.1 Pixel descriptors. In order to e�ciently similarity without having to traverse variable-sized appearance

pro�les, we transform the pro�le of each pixel @ into a feature vector �@ = �
(0)
@ , �

(1)
@ , ..., �

(�−1)
@ that contains a

compact regularized representation of size � (with � = 10 in this paper). Each � (8)
@ slot contains the maximum

sampled color for each region of the Θℎ angle in the Rusinkiewicz parameterization [30]. Θℎ is a function of

the angle between the normalized half vector �@ =

#@ ·!@
∥#@ ·!@ ∥ and the normal #@ , \ℎ . Since smaller variations

are expected for high values of Θℎ , corresponding to the di�use areas of the BRDF, the bins are not uniformly
distributed, but have a size directly proportional to 3

√
Θℎ . Note, moreover, that, due to the sparsity of sampling

some of the bins in the feature vector might remain empty after accumulation.
Since the feature vector is only dependent on the pro�le, it can be computed once and for all in parallel for

each pixel, prior to the BRDF computation, and can be considered part of the pixel description during the entire
optimization process.

4.3.2 Direct similarity weight. Given two feature vectors �? for the central pixel and �@ for a pixel in the
neighborhood, we compute the similarity based on a distance metric 3 (...) between the two features:

F38A42C−B8<
?,@ = 1 −min

(
1, 3

(
�? , �@

) )
(4)

Clearly, this metric must compare these two features taking into account the overlap of bins. If there are no
common bins, which can happen if the normals are very di�erent, we have no information on how to compute
the distance, and, thus, we must return the maximum distance, as, in case of doubts, we prefer to exclude from
computation pixels coming from di�erent materials rather then include them. Similarly, the maximum distance
must be returned if some overlapping bins have large chromaticity or intensity di�erences, as the materials likely
behave in a very di�erent way for similar view and light con�guration. In all other cases, we must return a
distance directly proportional to the relative di�erence of spectral values in the same bins using a perceptual
simularity metric. For the latter, we use the log2 metric of Sun et al. [32]. To sum up, by assigning to each bin
index 8 a value 1 (8) = 0 if the bin 8 of ? and @ both contain values and 1 (8) = 1 otherwise, the distance function at
the basis of our direct similarity computation will be:

3
(
�? , �@

)
=




1, if
∑�−1

8=0 1
(8)

= 0 (Lack of overlap)

1, if min8
�
(8 )
?


� (8 )
?




 ·
�
(8 )
@


� (8 )
@




 ≤ cos (j) (Chroma di�)

1, if max8 log
2

( 


� (8 )
?




+Y


� (8 )
@




+Y
)
≥ log2 d (Magnitude di�)

1

d
∑�−1

8=0 1 (8 )
∑�−1

8=0 1
(8) log2

( 


� (8 )
?




+Y


� (8 )
@




+Y
)
, otherwise (Possibly similar)

(5)

The two thresholds that determine whether individual bins are very dissimilar are selected so as to let only very
similar neighbors to contribute to the BRDF estimation of the central pixel. Thus, the angle j is 5 degrees, while
d = 1.1, which means maximum allowed relative magnitude deviation of 10%.

4.3.3 Propagated similarity weight. Since we compare only overlapping regions of the BRDF, Equation 4 can
e�ectively achieve denoising, as well as improve the angular sampling of the BRDF, and thus the recovery of
non-di�use behaviors, in case of smooth normal variations due to local roughness or small curvature. However,
the function is, by design, very conservative when comparing pixels with di�erent normals, and, therefore,
with little or no overlap in angular sampling. While this avoids degrading BRDF recovery by mixing di�erent
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materials, it also blocks the improvement that could be possible by including di�erently oriented areas with
the same material. We handle this problem by di�using simularity measures in the local neighborhood, aiming
to determine the similarity of di�erently-oriented pixels from the iterative combination of the similarity of
similarly-oriented pixels. In practice, for each pixel @8 in the neighborhood, we compute, through Equation 4,
the direct similarityF38A42C−B8<

@8 ,@ 9
with its eight direct neighbors @ 9 and store it in the edge of a graph having each

pixel as a node. We then initialize each node valueF=>34
@8 ,?

toF38A42C−B8<
@8 ,?

. We then iteratively replace eachF=>34
@8 ,?

with max
(
F=>34
@8 ,?

,
√
F38A42C−B8<
@8 ,@ 9

F=>34
@ 9 ,?

)
until convergence. At the end of this relaxation process, each node value

contains the �nal estimation of the similarity weightF
B8<8;0A8C~
?,@ .

5 REGULARIZATION

Due to the nature of sparse capturing of mostly �at multi-material objects, it is likely that certain pixels might
have under-sampled regions of the BRDF. We therefore include in our cost function Equation 1 a regularization
term _'2? that controls the �tting behavior in under-determined cases to avoid disturbing visual artifacts. In
particular, if a BRDF is sampled only in the di�use zone, the �tter without this regularization term would be
free to create any BRDF with an arbitrary and possibly high specular signal. To take this situation under control,
we regularize the �tting by introduce a single virtual BRDF measurement '? in a highly specular direction
(i.e., for +? and !? both collinear with #? ) with a value set to the largest measured value for that pixel among
all sampled light directions, and assign it a weight _. As the weight _ is set to a very low value, this possibly
underestimated value only a�ects the solutions when no measured data is available for those angles. In fact, we
chose the value of _ small enough to make the term associated to the virtual measurement much smaller than
the terms associated to real ones, but high enough to prevent the �nal BRDF to explode in magnitude. We have
performed several experiments with both only di�use and specular pixels, and we found that a value of _ = 10−4

is a good conservative and stable choice across many di�erent heterogeneous datasets.

6 BRDF REPRESENTATION AND OPTIMIZATION APPROACH

While our method is in principle applicable to any parametric BRDF, our weighted least squares formulations
permits to apply important optimizations for the common case of a multi-lobe BRDF consisting in a sum of terms
(or BRDF components), each of which is a multiplication between a multi-dimensional spectral value and a scalar
function, i.e.:

5A (Π, # ,+ , !) =
Γ−1∑
W=0

 (
W 5W

(
ΠW , # ,+ , !

)
. (6)

The term  (
W represents the spectral value of the WCℎ BRDF component, and it is a multi-spectral color vector

of dimensionality ( ; for an RGB signal  3
W =

(
:', :� , :�

)
. The scalar function 5W (. . . ) is the component BRDF;

for instance, for a Lambertian component of the material 5W (. . . ) = 2>=BC = 1/c . ΠW is the set of parameters of a
single BRDF component (e.g., it is an empty set for a Lambertian BRDF, while it is a single parameter set for the
classic isotropic Ward model), while Π is the union of all the ΠW and  (

W sets for W = {0, 1, . . . , Γ − 1}. The number
of parameters in this formulation is:

#%0A0<B = 6 + ( + |Π | = 6 + ( + ( · Γ +
Γ−1∑
W=0

��ΠW

�� , (7)

where the operator |·| stands for the cardinality of the set. The number 6 + ( is the sum of the two values for the
normal, view, and light directions, and the ( spectral values of the light intensity. Given this analytic formulation,
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Equation 1 becomes:

Π? = 0A6<8=
Π

∑
@∈Ω

∑
X@ ∈Δ@

©­«
F2
?,@






<@,X@ −
Γ−1∑
W=0

 (
W 5W

(
ΠW , #@,+@, !@,X@

)





2ª®¬

+ _'2
Ω

(8)

Using this formulation is convenient for two main reasons. First, it is so general that is capable of handling a
large range of phenomenological and physically-based BRDF models [10]. Moreover, in combination with our
linear weighting solutions, it makes it possible to express the complex non-linear problem into two sub-problems,
i.e., one simple linear problem for �nding the spectral values embedded within a non-linear problem with a
decreased dimensionality for �nding the shaping parameters. In this article, in particular, we test the proposed
framework with the analytic BRDF 5A set to Duer’s variant of the original isotropic Ward model [7]:

5A (U, #,+ , !) =  (
3 53 +  (

B 5B (U, #,+ , !) =  (
3

1

c
+  (

B

1

4cU2
√
(# · !) (# ·+ )

4
− (� ·- )2+(� ·. )2

U2 (� ·# )2 , (9)

where  (
3
and  (

B are respectively the di�use and specular color, 53 is the constant Lambertian BRDF, while 5B
is Ward’s specular term. The parameter U drives the material roughness. In this case the non-linear search is
one-dimensional.

Equation 1 depicts a general non-linear optimization with a search space dimension equal to |Π |. Conversely,
the formulation in Equation 8 is expressed in terms of a weighted linear least squares problem of size ( · Γ for
�nding the spectral values once the shaping parameters are known, embedded within a non-linear problem with∑

Γ−1
8=0

��ΠW

�� unknowns for �nding the shaping parameters; the latter is typically ≪ |Π |, especially when dealing
with multi-spectral acquisitions. A similar approach was taken by Ngan et al. [20]. In our current implementation,
we use the locally-biased DIRECT global optimization algorithm for the nonlinear search [14] and a SVD solver
for the linear least squares sub-problem.

From the formulation depicted in Equation 6, it is clear that the proposed model can be applied to a wide range
of di�erent BRDF other than the chosen Ward model. The only requirement is that the BRDF can be expressed in
terms of a sum of products of spectral values by scalar functions. This includes, in particular, models for layered
materials in which, for instance, a Lambertian or Disney di�use BRDF is combined with a microfaced-based
specular BRDF (e.g., GGX) by simply summing the contributions weighted by the Fresnel term [10]. Nonlinear
search for �nding the values of the scalar parameters should be adapted to work in more than one dimension,
either by using the multi-dimensional DIRECT solver or replacing it with any other nonlinear global solver, while
the linear solver that �nds the spectral values will remain unchanged.

7 PRUNING AND SCALABILITY

The method presented in the previous sections can be further optimized by reducing the cost of �tting and
by carefully organizing computation phases to handle very large images without memory limitations, while
exploiting parallel computation.

7.1 Pruning

Solving the weighted nonlinear least squares problem dominates the �tting cost. Its complexity is directly
proportional to the number of included weighted measurements, which determines the overall cost of evaluating
the objective function, in general, as well as the size of the linear least-squares problem for the optimized
implementation of Sec. 6. In its basic formulation, used in our previous work [22], this number is strictly
determined by the the window size and the number of input photographs. For a typical neighborhood with a
radius ' of 10 pixels (i.e., a window of 21 pixels), we would need to solve a problem 21 × 21 = 441 times larger
than for the equivalent single-pixel �tting.
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We can reduce this overhead by noting that not all the terms that determine the value of Equation 8 have
the same importance. First of all, the sum is likely vastly dominated by the terms with the largest weight,
corresponding to the central pixel and to pixels with the most similar material. Moreover, several of the terms
might be redundant, as they provide multiple measurements for the same angular con�guration, while others
have more impact on reconstruction, as they are alone in sampling regions of the BRDF. We can, therefore,
reduce evaluation cost by approximating Equation 8 with a low number � of samples, using weight magnitude
and distribution of angular sampling considerations to discard the terms that have likely the lowest impact on
reconstruction accuracy.

To perform pruning based on angular distribution and weight magnitude, we subdivide the 2D Rusinkiewicz
parameter space into buckets, and order them with \ℎ as primary sort key and \3 as secondary sort key. As

for feature vector computation, bucket size is directly proportional to
3
√
\ℎ , so as to more densely sample the

specular region. We then iteratively visit all buckets in order of priority (i.e., from the most di�use to the most
specular), removing samples while the count of remaining ones exceed the target �. For a given visited bucker,
we remove the samples with the lowest weight until we reach the minimum sampling rate for the cell. For all our
experiments, we use a 10G10 grid subdivision of the BRDF domain, and a minimum sample count per bucket
equal to 3.

As � can be set to a �xed value, the cost becomes independent of neighborhood size, . Speed up is considerable,
since we can set, e.g., � = 50, i.e., much less than, ×, × Δ, with negligible e�ect on solution accuracy
(see Sec. 8.1.3).

7.2 Scalable tile-based implementation

The pixel-wise, local nature of our computation allows for a single-pass highly parallel and low-memory im-
plementation of the overall BRDF estimation process. For e�ciency of access to stored data, our method uses a
tile-based approach. We de�ne and in-core memory budget, and, from that, we subdivide the MLIC into tiles in
image space. The tiles slightly overlap (by an amount equal to W), to make the computation of non-overlapping
pixels self-contained.

Each tile is computed independently (sequentially on a single machine, or distributed to multiple machines on
a cluster). The computation of each tile starts by loading into memory all the appearance pro�les, the viewing
and lighting environment, and the normal map. All the subsequent computation exploit current multi-core
architectures by parallelizing computation with one thread per pixel. We �rst compute, in parallel for each
pixel, the descriptors that summarize the pro�les for weight computation, and store them as per-pixel data
(Sec. 4.3.1). Given these descriptors, we compute and store, in parallel for each pixel, the distance to their 8
neighbors according to Equation 5, since it is reused many times for similarity computation and is independent
of the central pixel location (Sec. 4.3.3). Propagated similarity weight computation needs, thus, to only compute
for each neighborhood the distance to the central pixel, as distances to neighbors are known. Moreover, since the
distance function is symmetric, we only need to compute 4 distance per pixel to obtain all 8-neighborhood values.
Given the descriptor map and the distance map, we can proceed, in parallel for each pixel, with weight

computation (Sec. 4), regularization term computation (Sec. 5), pruning (Sec. 7.1), and optimization (Sec. 6), so as
to determine the �nal BRDF parameters for all pixels in the tile.

8 IMPLEMENTATION AND RESULTS

The proposed approach has been implemented in C++, and integrated in a pipeline for producing relightable
image representations from MLICs.
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In this article, we report on the validation of the proposed solution by analyzing its performance in the
reconstruction of SV-BRDFs from sparsely sampled MLICs. We compare our results with a standard state-of-the-
art single pixel approach that employs the same SV-BRDF model and �tting strategy, but relies on samples coming
only from the output pixel without considering its neighborhood. Moreover, we also include tests that illustrates
improvements over the original version of this method, as presented in our GCH 2021 contribution [22]. For all
our tests, we use RGB images and the isotropic Ward analytic BRDF. In this setting, we have to solve a seven
dimensional optimization problem, i.e., three unknown parameters for the di�use and specular colors, and one
for the gloss. We use a regularization weight _ = 10−4 and a neighborhood radius of 10. For all our tests we use
the same pruning parameters, i.e., we subdivide the BRDF domain with a 10G10 grid, the minimum number of
samples per cell is 3, and the maximum �nal sample budget is 150.
The main goal of our evaluation is to show that starting from a small number of images (a sparse BRDF

sampling) it is possible to increase the quality of the �nal reconstruction and relighting of challenging �at,
visually/geometrically rich objects. This aspect has immediate practical importance. First of all, an extremely
dense MLIC capture is costly and very rarely employed in daily work scenarios. Moreover, it should be noted
that even with lots of images, a single-view MLIC acquisition intrinsically provides an undersampled set of BRDF
measurements, due to the �xed view point. Thus, including information coming from di�erently oriented surface
is expected to be bene�cial even in that case.

In the following, we �rst provide a quantitative analysis of the quality achievable when reconstructing BRDFs
using both synthetic data, for which ground truth is available, and painting mockups captured in controlled
conditions (Sec. 8.1). Then, we report the result of a user test, which provides a perceptual human feedback for
the visualization quality of the proposed method for relighting applications (Sec. 8.2). Finally, we show the results
obtained in practice for the free-form acquisition of a painting (Sec. 8.3).
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Fig. 2. Synthetic test (example 1). We compare the original image (first column) with its virtual relighting obtained from the

SV-BRDF computed with S-All, S-01, K-01[22], and our K-01 while removing from the MLIC the orginal image. The original

and rendered images are in the first row, while in the last two rows we present the corresponding FLIP maps and statistics.
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Fig. 3. Synthetic test (example 2). We compare the original image (first column) with its virtual relighting obtained from the

SV-BRDF computed with S-All, S-01, K-01[22], and our K-01 while removing from the MLIC the orginal image. The original

and rendered images are in the first row, while in the last two rows we present the corresponding FLIP maps and statistics.

Synthetic Dataset Method
FLIP Statistics

Mean Weighted Median 1st Quartile 3rd Quartile

Paint-Texture-16

S-All 0.10 0.19 0.12 0.24
S-12 0.29 0.63 0.41 0.77

K-12[22] 0.13 0.30 0.13 0.44
K-12 0.09 0.11 0.07 0.16

Paint-Texture-14

S-All 0.16 0.22 0.15 0.32
S-12 0.28 0.55 0.25 0.85

K-12[22] 0.18 0.27 0.15 0.58
K-12 0.19 0.25 0.16 0.37

Table 1. FLIP statistics for the two synthetic datasets.

8.1 �antitative evaluation of reconstructions from sparse MLICs

We performed an evaluation of reconstruction quality on both synthetic and real-world datasets. For each MLIC
dataset (synthetic or real), we apply the same testing procedure. We �rst take the entire MLIC with the total
number of images (about 50 for this article) and we compute the SV-BRDF with the single pixel algorithm; we
will consider this as the reference result (we call it S-All). Then, we consider di�erent subsets of the MLIC, by
removing more and more images (from one to twelve or sixteen images depending on the dataset). For each
subset, we compute the SV-BRDF with the single pixel algorithm, with the method proposed by Pintus et al. [22],
and with our proposed method; we respectively call S-X and K-X the single pixel or one of the k-neighbor based
computations when the subset is obtained by removing - images from the entire MLIC. Then, we use each
computed SV-BRDF to simulate a virtual relighting of all the images in the MLIC, by using the same lighting
condition, and we compare each image pair (reference vs virtual) using three image similarity metrics. First,
we use the FLIP map [2], which is a di�erence evaluator metric that has been shown to approximate well the
di�erences perceived by humans between a rendered image and the corresponding ground truth image. The
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(a) Paint-Texture-16 (b) Paint-Texture-14

Fig. 4. Performance on various image counts for synthetic tests (SSIM). We compare the performance of the single pixel

strategy S-X (orange), our previous method [22] (green), and our solution K-X (yellow). The graphs show the worst SSIM

value in the relighted MLIC obtained from SV-BRDFs computed a�er removing from one to twelve images from the original

52 image MLIC.

(a) Paint-Texture-16 (b) Paint-Texture-14

Fig. 5. Performance for various image counts for synthetic tests (PSNR) We compare the performance of the single pixel

strategy S-X (orange), our previous method K-01[22] (green), and our solution K-X (yellow). The graphs show the worst PSNR

value in the relighted MLIC obtained from SV-BRDFs computed a�er removing from one to twelve images from the original

52 image MLIC.

main idea of FLIP is to present the perceptual di�erence seen by humans in the particular condition of alternating
between two perfectly superimposed images without blank images in between. The metric is thus designed with
the goal of discarding overall image di�erences that, whether numerically high or low, cannot be perceived by
the humans, while highlighting di�erences in very small image regions with point-like shapes, or di�erences due
to edges rather than changes in color magnitude and chromaticity. These perceptual results are complemented by
results that quantify image quality reproduction with the Structural Similarity Index (SSIM) [36]. Finally, we also
use the PSNR metric to numerically evaluate the accuracy of the computed results. Given the large amount of
tests performed, we show the FLIP maps and statistics for some particular and challenging images in the MLIC,
while for SSIM and PSNR, as a �nal value for the quality of the computed SV-BRDF, we summarize results by
taking the worst SSIM and PSNR value among all the real vs. virtual image comparisons in the MLIC. In addition,
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(a) Mockups

(b) Mockup #0 (c) Mockup #1 (d) Mockup #2 (e) Mockup #3 (f) Mockup #4 (g) Mockup #5

Fig. 6. A series of painting mockups acquired with a RTI dome acquisition setup. Six image crops, with di�erent material and

geometrical characteristics, are used to test the performance of the proposed SV-BRDF modeling method.

we also present additional visual comparisons among the relightings obtained by the S-All, the S-X, and the K-X
approaches.

8.1.1 Synthetic tests. Synthetic tests on rendered models make it possible to evaluate the behavior of the methods
in a fully controlled case where ground truth is available. We selected two synthetic models (Paint-Texture-16 and
the Paint-Texture-14) from the EveryTexture database [33], since they exhibit a detailed shape and appearance
similar to the type of real objects we are interested in. As the data is provided through Di�use, Bump, and Normal

maps, we take the Di�use as is, generate the Gloss component by converting the Bump map to monochrome
and rescaling it, and assign a constant highlight color. These maps were used to create a synthetic MLICs using
a �xed camera and 52 directional lights. Fig. 2 (top left) shows one original image from the synthetic MLIC of
the Paint-Texture-16, together with the same image virtually relighted from the SV-BRDF computed with the

ACM J. Comput. Cult. Herit., Vol. 1, No. 1, Article . Publication date: September 2022.



SV-BRDF Reconstruction from Sparse MLICs • 15
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Fig. 7. Painting mockup #0. We compare the original image with its virtual relighting obtained from the SV-BRDF computed

with S-All, S-12, K-12[22], and our K-12. For the last three virtual renderings, we removed twelve images from the MLIC. In

the last two rows we present the corresponding FLIP maps and statistics.
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Fig. 8. Painting mockup #1. We compare the original image with its virtual relighting obtained from the SV-BRDF computed

with S-All, S-12, K-12[22], and our K-12. For the last three virtual renderings, we removed twelve images from the MLIC. In

the last two rows we present the corresponding FLIP maps and statistics.
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Fig. 9. Painting mockup #2. We compare the original image with its virtual relighting obtained from the SV-BRDF computed

with S-All, S-12, K-12[22], and our K-12. For the last three virtual renderings, we removed twelve images from the MLIC. In

the last two rows we present the corresponding FLIP maps and statistics.
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Fig. 10. Painting mockup #3. We compare the original image with its virtual relighting obtained from the SV-BRDF computed

with S-All, S-12, K-12[22], and our K-12. For the last three virtual renderings, we removed twelve images from the MLIC. In

the last two rows we present the corresponding FLIP maps and statistics.
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Fig. 11. Painting mockup #4. We compare the original image with its virtual relighting obtained from the SV-BRDF computed

with S-All, S-12, K-12[22], and our K-12. For the last three virtual renderings, we removed twelve images from the MLIC. In

the last two rows we present the corresponding FLIP maps and statistics.
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Fig. 12. Painting mockup #5. We compare the original image with its virtual relighting obtained from the SV-BRDF computed

with S-All, S-12, K-12[22], and our K-12. For the last three virtual renderings, we removed twelve images from the MLIC. In

the last two rows we present the corresponding FLIP maps and statistics.
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entire MLIC and the single pixel algorithm S-All (second row). The selected image exhibits both di�use and
specular behavior. We compare the virtual relighting after computing the SV-BRDF by removing just this image in
Fig. 2 (top left) from the MLIC, and by applying the single pixel �tting (S-01), our previously presented approach
(K-01 [22] ), and the proposed solution (K-01). Even with this slightly sparser input (one less image), it is clear how
the single-pixel method (S-01) column) misses many of the glossy areas, because of insu�cient angular sampling.
Including information from the neighboring pixels helps to retrieve a better surface optical response, so that the
virtual relighted image exhibits a similar level of specular re�ection as the original (fourth and �fth column).
Moreover, our edge-preserving strategy properly keeps the sharpness of the original image. In the second and
third rows of Fig. 2, we present the corresponding FLIP maps, which illustrate how our approach improves the
perceptual performances with respect to both the single pixel method and to our previous approach [22]. A similar
behavior can be seen in the second synthetic dataset (Fig. 3). The highlight signal in the blue part is completely
lost with the standard procedure (S-01), while it is largely recovered by our approach (K-01, last column). FLIP
maps con�rm what we perceive in the �rst row. Tab. 1 numerically presents the FLIP statistics in terms of mean,
weighted median, and 1BC and 3A3 quartile of the FLIP values. Highlighted in bold are the best values, which
mostly belong to the approach proposed here. We also quantitatively compare the improvement of our algorithm
compared to the standard single pixel technique and the previous neighborhood-based approach [22] by reporting
the SSIM and PSNR metrics. Fig. 4 and Fig. 5 respectively show the SSIM and PSNR statistics when we remove
one to twelve images from the original 52 image MLIC. It can be seen that removing images deteriorates the
quality of the optical characterization, but we can clearly see how our solution can provide a better SV-BRDF
reconstruction than the others, especially for the sparser models.

Painting Mockup Method
FLIP Statistics

Mean Weighted Median 1st Quartile 3rd Quartile

Mockup #0

S-All 0.21 0.36 0.20 0.53
S-12 0.30 0.56 0.30 0.79

K-12[22] 0.26 0.45 0.24 0.69
K-12 0.24 0.37 0.21 0.56

Mockup #1

S-All 0.21 0.36 0.19 0.55
S-12 0.30 0.60 0.30 0.83

K-12[22] 0.29 0.58 0.28 0.81
K-12 0.27 0.45 0.24 0.69

Mockup #2

S-All 0.17 0.27 0.15 0.45
S-12 0.28 0.53 0.24 0.83

K-12[22] 0.23 0.43 0.20 0.75
K-12 0.25 0.38 0.21 0.70

Mockup #3

S-All 0.22 0.40 0.22 0.54
S-12 0.37 0.70 0.35 0.91

K-12[22] 0.34 0.68 0.34 0.90
K-12 0.33 0.58 0.28 0.84

Mockup #4

S-All 0.06 0.08 0.04 0.13
S-12 0.09 0.14 0.06 0.22

K-12[22] 0.09 0.12 0.06 0.18
K-12 0.09 0.11 0.07 0.17

Mockup #5

S-All 0.15 0.28 0.13 0.43
S-12 0.34 0.57 0.28 0.79

K-12[22] 0.29 0.55 0.26 0.76
K-12 0.27 0.44 0.22 0.66

Table 2. FLIP statistics for the six real painting mockups.

8.1.2 Real-world painting mockups. In order to evaluate our solution in a real-world, but controlled, scenario,
we consider six painting mockups with heterogeneous spatially-varying material distribution over the surface
(Fig. 6). Mockups were realized on painting paper, with standard acrylic colors. Our aim was to have di�erent kind
of color mixtures and geometries, using di�erent painting styles. Regarding color mixtures, we ranged from fully
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Fig. 13. Relighting of painting mockup #1. From column two to five, we visually compare the relighting results obtained with

the S-X (Up) and K-X (Bo�om) method, by removing (from le� to right) 1, 5, 11, and 12 images. On the first column we show

the original image (Top) and the result of S-All (Bo�om). In all the relightings, our approach keeps the glossy signal, that S-X

method almost completely loses a�er the removal of just one image.

(a)Mockup #0 (b) Mockup #1 (c) Mockup #2

(d) Mockup #3 (e) Mockup #4 (f) Mockup #5

Fig. 14. Performance for various image counts on painting mockups (SSIM). We compare the performance of the single pixel

strategy S-X (orange), our previous method K-X[22] (green), and our solution K-X (yellow). The graphs show the worst SSIM

value in the relighted MLIC obtained from SV-BRDFs computed a�er removing from one to twelve images from the original

MLICs of the six real painting mockups.

fresh mixed colors to fully separated color layers. Regarding the geometry, we tested di�erent con�gurations,
ranging from a thin layer of �at color to a typical brush texture created with a brush �lled with a good quantity of
color, up to even stronger geometry features obtained depositing the color directly from the tube. Finally, when
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(a)Mockup #0 (b) Mockup #1 (c) Mockup #2

(d) Mockup #3 (e) Mockup #4 (f) Mockup #5

Fig. 15. Performance for various image counts on painting mockups (PSNR). We compare the performance of the single pixel

strategy S-X (orange), our previous method K-X[22] (green), and our solution K-X (yellow). The graphs show the worst PSNR

value in the relighted MLIC obtained from SV-BRDFs computed a�er removing from one to twelve images from the original

MLICs of the six real painting mockups.

all the color layers were completely dry, we covered half of each mockup with a thin coating of gloss varnish, in
order to have both a quite di�usive surface and a very shiny one.
MLICs for the mockups have been acquired by a custom light dome with a radius of about 302<, and with

52 LED lights. The LEDs are neutral white lights that cover the entire visible spectrum. The capture device is
a 36.3 Mpixels DSLR FX Nikon D810 Camera with a 50<< AF Nikkor Lens. The acquisition system has been
calibrated with four glossy spheres (for light direction), and with a Spectralon target by using a �at �eld light
intensity calibration technique. As we did for synthetic datasets, we �rst visually compare one original image
with the virtually relighted ones, using the S-All, S-12, K-12 with the method of Pintus et al. [22], and our K-12
approaches. Again, for the last three we removed from the MLIC twelve images. From Fig. 7 to Fig. 12 we present
the relighted images, together with the FLIP maps and statistics. Tab. 2 summarizes FLIP statistics. Images, error
maps and numbers con�rm that the presented method is more capable than others in evaluating SV-BRDF for
relighting purposes, even in extremely sparse sampling condition. Moreover, Fig. 13 shows that the removal
of even one original image may have a high impact on the relighting result in the case of the standard single
pixel algorithm. Conversely, our approach is capable of retrieving the information lost by a sparse sampling of
the surface appearance by looking at neighbor pixels; K-12 results exhibit many of the highlights present in the
original photograph, while the S-12 strategy results in a more di�use surface. In particular, in the �rst column of
Fig. 13, we show one original photograph from the MLIC (Up) and the same photo virtually relighted from the
SV-BRDF computed with the S-All method (Bottom). The other columns show the relighting results obtained
with the S-X (Up) and K-X (Bottom) method, by respectively removing (from left to right) one, �ve, eleven, and
twelve images. We can see how, even with twelve discarded images, our approach keeps the glossy signal, while
the single pixel method almost completely loses it after the removal of just one image. As before, for each of
those mockups, we report the SSIM and PSNR statistics in Fig. 14 and Fig. 15, computed with the single pixel, the
technique in Pintus et al.[22], and the proposed solution. Our method can generally provide a better and more
stable performance than the others, even when the input MLIC provides a really sparse BRDF sampling.
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(a) Paint-Texture-16 (b) Paint-Texture-14

(c) Mockup #0 (d) Mockup #1 (e) Mockup #2

(f) Mockup #3 (g) Mockup #4 (h) Mockup #5

Fig. 16. Speed-up vs �ality. We launched the SV-BRDF reconstruction with di�erent levels of pruning, i.e., from a sample

budget of 10000 to 50 samples. While the computational time decreases as expected, our pruning strategy removes only

redundant samples, and preserves the BRDF sampling coverage without a�ecting the final reconstruction quality. Green and

yellow dots are respectively the time and SSIM computed in the same condition by the single pixel approach. Our pruning

strategy performs a clever sample selection, so that we can achieve a computation time similar to the single pixel method,

while producing be�er reconstruction results.

8.1.3 Speed-up vs �ality. In order to analyze the behavior of our pruning technique (Sec. 7), we repeated
the reconstruction for all the presented synthetic and real-world samples by keeping the neighborhood radius
constant (' = 10, leading to a window of 21G21 pixels), and varying the pruning budget � from very little pruning
(� = 10000) to aggressive pruning (� = 50). For all the runs, we remove the top 12 images from the original MLIC,
i.e., those with more front illumination, or, in other words, those that sample the more high-frequency part of
the BRDF �eld. We present both the computational times and the SSIM metric computed with the �rst removed
image, i.e., that with the most frontal illumination, which typically contains more highlights. We also compare
those resulting values with the single pixel approach. The results summarized in Fig. 16 con�rm the fact that
our pruning strategy drastically reduce computational cost while keeping the accuracy constant. As the sample
budget decreases, the computation time tends to that of the single pixel approach (green dot). It is interesting to
note that, with a similar number of samples, the proposed method generally provides an improved SSIM with
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respect to the one produced by the single pixel method (yellow dot). This is because the pruning approach is
designed to select samples that are better distributed than the samples from the central pixel (i.e., the sample is
likely to replace redundant di�use samples with specular samples from the neighborhood).

8.2 �alitative evaluation

As a complement to our experiments with metrics that approximate the image di�erence perceived by humans,
we also performed a user test with the aim of assessing the advantages of the presented method for generating
data to be used in relighting applications.

8.2.1 Goal. The user tests aim at comparing our neighbor-aware method (K-X ) and the single pixel approach
(S-X ). In performing this comparison, we are interested in answering two questions. First, we want to investigate
whether relightings from our models are perceived more similar to a reference ground-truth image than the ones
derived from single-pixel reconstructions. This test serves to further validate the results obtained with perceptual
image di�eerence methods. Second, we would also like to assess whether, without any other information or
reference image, relightings of models reconstructed with our method appear to users more or less realistic than
the ones derived from single-pixel reconstructions. This test serves to detect whether, by merging data from
multiple pixels we create some unnatural situations that are perceived by users, or, conversely, whether those
situations are created by single-pixel approaches.

(a) Static content without reference (b) Static content with reference

Fig. 17. The user was presented with two types of questions, i.e., the choice between two synced parallel videos (or static

images) (a) without any reference, or (b) with a reference video/image.

8.2.2 Setup. The test is conducted through a web-based anonymous questionnaire carried out by a number of
volunteers. The questionnaire consists in a generic and eight speci�c sections. The �rst section characterizes
users, while the speci�c sections ask users to visually compare relighting results obtained by the K-X and
S-X algorithms, without knowing which algorithm generated which image. As relighting is typically used for
interactive inspection, these sections include both static and dynamic data. Static data consists in rendered images,
while dynamic data consists in short clips of interactive relighting sessions with a �xed view and exactly the
same light motion for all the presented choices. Both static and dynamic tests are performed using two types of
comparisons. The �rst is a comparison between two relightings without any reference image (or video). The
second, is the same setup but with a reference relighting. The objects used for the tests are the same as included
in our quantitative evaluation (Sec. 8.1).

8.2.3 Tasks. Each user was �rst presented with two synced parallel videos (or static images) without any reference
(e.g., Fig. 17a). The user was asked to choose the video (or image) that looks more natural/photo-realistic, solely
based on his/her visual perception and knowing the fact that it depicts an illuminated painted surface. After
these sections, each dynamic and static representation is respectively coupled with a reference video/image
(e.g., Fig. 17b), and users are asked to choose the option that looks more similar to the reference. In all these
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scenarios, the users are requested to select one option, or to mark the test as undecided. We set limitless time for
the experiment, as we want users to inspect and select their options carefully.

8.2.4 Participants. We recruited 105 (14 males and 11 females, with ages ranging from 20 to 80, median 31
years) among university students and their families and researchers working at our center and at collaborating
institutions. Participants include humanities and STEM students, art historians, curators, conservation scientists,
restorers, researchers in computer science, software engineers, technicians, students, teachers, professors, retired
people from di�erent backgrounds, and others (e.g., attorneys, managers, counsellors, bioengineers, administrative
sta�, etc.). About 13% do not use a computer regularly. This wide distribution aims at testing the visual outcome
of the methods not only from the point of view of expert conservation or visual computing scientists, but also
from the perspective of more general cultural dissemination and virtual presentation to the public.

Fig. 18. We present here the global scores across all types of user tests, the scores of only the tests without and with reference.

Globally, more than two third of the votes go to the proposed K-X solution, while about 30% to the standard single pixel

approach S-X. Although the proposed solution get the majority of votes when a reference video/image has been provided

(With Reference row), K-X is capable of producing more natural and convincing relighting results even when no clue has

been shown to the users (Without Reference row). The "Not sure" answer means that the algorithm performances are judged

similar or the participant couldn’t make a clear choice.

8.2.5 Evaluation of results. We start by analysing the scores provided by the participants in the two main sections
of our test, which re�ect the cumulative results related to our two goals. Beside providing a global cumulative
statistics across all the di�erent types of visual tests (just for an overview and for completeness), the important
information conveyed by Fig. 18 is that, when no clue has been provided (without reference case), both methods
got similar scores, with a 7% of uncertainty, while the choice between K-X and S-X is more clear when we provide
a reference video or image (Fig. 18, third row). This means that both S-X and K-X approaches are capable of
producing similar rendered images, with the same level of visual quality. Conversely, when compared to the
original photograph, the proposed method has been recognized as the most reliable in resembling the real-world
visual outcome. Since these values are cumulative (videos and images together), Fig. 19 split the four cases, i.e.,
video with and without reference, and images with and without reference. Here, the statistics con�rm that,
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Fig. 19. Comparison between statistics related to only dynamic (videos) or static (images) tests, and, for each of them, the

case with and without reference video/image. Two trends are clear here. Without reference both methods are capable of

render convincing images, while with reference the proposed method produces more similar images. In addition, the statistics

show how it is more di�icult to spot di�erences in the dynamic test than in static rendered images. When the user is more

confident about the answer, the votes for the proposed K-X method get to more than 80%.

(a) With reference (b)Without reference

Fig. 20. User visual test performed a�er removing one (51), four or five (48/47), ten or eleven (42/41), and twelve (40) images

from the 52 image MLIC. In the case with the reference image (a), in the first row the uncertainty is the highest and the

two methods get similar results. The more images we remove, the more the user appreciates the results produced by the

proposed algorithm, and exhibits a lower uncertainty. Conversely, without a reference video or images, the two results are

substantially similar, with a higher level of user uncertainty.

without reference, the two compared videos, or the two images, got similar scores. More interesting is the outcome
of the experiment with the reference image or video. In static tests, the user has a higher chance to better analyze
the subtle di�erences between the two rendering, and the statistics show how the proposed solution got up to
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82% support from the participants, while the score of the S-X approach is just about 13%. Conversely, in the
dynamic, but not user-controlled, comparison, it is more di�cult to spot subtle di�erence while the video is
playing, so that, although with reference, the K-X and the S-X solutions respectively take 54% and 39% scores. In
the last graph (Fig. 20, we subdivide the statistics with respect to the number of images removed from the MLIC
when computing the SV-BRDF and the relighting. We saw in the quantitative evaluation that removing images
decreases the �delity of the reconstruction, but our method exhibits a better statistics even in extreme cases. The
user test con�rms this behavior. We show four groups, i.e., the test performed removing one image (51), four
or �ve images (48/47), ten or eleven images (42/41), and twelve (40) images from the original 52 image MLIC.
Fig. 20a shows that, as expected, by removing only one image, the uncertainty is very high and the two methods
are almost similar in terms of performances. The more images we remove, the more the user tends to vote and
appreciate the results produce by the K-X algorithm, up to about 82% when we remove twelve images from the
original MLIC. Although the case without reference shows again that the participants gave a similar score to both
methods, nonetheless Fig. 20b exhibits a similar trend, when the more images we remove, the more the proposed
solution has been selected as the best. It does seem that, by borrowing data from neighboring pixels, we do not
create situations that lead to images perceived as unnatural. As a conclusion, we can deduce that, even with a
strong undersampling, the virtual relighting, done with the digitally characterized SV-BRDF computed by the
proposed approach, still appears more photo-realistic, with signi�cant improvements with respect to single-pixel
approaches.

Retablo Method
FLIP Statistics

Mean Weighted Median 1st Quartile 3rd Quartile

Retablo Crop #0

S-All 0.29 0.37 0.26 0.47
S-16 0.43 0.56 0.38 0.79

K-16[22] 0.42 0.55 0.37 0.76
K-16 0.41 0.50 0.36 0.67

Retablo Crop #1

S-All 0.38 0.44 0.33 0.55
S-16 0.59 0.72 0.54 0.86

K-16[22] 0.58 0.71 0.53 0.85
K-16 0.45 0.52 0.38 0.68

Retablo Crop #2

S-All 0.22 0.27 0.19 0.39
S-16 0.40 0.54 0.36 0.73

K-16[22] 0.40 0.54 0.36 0.72
K-16 0.34 0.45 0.28 0.66

Table 3. FLIP statistics for the three painting crops.

8.3 Painting acquisition, reconstruction, and relighting

We have applied our technique to the reconstruction of BRDFs from free-form acquisitions of a number of
paintings. In this article, we report on the results obtained for the capture, reconstruction, and relighting of a
panel part of the retable of St. Bernardino (1455), a polyptych originally from the chapel of St. Bernardino in the St.
Francesco church in Cagliari, Italy, and currently preserved and displayed at the Pinacoteca Nazionale in Cagliari.
The analyzed panel, measuring 34x25cm, is painted in oil on a wooden support and depicts the prophet Daniel.

The painting (Fig. 21) has been acquired with a free-form RTI setup, with a 36.3 Mpixels DSLR FX Nikon D810
Camera with a 50<< AF Nikkor Lens and a handheld white LED (5500K) covering the entire visible spectrum.
We have acquired 60 images for the MLIC. The acquired data has been calibrated with four glossy spheres (for
light direction), and with a gray frame positioned around the object (see Fig. 1 left), using the camera and light
calibration method recently presented by Pintus et al. [25]. In order to assess the method as we did for synthetic
datasets and real mockups, we removed sixteen images from the dataset, thus comparing reconstructions starting
from a 44 image MLIC with a reconstruction from a 60 image MLIC.
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(a) Acquired painting (component of the Retable of S. Berndardino)

(b) Retablo Crop #0 (c) Retablo Crop #1 (d) Retablo Crop #2

Fig. 21. A painting (panel of the Retable of Saint Bernardino) acquired with a free-form RTI acquisition setup. Three image

crops, with di�erent material and geometrical characteristics, are used to test the performance of the proposed SV-BRDF

modeling method.

To avoid blurring the results by averaging over the entire painting statistics for areas with di�erent features, we
focus on three image subregions/crops (Fig. 21), selected for their characteristics. Crop#0 includes a gold-colored
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Fig. 22. Retablo crop #0. We compare the original image with its virtual relighting obtained from the SV-BRDF computed

with S-All, S-16, K-16[22], and our K-16. For the last three virtual renderings, we removed sixteen images from the MLIC. In

the last two rows we present the corresponding FLIP maps and statistics.
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Fig. 23. Retablo crop #1. We compare the original image with its virtual relighting obtained from the SV-BRDF computed

with S-All, S-16, K-16[22], and our K-16. For the last three virtual renderings, we removed sixteen images from the MLIC. In

the last two rows we present the corresponding FLIP maps and statistics.
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Fig. 24. Retablo crop #2. We compare the original image with its virtual relighting obtained from the SV-BRDF computed

with S-All, S-16, K-16[22], and our K-16. For the last three virtual renderings, we removed sixteen images from the MLIC. In

the last two rows we present the corresponding FLIP maps and statistics.

Fig. 25. Exploration of a painting (panel of the polyptych retable of Saint Bernardino (1455), Cagliari, Italy). The user explores

the dataset using visualization lenses and relighting on a large multitouch screen. Le�: the outside of the lens shows the

normal map, while the inside shows a relighting from SV-BRDF. Right: the user interactively controls a spot light to relight

the painting.

relief with several cracks and a �at white area. Crop#1 is a decoration detail in a mostly �at area with cracks, and
Crop#2 is a detail of the face, with lots of paint mixing and several damages visible.
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For each image crop we compare one original image with the virtually relighted ones, by using the S-All, S-16,
K-16 with the method of Pintus et al. [22], and our K-16 approaches. Fig. 22, Fig. 23, and Fig. 24 show the rendered
images with the FLIP maps and statistics, and, as before, we also provide a table (Tab. 3) with the corresponding
numerical values of the mean, weighted median, 1st and 3rd quartile of the error. As shown, for all the tested
image crops, the proposed solution is capable of better retrieving the SV-BRDF than previous approaches, and
produces relightable images that have a lower perceptual error while using a small number of images. This makes
it possible to apply the method in practice, as it reduces capture time by generating higher quality results with
sparse captures.

Fig. 25 shows two frames from an interactive exploration sequence using a lens-based user interface [4]. In the
left image, the user interactively controls a lens that shows the normal map outside the lens, and the relighted
image inside it. In the right image, the user interactively relights the model by controlling a virtual spot light.

9 CONCLUSIONS

We have presented a practical solution for exploiting information from neighboring pixels to e�ciently infer
subtle per-pixel analytical BRDFs representations from few per-pixel samples. As each pixel reconstruction
is independent, the proposed method can be easily integrated in common scalable out-of-core pipelines that
estimate per-pixel characteristics in parallel, reusing existing calibration and normal computation components
and just replacing BRDF �tting.
In order to provide a controlled evaluation of the approach with quantitative measures compared to ground

truth, we have performed tests using synthetic data, for which ground truth is available, as well as with painting
mockups of various characteristics acquired using a light dome providing calibrated capture. We have, moreover,
applied the method to a real-world use case of free-form acquisition of a painting.

Our qualitative and quantitative results show that we are able to recover high-frequency specular information
where su�cient data is locally available, falling back to regularized solutions without unwanted high-frequency
artifacts in other situations.

As the current approach can be used as a plug-in replacement of single-pixel BRDF �tting, we have integrated
it into an existing end-to-end pipeline for capture, calibration, and model reconstruction. The pipeline is mainly
used for generating models for an interactive system geared towards visual inspection, starting from rapid
free-form acquisitions with a moderate number of photos. We are currently applying it in collaboration with
cultural institutions for the analysis of paintings.

Besides improving our proof-of-concept implementation, our current work is focused on further optimizing the
approach by dynamically adapting neighborhood size prior to the computation and pruning of weights, to avoid
wasting computational e�orts on data that is discarded during pruning. With this approach, we aim at further
reducing the gap between single-pixel and multi-pixel. We are also working on further re�ning the similarity
metric and on testing the behavior with more complex multi-lobe BRDFs. Finally, we plan to extend the concept
of exploiting local similarity for the computation of other high frequency representations (e.g., high-order HSH),
as well as for the joint optimization of normals and materials.

In addition, it should be noted that this work has focused on how to better exploit the data acquired for a given
multi-light acquisition to produce a better result than current single-pixel approaches, rather than on determining
what is the minimum amount of images in the MLIC that can provide a meaningful BRDF reconstruction.

This is because this number strongly depends both on the distribution of the light constellation in the MLIC
and on the normal distribution in the object itself and in the neighborhood. Several papers (for instance, the
work of Nielsen et al. [21]) have studied the optimal minimal BRDF sampling in a single pixel approach, so we
can consider their outcomes as a maximum value for the minimum amount of required images if the capture
setup is controllable. It could be worth performing another completely independent investigation about how our
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method can decrease that value further. Nonetheless, our results are directly applicable to improve the quality of
results even in very common cases where the capture setup is in�exible (e.g., �xed light domes) or where it is not
possible to precisely position the lights at prescribed angles (e.g., when using free-form manual capture).
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