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Fig. 1: Given a single 360◦ panorama of an indoor scene, we compute an enriched geometric and structural representation, from which
novel panoramas from other close-by viewpoints can be synthesized at interactive rates in response to user motion.

Abstract— We present a new data-driven approach for extracting geometric and structural information from a single spherical
panorama of an interior scene, and for using this information to render the scene from novel points of view, enhancing 3D immersion in
VR applications. The approach copes with the inherent ambiguities of single-image geometry estimation and novel view synthesis by
focusing on the very common case of Atlanta-world interiors, bounded by horizontal floors and ceilings and vertical walls. Based on this
prior, we introduce a novel end-to-end deep learning approach to jointly estimate the depth and the underlying room structure of the
scene. The prior guides the design of the network and of novel domain-specific loss functions, shifting the major computational load on
a training phase that exploits available large-scale synthetic panoramic imagery. An extremely lightweight network uses geometric
and structural information to infer novel panoramic views from translated positions at interactive rates, from which perspective views
matching head rotations are produced and upsampled to the display size. As a result, our method automatically produces new poses
around the original camera at interactive rates, within a working area suitable for producing depth cues for VR applications, especially
when using head-mounted displays connected to graphics servers. The extracted floor plan and 3D wall structure can also be used to
support room exploration. The experimental results demonstrate that our method provides low-latency performance and improves over
current state-of-the-art solutions in prediction accuracy on available commonly used indoor panoramic benchmarks.

Index Terms—Omnidirectional, 360, immersive view, AR/MR/VR for architecture, Computer vision, Machine learning.

1 INTRODUCTION

A single-shot 360◦ image, containing the entire scene around the viewer,
is not consumed at once, but inherently requires a more dynamic ex-
ploration with respect to traditional 2D imagery. When it is presented
through a Head-Mounted Display (HMD), the viewer is encouraged
to actively focus on the desired content via natural head movements,
leading to an intuitive VR interface [61]. For this reason, 360◦ image
viewing is becoming one of the main exploration modes of real-world
scenes in VR [29] and has widespread use in indoor navigation [1].

The reduction in degrees of freedom to just the rotation around the
center of the panorama, leads, however, to constraints and artifacts [54],
especially since only one or two shots per room are available in a typical
virtual tour [60]. Moreover, binocular stereo and motion parallax,
which are important aspects of immersion in VR, are totally missing. To
fully support immersion, a system must thus also respond to viewpoint
translation. While many solutions have been proposed for multiview
capture setups (e.g., [2, 5]), performing view synthesis from single-
shot panoramas is of primary importance, due to the convenience and
diffusion of sparse capturing through monocular 360◦ cameras [54].

View synthesis requires the explicit or implicit estimation of the geo-
metric shape of the imaged environment, in order to perform occlusion-
aware reprojection and to synthesize the disoccluded content. Cur-
rent state-of-the-art approaches (e.g., [12, 54]) focus on extending
to single-shot panoramas the general data-driven view synthesis ap-
proaches designed for perspective views of objects and environments,
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such as Multi-planar images (MPI) [50] or Neural Radiance Fields
(NeRF) [30] (Sec. 2). The mixing of large untextured surfaces, clutter,
and non-cooperative materials in interior environments poses, however,
important challenges to generic solutions [40]. In this context, it has
been demonstrated that the knowledge of additional information, such
as the position location of the room corners and edges, significantly
improves the realism of the synthesis [60]. However, recovering the
indoor layout directly from the input image is extremely challenging.
Even the latest dedicated methods [16, 17, 69] still heavily rely on
approximations and expensive heuristic post-processing [47], which
significantly limit overall performance. As a result, their use for VR
applications necessitating interactive-rate image generation is inhibited.

In our work, we propose a new end-to-end data-driven solution
that, from a single 360◦ indoor panorama, assumed captured with
approximate gravity alignment, produces with low latency a newly
translated pose from which new perspective images can be extracted
that respond to both position and orientation changes.

While some HMD solutions strive to fully run on the embedded plat-
form, an alternative design is to compute images on high-performance
servers. This approach, extensively employed for high-quality gaming,
is made possible by the availability of low-latency tethered or wireless
connections with sufficient bandwidth to feed the displays [19]. In our
approach, a thin WebXR client directly handles head rotation, while
relying on server-computed images to also respond to head translations.
Our main novelty is in the indoor-specific deep-learning techniques that
synthesize the views. Once per scene, we enrich the original panorama
with geometric and structural information, and once per frame, we
exploit pre-computed information to quickly perform view synthesis.

The approach copes with the inherent ambiguities of single-image
geometry estimation and novel view synthesis in indoor environments
by focusing on the very common case of interiors following the Atlanta
world model (AWM) [40], in which the environment is expected to



have horizontal floor and ceiling and vertical walls. Based on this prior,
we introduce a novel end-to-end network to jointly estimate the depth
and the underlying room structure of the scene, thus efficiently handling
occlusions and disocclusions and enabling a plausible prediction even in
the case of extensively occluded structures. The prior drives the network
structure, which also exploits gravity-aligned features (GAFs) to take
into account the fact that world-space vertical and horizontal features
have different characteristics in man-made environments. In particular,
AWM makes it possible to derive the 3D layout by extruding its 2D
floor projection, while GAFs perform vertical compression, exploiting
the fact that vertical lines, common in indoor scenes, are not deformed
in equirectangular projections. Because of these characteristics, we
expect scene GAFs to be inter-related by both short-term and long-term
spatial dependencies, improving the quality of depth prediction and
layout prediction [37], and, therefore, visual synthesis.

Starting from the enriched panoramic representation, a lightweight
network infers at interactive rates novel panoramic images from trans-
lated positions in a working area around the original point of view
suitable for VR applications. From these views, perspective images
matching head rotations are produced and upsampled to display size.
Moreover, the geometric and structural information recovered can also
be used to support VR applications, e.g., to define walkable areas.

Our main novel contributions are the following:

• We present a novel approach, dubbed Atlanta Depth Module -
ADM, to jointly estimate, starting from a single equirectangular
image, the scene depth, a scene latent representation, the 3D room
shape and a floor occupancy map (Sec. 3.1). ADM achieves state-
of-the-art results on both geometric and structural reconstruction
(Sec. 4), and provides many advantages for VR applications. First,
it is much more lightweight than current solutions for depth or
layout estimation commonly adopted in this context [37, 47, 75].
Second, the recovered AWM structure is segmented into ceiling,
walls, and floor, and represented in metric units, including the
prediction of ceiling-floor heights. This, besides improving view
synthesis, supports the creation of a floor occupancy map, to
generate consistent trajectories inside the room without collisions.

• We introduce novel objective functions to take into account the in-
door structural consistency (Sec. 3.3) of the view synthesis. Such
functions, based on GAF encoding [37, 39], support direct (i.e.,
target predicted depth loss) and latent-space losses. Latent-space
losses guide a consistent structural reconstruction during training
and are dual to visual losses, called geometric perceptual and
geometric style, Such losses, combined with standard perceptual
style transfer and adversarial losses, improve reconstructed scene
quality (Sec. 4), shifting much of the computational load to the
training phase, and making the inference phase much lighter.

• We introduce a fully data-driven, versatile, and lightweight ap-
proach to generate novel panoramic views from a single indoor
panorama. Such a deep learning approach does not need ded-
icated processing for each scene [12, 54], but generalizes over
indoor scenes that just follow AWM (Sec. 4). Once latent deep
features and structural priors are applied at training time, novel
pose synthesis is obtained through a network (GVS) without deep
layers or complex pipelines. In fact, GVS consists of a limited
number of layers, combining gated and dilated convolutions, fo-
cused on maximizing the level of detail (Sec. 3.2). As a result, we
have a network with a limited and constant number of learnable
parameters (Sec. 4.2), even as generated image resolution varies.

Our results (Sec. 4) improve over state-of-the-art approaches on com-
mon benchmarks with measurable ground truth, in terms of accuracy,
quality and computational complexity. Moreover, compelling predic-
tions are produced even on images where no ground truth is available
for training, as well as on novel user-captured images.

2 RELATED WORK

Effective view synthesis requires comprehensively understanding the
3D structure of a scene given an image [59]. Full coverage of this topic

is outside the scope of this paper. In the following, we focus on the
most closely related approaches, with a particular focus on data-driven
solutions for panoramic images.

Depth estimation from panoramic images Monocular depth
estimation is a classic task in computer vision. While early solutions
used various combinations of feature detection, matching, and geomet-
ric reasoning, recent research is increasingly focusing on data-driven
solutions that derive hidden relations from large amounts of exam-
ples [37]. Since it has been shown that directly applying perspective
methods to 360◦ depth estimation in indoor environments produces
suboptimal results [74], research has started to focus on explicitly
exploiting the characteristics and wide geometric context present in
omnidirectional images. A first breed of solutions concentrated on han-
dling distortion through spherical convolution [35,45,46,49,74]. Wang
et al. [55] proposed instead a two-branch network, respectively for
the equirectangular and the cubemap projection, based on a distortion-
aware encoder [74] and the FCRN decoder [22]. Recent solutions for
panoramic depth estimation in indoor spaces [37, 48] have proposed
to work directly on equirectangular images, as well as to leverage the
concept of gravity-aligned features to reduce network size [37, 47]. A
recent trend to mitigate panoramic distortion is to leverage perspective
views sampled on panoramic images [25, 41] prior to combining depth
maps using transformers. In this work, we leverage gravity-aligned
features [37] to flatten image features and then process them with a
lightweight network designed for interactive applications (Sec. 3.1).
Compared to previous works, we achieve state-of-the-art performance
at a much lower computational cost (Sec. 4).

Layout estimation from panoramic images While depth es-
timation methods have shown impressive performances, they cannot
produce seamless 3D boundary surfaces in case of self-occlusions, since
they can only generate a single 3D position per view ray. For this reason,
layout-specific approaches are being actively researched. Since man-
made interiors often follow very strict rules, early pin-hole methods
used geometric reasoning to match image features to simple constrained
3D models [40]. The effectiveness of geometric reasoning methods
is, however, heavily dependent on the count and quality of extracted
features (e.g., corners, edges, or flat patches). More and more research
is thus now focusing on data-driven approaches [77]. Prominent ex-
amples are LayoutNet [75], which predicts the corner probability map
and boundary map directly from a panorama, and HorizonNet [47],
which simplifies the layout as three 1D vectors. The 2D layout is
then obtained by fitting Manhattan World Model (MWM) segments
on the estimated corner positions. To mitigate spherical distortion and
maximize the efficiency of modern deep learning techniques such as
transformers, many recent approaches project the equirectangular input
image to planar surfaces [17, 38, 56, 62, 69]. These methods, however,
require heavy pre-processing, such as detection of main Manhattan-
world directions from vanishing lines analysis [24, 68, 77] and related
image warping, or complex layout post-processing, such as Manhattan-
world regularization of detected features [47, 62, 75]. LayoutNet [75],
for instance, has been used to support view synthesis of individual
panoramic images [60] by providing the location of corners in the im-
age, but cannot run at interactive rates. Several methods have, thus,
sought to relax the constraints of the Manhattan World model, while
decreasing the computational load required by exploiting more general
features of man-made structures [39, 40]. These methods, however,
target the general reconstruction of the overall room shape but are not
usable for the completion of photorealistic views, lacking well-defined
parts and edges. In this work, we propose, instead, a new approach
for fast estimation of a structured layout, where, unlike the mentioned
methods, the estimation is done not from the RGB image but from
its depth, appropriately transformed (Sec. 3.1). Moreover, we apply
Atlanta World projection to depth values, and projection is not done on
an arbitrary plane as in other transform-based approaches [40, 62].

Novel view synthesis Our solution exploits recovered depth and
layout for novel view synthesis from monocular input. Most view syn-
thesis approaches exploit, instead, multi-view input, such as NeRF [30],
the methods based on depth, proxy geometry, and flow [3, 4, 13, 27],



(a) Forward pipeline (b) Training scheme

Fig. 2: Approach overview. At loading time, we process the input equirectangular image to recover depth Ds, Atlanta structure As, occupancy map
Om and latent scene representation Ls (ADM Sec. 3.1). When moving from the source position, the generation of the new translated views is done by
a soft z-buffer and a gated neural network, dubbed Gated View Synth network - GVS (Sec. 3.2). Free viewpoint images can then be generated by
extracting perspective views from the translated panoramas taking into account rotations. Supervised training of the GVS network combines visual
and perceptual losses with novel indoor-specific losses (Sec. 3.3).

or, for 360◦ views, those using a layered image representation [10, 11],
multi-depth panoramas [26], or layered mesh representations [5]. The
method of Serrano et al. [43] extended the layered image representation
approach to work with a single panoramic input image, but with only a
few depth layers and extrapolation and in-painting to fill holes. Layered
solutions have been also extended to be used as a target representation
in an end-to-end learning pipeline. In multi-plane images (MPI) [71],
each layer is a flat plane placed at a fixed depth from the capture
point. The regularity of the representation makes it suitable to be the
output of a convolutional neural network. Tucker and Snavely [50]
introduced a method to infer an MPI from a single perspective image.
PanoSynthVR [54] extended this approach by exploring the use of a
multi-cylinder representation to approximate a 360 view. However,
the method does not exploit information specific to indoors, produces
blurry images at disocclusions and severely degrades quality when the
viewpoint moves too far from the origin (Sec. 4). Xu et al. [60] recently
extended to panoramic images the approach of SynSin [59], which
uses a neural network to produce both a depth map and a feature map
which can then be rendered to new perspective viewpoints. Moreover,
similarly to us, they incorporate prior knowledge, in the form of screen
corners, demonstrating the importance of using additional information
that does not depend on the input viewpoint. Such an approach is
capable of generating new, sparse views, but its performance depends
on externally computed information and requires a considerable com-
putational cost. An alternative solution is proposed by OmniNeRF [12],
which proposes a self-supervised approach to generate novel views
given a single panoramic image and its depth, with the goal to feed a
NeRF [30] pipeline with multiple poses. Although it is one of the first
works to adapt the NeRF concept to a panoramic image, the synthe-
sized images feeding the training are a simple interpolated splatting
of the original view, so that new views obtained at run time suffer
from significant artifacts. In contrast, by introducing and exploiting
important indoor priors at inference and training levels (Sec. 3.3), we
generate new views with greater accuracy than the methods mentioned
above and with a particularly lightweight end-to-end network. Our
reconstruction is also not only visually but also spatially consistent,
unlike other representations [2, 50, 54].

3 METHODS

In our approach, a thin client explores an HMD synthesized panoramic
images that are adapted to position changes through server-side compu-
tation.

The extraction, server side, of structural information from a room and
the generation of a translated panorama are the most complex operations
and are performed through a novel deep learning architecture, whose
structure is depicted in Fig. 2.

Once per scene, we assign a viewer-independent geometry context
to input source pixels, to create a room structure that can be used for
various purposes and to propagate enriched input information to the
new pose. Jointly with depth estimation, we infer a structured model
of the underlying architectural structure through a deep network that
exploits the Atlanta World prior. The network, dubbed Atlanta Depth
Module (ADM) (orange module in Fig. 2a), feeds the second step of
the pipeline, that, every time the viewer position changes, generates the

translated panoramic image. While both modules could be trained as a
whole, in our design, for performance reasons, we pre-trained ADM
separately from view synthesis.

The pre-trained ADM returns the scene depth, a latent scene repre-
sentation, the room 3D shape, and, additionally, a floor occupancy map
(Sec. 3.1). Gravity-aligned features (GAFs) encode a panoramic image
into a multi-resolution latent scene representation. GAFs are basically
used in two ways. On one hand, their decoding produces a pixel-wise
depth of the scene (Fig. 2a, orange); on the other hand, the GAF en-
coding supports specific geometric loss functions in latent space that
guide the training of the view synthesis model (Fig. 2b). Moreover,
downstream network layers process the recovered depth to predict a
3D model of the room. As this 3D model is viewer-independent, it is
computed once at the time of image loading, albeit with low computa-
tional cost, and does not need to be re-executed at each view synthesis.
Moreover, the 3D model can be used for a variety of purposes. For
instance, it makes it possible to define a walkability map, as well as
to limit the legal area for new viewpoints so that there are no walls
crossed and we remain inside the room.

The panoramic view synthesis phase, depicted in the orange block
of Fig. 2a, is performed at each viewer position change through a
very light network that comprises a soft z-buffer block and a gated
neural network, dubbed Gated View Synth (GVS) (Sec. 3.2). The
GVS network is trained in a supervised way through a combination of
specific losses (Sec. 3.3). In particular, in addition to standard metrics
in view synthesis, we introduce novel geometric and structural metrics,
that also exploit latent space GAFs.

The output of the view synthesis phase is the translated 360◦ view
from which free-viewpoint images that respond to translation and ro-
tation can be extracted. In our reference design, the view synthesis
machinery is exploited in a client-server application, where a thin
WebXR client runs directly on the HMD’s embedded platform and
communicates with the server that handles the compute-intensive tasks.
Both client and server are initialized at each scene change with the
initial view, which is used by the client for display and by the server
to compute from visual data the augmented panoramic scene represen-
tation. The client is designed as a foveated panoramic image viewer,
that maintains, in two textures, a low-res and a hi-res representation of
portions of the scene’s panorama in an equirectangular format centered
approximately around the current lookat point. The low-res panorama
typically comprises a 180x180 degree portion (full frontal view), while
the high-res panorama covers at double resolution a 90x90 degree area
(HMD FOV). A fragment shader combines the two textures at each
frame to produce a seamless view. At each head position change, the
head transformation is sent to the server. The position is communicated
to the view synthesis network for producing the translated panorama.
The rotation is used to determine the current look-at point. Since view
synthesis, as for all current deep learning solutions, is performed at
a resolution that is lower than current HMD capabilities, we perform
image upsampling of the viewing region around the look-at point using
state-of-the-art deep learning super-resolution methods [57]. The low-
res image and hires image, together with the associated parameters are
then sent to the client for display. The supplementary material provides
detailed information on the structure of the client-server application.



The novel aspects of our work reside in the methods that are em-
ployed to generate the translated panorama, which, in addition to sup-
porting view extraction, also generate auxiliary structural and geometric
information that can be exploited for other needs. In the following we
will describe the main components of this block, first focusing on depth
and 3D layout prediction (Sec. 3.1), and then on novel view synthesis
(Sec. 3.2) and training methods (Sec. 3.3).

3.1 Depth and 3D layout prediction

(a) depth estimation block (DEB)

(b) layout estimation block (LEB)

Fig. 3: Atlanta depth module (ADM). ADM is an end-to-end network
that returns scene depth Ds, latent representation Ls, Atlanta-world 3D
room shape, and floor occupancy map. Here we illustrate the two main
cascading blocks: the depth estimation block (DEB) (a) and the layout
estimation block (LEB) (b). DEB recovers from the input image the depth
and its latent representation, while LEB recovers the layout from the
predicted depth.

The Atlanta Depth Module (ADM) can be subdivided into two
cascading blocks: depth estimation (Fig. 3a) and layout estimation
(Fig. 3b). The first network block, dubbed depth estimation block

(DEB), receives as input a single panoramic image Is
h×w and returns as

output a depth Ds
h×w in metric units (i.e., meters), coupled with a latent

representation of the scene Ls, which is also used for the specific losses
described in Sec. 3.3. The second block, dubbed layout estimation

block (LEB), receives as input Ds
h×w, and returns as output an Atlanta

World representation As (Sec. 3.1.2).
The rest of this section summarizes the main aspects of DEB and

LEB. We refer the reader to the supplementary material for more details.

3.1.1 Depth estimation block

From the input image, a cascade of five residual layers [9] creates four
feature maps having different depth and spatial size (Fig. 3a). We con-
sider, then, both the spherical and indoor nature of the scene to further
process this representation. First, we adopt circular padding along
the horizon for convolutions, to overcome the longitudinal boundary
discontinuity, and reflection padding to alleviate the singularities at the
poles [8]. Then, in order to support an efficient gathering of information
from the extracted features, we perform a specifically indoor-designed
feature compression exploiting our knowledge of preferential direc-
tions (i.e., gravity direction), assuming that world-space vertical and
horizontal features (GAF, gravity aligned features) have different char-
acteristics in most, if not all, man-made environments [37, 39].

Compressed latent features Ls = (l1 . . . l4) contain a wealth of infor-
mation on the geometry of the scene, both local and non-local, which
can be exploited to recover depth and layout, as well as to provide a
latent representation on the scene for further processing (Sec. 3.3).

For depth estimation, we aim to leverage complementary features in
distant portions of the image rather than only local regions, to maximize
the wide contextual information provided by omnidirectional images
while keeping the computational cost low. To do that, we adopt a
single-layer multi-head self-attention (MHSA) scheme [53] to process
the latent feature (see Supplementary material). Once passed to the
MHSA module, the decoding of the latent feature is very fast, through
convolutions, upsampling modules, and ELU activations, until we reach
the target output resolution (1×h×w in Fig. 3a).

3.1.2 Layout estimation block

According to the Atlanta World model [40], the indoor scene is expected
to have a horizontal floor and ceiling and vertical walls, but without
the restriction of walls meeting at right angles (supporting, e.g., curved
walls). The indoor model can, thus, be fully represented as a 2D
polygon around the observer, that defines the wall footprint, and two
scalars dc and d f that respectively represent the distance of the observer
from the ceiling and floor planes. Without loss of generality, we assume
the observer is placed at the origin of a reference frame (Y front, Z
up, and X right), and all measures are in metric units. In our network,
we represent the layout as a probability map Pw

wp×wp tensor, along
with the two scalars dc and d f . The probability map P represents the
probability that a point in the floor plane is inside the room boundary.
While the resolution of the depth map h×w only depends on the input
image resolution, the probability map, by design, has a fixed size (i.e.,
wp = 512 in our experiments).

Since layout and depth are inter-related, as the layout must be con-
sistent with the depth assigned to pixels that are part of the architectural
structure, we estimate layout jointly with depth, with the added benefit
for interactive applications of avoiding the use of separate branches that
would increase computational burden (Tab. 1). Moreover, we assume
that the prediction of the geometric layout can be extended to non-
visible part by exploiting geometric features derived from the depth
map, such as flatness, sharpness, and smoothness [39].

Since the recognition of planar and curved structures is not imme-
diate in spherical space, we transform the equirectangular map Ds,
representing the Euclidean distances of pixels from the camera center,
according to the Atlanta World model. To do this, we apply a planar
transformation to Ds, such that the distances are expressed not with
respect to a point but with respect to the horizontal plane containing the
camera center (Fig. 3b). This is accomplished by scaling each value in
Ds, which corresponds to an azimuth angle θ (along w) and polar angle
φ (along h), by ∥sinφ∥ to obtain the map Dh. This specific transform
imposes that horizontal structures, such as ceilings, floors, or even large
tables or furniture, have a constant value so that structures identification
is simpler, as shown in the Fig. 3b example.

This representation is in an equirectangular format that still has
its natural spherical distortion. In order to further simplify structure
recognition, we then apply the Atlanta World transform, which has
been proven to be effective on equirectangular image analysis [40, 62].

Specifically, we project the equirectangular depth map Dh
h×w to two

projective planes, Pc
wp×wp and Pf

wp×wp perpendicular to the Z-axis,
so that ceiling projection Pc represents depth information belonging
to the upper hemisphere of Dh, while the floor projection Pf to the
bottom hemisphere. For every pixel in the perspective image at position
(px, py), we recover a depth value from the corresponding pixel in the
equirectangular map by defining a focal length:

f =
wp

2
cot

f ovp

2
, (1)

with f ovp = 165◦ in our experiments. Then, we sample the equirectan-
gular panorama at the coordinates

(us,vs) =

(
arctan(sx/sz)

π
,

arcsin(sy)

π/2

)
, (2)

where (sx,sy,sz) is the direction vector from the origin to the point
(px, py, f ). Since the whole process is differentiable, it can be used
in conjunction with back-propagation. Furthermore, both the depth
transformation and perspective projection Eq. (2) are implemented with
simple GPU operations (Sec. 4) with negligible computational cost.

Since the top view Pc is clearly more clutter-free, as it represents the
ceiling, we use that view to derive the shape of the room, while we ex-
ploit the floor projection Pf to recover an occupancy map. Furthermore,
the respective distances of the ceiling and floor planes from the center
of the room are dc = max(Pc) and d f = max(Pf ).

Simply extrapolating the layout of walls from Pc would return an
incomplete reconstruction for eventually occluded parts (Fig. 3b, first
transform). This is a common problem in almost all single view



approaches (Sec. 2), which is commonly solved by a heuristic post-
processing step [47]. However, such a solution, in addition to adding
computational cost, works only for very simple cases.

In order to have a more versatile reconstruction we decide to intro-
duce a specific data-driven solution. Starting from the projected depth
Pc, we include in our ADM module a further multi-layer perceptron,
named layout estimation network (LEN), which estimates a map Pw

representing the probability of being inside the room footprint on the
floorplan. As the visible shape of the room is already highlighted in the
input Pc, the LEN exploits such contextual geometric information to ef-
ficiently complete the missing parts, as shown in the example of Fig. 3b.
The LEN, integrated into the same ADM network, is very simple and
lightweight (Sec. 4.2), as it is realized as a lightweight encoder-decoder
network based on the U-Net architecture, using just 256 channels as a
bottleneck (4M parameters) and skip-connections [42]. We also tried
different configurations for this task, experiencing no performance in-
crement with deeper layers. Once a contour Cxy is obtained from Pw

and scaled to metric units (see supplementary material for details), a
full 3D layout As is obtained (i.e., dc and d f , respectively, z-up and
z-down components).

3.1.3 Exploiting structural information

The information in the floor projection Pf can be used to recover a
floor occupancy map, useful, for example, to define a collision-free
VR work area (e.g., Meta Quest room-scale), or to generate a reli-
able trajectory for new poses, if only to ensure that new views do not
cross wall boundaries and remain in the room interior. To efficiently
perform those operations, we enrich the representation with a clutter

binary mask Om
h×w in an equirectangular format. To obtain that, many

lightweight pre-trained networks are available [8, 36]. Using Om on
Dh, the floor projection will be automatically cleaned-up from clutter
before transforming (Eq. (2)), so that Pf will return the valid work area
of the floor (Fig. 3b). Some examples of this feature are presented in
the supplementary material.

3.2 Novel view synthesis

While the previous operations are performed once per image, the gated
view synthesis network (GVS), illustrated in Fig. 2a (cyan block), is
activated whenever a movement occurs. Its purpose is to compute a
new plausible spherical image from a translated position (i.e., applying
a translation T to the camera). Such spherical images can then be
sampled with regular means by obtaining all possible rotated views.

The GVS network includes two cascading steps: a differential ren-
dering step, which exploits depth Ds and translation T to move pixels
information to the new position, and a panoramic view synthesis step,
which transforms the reprojected information into a full output image.

Such a network takes as input the translated pixels Ĩt , the disocclusion
mask Bt and the layout edges Et , returning as output the novel view It .

3.2.1 Differential rendering

Reprojecting source pixels to their target position requires find-
ing the mapping from the source-view pixels (us,vs) to the target-
view pixels (ut ,vt), which is obtained by converting source pix-
els to a 3D point cloud PCs, translating it by T and converting
back the resulting point cloud PCt to image space. As pixel co-

ordinates (u,v)h×w in an equirectangular image are associated to
the view-directions (θ ,φ), we apply the pixel-wise depth Ds at
the same location to recover each point in PCt as (mx,my,mz) =(
Ds cosθ cosφ −Tx,Ds sinθ cosφ −Ty,Ds sinφ −Tz

)
. Then, for each

triplet (mx,my,mz) ∈ PCt
3×h×w we obtain coordinates in the source

image:

(us,vs) =

(
warctan(mx/my)

2π
+

w

2
,

harctan(mz)√
mx

2 +my
2
+

h

2

)
. (3)

Since many source points may contribute to the same target image
pixel, we want the closer ones to occlude the further ones. In traditional
rendering, this can be achieved using a z-buffer, with only the closest

point contributing to the rendering of a pixel. However, this process
results in a discontinuous and non-differentiable rendering function
that is unsuitable for a learning framework [52]. To this end, we adopt

a soft z-buffer approach to assign a value to each pixel of Ĩt :

Ĩt(ut ,vt) =
∑(us ,vs) Is(us,vs)(exp(−Ds(us,vs)/τ)

∑(us ,vs) exp(−Ds(us,vs)/τ + ε
. (4)

The exponential factor, modulated by the temperature τ (i.e., τ = 20 in
our experiments), enforces higher precedence for points closer to the
camera. A large value of τ results in softer z-buffering, whereas a small
value yields a rendering process analogous to standard z-buffering [52].
ε is a small constant for numerical stability.

After forward splatting through soft z-buffering, as also shown in
Fig. 2, the pixels visible in both the original and translated viewpoint
get the expected content, but all disoccluded areas (i.e., the areas visible
from the new viewpoint but invisible in the original one) remain empty.

3.2.2 Panoramic view synthesis

The goal of view synthesis is to produce a complete image from the
partial information obtained after reprojection, exploiting all the aux-
iliary information we have generated in previous steps. To this end,
several approaches splat source-view features, filling missing holes
using feature interpolation approaches [59, 60]. This approach aims
to convey more semantic content, but at the same time, it irretrievably
loses details of the original image, thus requiring much deeper networks
to arrive at the synthesis of the image [32] and much computational
effort. To overcome these problems and better adapt novel view syn-
thesis to the VR interactive context, in our approach we address the
problem as an image completion and inpainting task that leverages the
recovered indoor structure to ensure consistency at various levels.

We start from the rendered image Ĩt
3×h×w

. As in typical inpainting

approaches, we define a binary inpainting mask Bt
1×h×w, identifying

missing parts in the rendered image. In contrast to pure image-domain
approaches [66, 72], we further enrich the input with the additional
information provided by the indoor structure to guide image completion.
Since the recovered layout Ls is represented in 3D space, we first
project it to the target equirectangular pose. We experienced that the

most effective format is through an edgemap with occlusions Et
1×h×w,

that is, a map storing the visible edges of the room boundary layout

(Fig. 3b). Et is then concatenated to Ĩt and with the mask Bt (i.e., along
the batch dimension - 5 layers input). It should be noted that such
representation acts as edge guiding [32], but with the main difference
that Et provides information even of parts inside the mask Bt , which
are invisible in the source image Is.

To process such input, we adopt the architecture illustrated in
Fig. 2a. The overall encoder-decoder scheme follows a typical design
for image inpainting [14], exploiting gated convolutions for encod-
ing/decoding [65] and dilated convolutions as bottleneck [64]. Com-
pared to common inpainting baselines [14, 65], our architecture is
thinner, deeper, and with fewer parameters. Moreover, it has only a
single branch and it includes several solutions to improve accuracy and
reduce computational complexity.

To simplify training and guarantee low latency at inference time,
our network uses a modified version of gated convolution called Light
Weight Gated Convolutions (LWGC), which reduces the number of pa-
rameters and processing time while maintaining the effectiveness [63].
The input is then encoded through a sequence of lightweight gated
convolutions having different strides (Fig. 2, red blocks). Repeated
dilations [64] are instead used for the bottleneck (Fig. 2, yellow blocks).
The dilated convolution operator is implemented as a modified gated
convolution:

Dy,x = σ(b+
k′h

∑
i=−k′h

k′w

∑
i=−k′w

Wk′h+i,k′w+ j · Iy+η i,x+η j), (5)

where η is a dilation factor, σ()̇ is a component-wise non-linear transfer

function and b ∈ R
Cout is the layer bias vector. In our model, we adopt,



respectively, η = 2,4,8,16 for the four bottleneck layers. The network
decoder follows a scheme that is symmetrical with respect to the scheme
of the encoder until the input resolution is reached.

3.3 Training and losses

We train both the ADM (Sec. 3.1) and GVS (Sec. 3.2) networks using a
supervised training approach (Fig. 2b) on synthetic data (see Sec. 4.1).
ADM requires a dataset in which ground truth depth is also available,
while GVS requires only original and translated views, as it can exploit
a pre-trained ADM for geometric and structural information.

3.3.1 ADM loss functions

We train the ADM network by combining and extending the standard
depth and layout losses:

Ladm = λdLd −λssLss +λlLl +λhLh. (6)

Ld is the robust Adaptive Reverse Huber Loss (BerHu) [23] for the
predicted depth;Lss is the Structural Similarity Index Measure (SSIM),
which measures the preservation of highly structured signals with strong
neighborhood dependencies; Ll is binary cross entropy wuth logits loss
for the predicted probability map Pw Sec. 3.1; Lh is the L1 distance
error for the predicted ceiling-floor distances Dc and D f . The λ weights
in our experiments are λd = 1.0,λss = 0.5,λl = 0.5,λh = 0.1.

3.3.2 GVS loss functions

The novel view synthesis network is trained by combining visual terms
and indoor-domain geometric terms: Lvsn = Lvis +Lgeo.

Visual terms include losses that measure the photorealistic quality
of the output:

Lvis = λpxLpx +λpercLperc +λstyleLstyle +λadvLadv. (7)

Here the first term is a pixel-based L1 loss between the predicted RGB
image It and the ground truth target image Igt , Lperc and Lstyle are
the data-driven perceptual and style losses [7], enforcing Iout and Igt to
have a similar representation in the feature space as computed by a pre-
trained V GG−19 [44], while Ladv is a discriminator-based loss (i.e.,
PatchGAN [15]). λ weights are λpx = 1.0, λstyle = 100.0, λperc =
1.0, λadv = 0.2. Such components are a common and effective solution
for many single pose inpainting problems [65].

However, in our problem the scene to be reconstructed is from a dif-
ferent pose, thus standard inpainting techniques return many artifacts,
especially for disoccluded structures, such as wall edges or hidden
corners (Fig. 4). To this end, to better exploit the guiding of the struc-
tural information, we introduce in our method specific geometric and
indoor-domain loss terms, exploiting the capabilities of ADM network
to return indoor scene latent representations.

As described in Sec. 3.1, our latent, compressed scene representation
is given by 4 layers L = (l1 . . . l4), which shapes (i.e., l × s), for a
1024×2048 input, are: 512×512, 512×256, 512×128, 512×64.

Since the network is pre-trained to recover pixel-wise depth and the
Atlanta World model of the room, including the parts occluded in the
source view, we assume that L features contain important characterizing
features of the indoor scene we want to reconstruct.

Analogous to the fundamental concepts of style-transfer [7], we
expect that the L1 distance between the latent representation of It and
Igt , respectively the predicted and ground truth target images, preserves
the high-level content of the scene, and thus global similarity:

Lgeocont =
4

∑
n

∥∥Ln(It)−Ln(Igt)
∥∥

1
. (8)

According to the same concepts, we also define an objective function
giving more importance to local similarity, acting as a kind of geometric
style loss, based on the Gram matrix function of the same 4 layers:

Lgeostyle =
4

∑
n

∥∥∥Kn(Ln(It)
T

Ln(It))−Ln(Igt)
T

Ln(Igt)
∥∥∥

1
, (9)

where Kn is the Gram matrix normalization factor 1/s ∗ l for the nth
selected layer.

In addition, a direct depth loss term Ltdepth is included (i.e.,
(BerHu) [23]) to enforce geometric consistency. It should be noted that,
since the available datasets [60] do not provide a ground truth depth for
the target pose, the loss is calculated by assuming as ground truth the
depth predicted by the ADM network, respectively on the target ground
truth image Igt (dubbed D∗

gt ) and on the predicted image It (dubbed
Dt ) (Fig. 2b). For completeness, we also tried a self-supervised loss in
order to estimate the target depth without ground truth [73], but with
significantly less accurate results.

As a result, the full geometric term is:

Lgeom = λgcontLgcont +λgstyleLgstyle +λtdepthLtdepth. (10)

Here λ weights are λgcont = 1.0, λgstyle = 100.0, λtdepth = 0.01.

4 RESULTS

Our approach was implemented using PyTorch [34] and has been tested
on a large variety of indoor scenes. The accompanying video shows its
usage for the exploration of free viewpoint exploration of panoramic
images with HMDs. In this section, we focus on analyzing the per-
formance of our approach for depth and layout estimation and view
synthesis.

4.1 Training and testing datasets

For training our solutions, we harness the availability of public
panoramic scene datasets where ground truth is available. In partic-
ular, for training and testing ADM, we exploit Structured3D [70]),
a large-scale synthetic database of indoor scenes comprising 21,000
photorealistic scenes, which provides ground truth depth and layout
information for each panoramic image. To train and test GVS, instead,
we exploit PNVS [60], a subset of Structured3D scenes providing, for
each source panoramic image, three views translated by 0.2-0.3m along
random directions, and three views translated by 1.0-2.0m. In contrast
to the original PNVS setup, we included the zero-motion case for a
fraction of the samples (i.e., 15%) to better adapt the dataset to a com-
mon VR use case where users may remain still for a portion of the time.
It should be noted that in PNVS, the ground truth depth and layout
are provided only for the source pose, while only the visual rendering
is provided for the target views. The pre-trained ADM network is
therefore used for providing the additional geometric and structural
information, which is regarded as ground truth for GVS training. All
these datasets provide data at a resolution of 1024x512 that we have
used for all training.

In this paper, we also use Structured3D [70] and PNVS [60] as
test datasets, using official splits that do not replicate data between
training and testing sets, so as to make it possible to have a comparison
with other solutions. Furthermore, to demonstrate transfer learning
capabilities and versatility, we present results on real-world scenes
captured by non-professional users.

We also considered other commonly used datasets, but none of them
were fully suitable for our task. As an example, Matterport3D [28],
provides incomplete depth maps not reliable for accurate rendering of
points on novel views, while MatterportLayout [76] (annotated layouts
for the Matterport3D dataset), only provides layout for a limited number
of rectified scenes, with manual annotation not always coincident with
the underlying image [76].

In our tests, we handle novel poses in a range of 50cm, which is well
above what is required for stereo (6-7cm) and assumed consistent with
natural head movements to avoid full hallucination of image content [21,
59]. The accompanying video shows typical allowed motion.

4.2 Setup and computational performance

We trained both the ADM (Sec. 3.1) and the GVS (Sec. 3.2) net-
works with the Adam optimizer [20], with β1 = 0.9, β2 = 0.999 and
an adaptive learning rate from 0.0001, on an NVIDIA RTX A5000
(24GB VRAM) with a batch size of 8 for ADM and 2 for GVS. When
using the Structured3D [70] 512 × 1024 native resolution for both



(a) RGB input (b) ground truth (c) other [54] (d) our

Fig. 4: We present qualitative performance and comparison vs. ground truth and PanoSynthVR [54] on the Structured3D dataset [70]. The average
movement for each scene is about 50cm distributed on x,y,z axis.

training tasks [60, 70], the average training time for the ADM model
is 76 ms/image and 428 ms/image for the GVS model. Inference
time on the same NVIDIA RTX A5000 is 18 ms/image for ADM and
29 ms/image for GVS.

Method Params↓ GFLOPS↓ Output type

Bifuse [55] 253 M 682 only depth

SliceNet [37] 79 M 101 only depth

AtlantaNet [38] 100 M 273 only layout

ADM (our) 29 M 79 depth+layout

Table 1: Depth-layout estimation computational performance. We
show our computational performance compared to other specific state-
of-the-art works for a 512×1024 image.

Tab. 1 presents the computational performance of our ADM com-
pared to state-of-the-art depth and layout estimation solutions.

For depth estimation, we compare with SliceNet [37] and Bifuse [55],
which are state-of-the-art methods commonly used as benchmarks in
the latest panoramic works [25, 41]. Both works [37, 55] adopt as
backbone a ResNet, which is often employed for depth estimation in
stand-alone view synth pipelines [60], but do not use patch projection
or transformers, that would add additional load to the pipeline making
it less suitable for VR applications.

For layout estimation, we compare our method with AtlantaNet [38],
a fast state-of-the-art solution that also handles the same scene types as
ours. In particular, AtlantaNet does not use pre- and post-processing
(i.e., usually done in CPU with considerable computational load), as
done by pipelines based on LayoutNet [60, 75], or HorizonNet [47].
Our ADM approach is clearly the most lightweight and has lower
computational complexity (GFLOPS) than the compared methods, even
though it jointly performs both tasks.

Method Params↓ GFLOPS↓ Output type

PNVS [60] 13.9 M 359 rgb

DeepFillv2 [66] 13.8 M 163 rgb

GVS (our) 1.7 M 83 rgb-d

Table 2: View-synthesis computational performance. We show our
computational performance compared to other deep-learning approaches
for view synthesis for a 512×1024 image.

Tab. 2 presents the computational performance for the view synthesis
network (GVS). Here we compare pipelines that are, like ours, end-
to-end deep learning networks. Thus, we compare to the PNVS [60]
view synthesis branch, as well as, for completeness, with a state-of-
the-art network for generic image inpainting (DeepFill [66]). Since the

PNVS [60] source code is not available, we evaluate its computational
cost from the information provided by the authors in the original paper,
since the view synthesis network is an adaption of EdgeConnect [32]
network.

Other types of approaches, not directly comparable in these terms,
are also included for completeness. PanoSynthVR [54] exploits a pre-
trained MPI network [50] to build, for each input panoramic scene,
an MCI (multi-cylinder image) structure is about in 383ms (declared
by the authors on an NVIDIA V100 GPU). Similar considerations
apply to NeRF adaptations to equirectangular images. In this case, the
training time is about 8h42m an NVIDIA RTX A5000 (24GB VRAM),
with subsequent 14s inference time for each individual new scene view
generated at 512×1024. In this case, much of the computational load
is from generating new views around the main view.

4.3 Run-time performance

We ran the server connected to the display on a desktop machine
equipped with an NVIDIA RTX 2080Ti. Predicting, once per scene,
the enriched representation with ADM takes 32 ms, while performing
per-frame view synthesis with GVS takes 39 ms. Cropping the image
to 90x90◦ and upsampling it (2x) using Real-ESRGAN (with model
realesr-animevideov3) [57] takes 39 ms. Transfering to CPU and
image encoding, which in our prototype is done using TurboJPG takes
an additional 5 ms/image. Server-side, thus, image computation can
be performed at about 12fps, and is reduced to about 11fps including
encoding and transmission. It should be noted that the machine is over
30% slower than the A5000 used for training. Moreover, encoding time
could be reduced by integrating hardware JPEG encoding [33] or using
alternative codecs, in particular for the ETC2 texturing format, which
is widely supported on mobile platforms [31]. Client side, the WebXR
application running on A PICO 4 VR headseat refreshes the display, in
response to head rotations, at 72fps and updates the current panorama
at the server speed. As a result, the proof-of-concept implementation
supports about 70Hz refresh rate while updating panoramas at 11fps
with a latency of ≈ 0.1s, for a working volume of ≈±30cm around the
original viewpoint. Latency was measured on the client by computing
the difference from the time at which the position was sent to the server
and the time the corresponding updated panorama is first displayed.

4.4 Performance vs. ground truth and competitors

As discussed in Sec. 3, the quality of the novel pose generation results
strongly depends on the geometric information available, since the
input image to be completed depends on the accuracy of reprojection,
guided by the estimated depth, and the complementary information to
guide inpanting depends on the indoor structure inferred (Sec. 3.2). For
this reason, we present specific results for depth and layout estimation,
followed by the results on the quality of the synthesized scene.



(a) RGB input (b) Pred source depth (c) Pred target layout (d) Predicted view (e) Ground truth

Fig. 5: We present our qualitative performance on scenes with structural occlusions. The average movement for each new pose is about 60 cm

distributed on x,y,z axis.

(a) RGB input (b) Pred source depth (c) Pred target layout (d) Predicted view

Fig. 6: We present our qualitative performance on scene acquired by non-professional users. Input resolution here is 6720×3360. The average
movement for each scene is about 40 cm.

For depth estimation, in Tab. 3 we summarize our performance
compared to SliceNet [37], and to the work of Jin et al. [18], which is
a representative pipeline that jointly predicts depth and layout, where
layout is predicted through LayoutNet [60, 75]. While the source code
is available for SliceNet, for Jin et al. [18] we compare with their
official results, where only depth estimation performance is available.
For a fair comparison, we adopt the Structured3D [70] splitting of Jin et
al. [18], adapting both SliceNet and our code to it. We adopt common
metrics, i.e., mean squared error (MSE) and root mean square error
of linear measures (RMSE) and relative accuracy δ1, defined as the
fraction of pixels where the relative error is within a threshold of 1.25.
For layout estimation, we compare, instead, with AtlantaNet [38], an
end-to-end solution that, like ours, does not require Manhattan World
pre and post-processing to work [76]. Here, we adopt the common
metrics IoU3D (volumetric intersection over union) and IoU2D (pixel-
wise intersection over union). The results demonstrate how our method

Method mse↓ rmse↑ δ1 ↑ iou3d↑ iou2d↑
Jin et al. [18] 0.103 0.666 0.91 - -

SliceNet [37] 0.044 0.174 0.93 - -

AtlantaNet [38] - - - 82.45 85.78

AVN (Our) 0.008 0.043 0.96 84.56 88.86

Table 3: Depth and layout performance. We show our quantitative
performance compared to other representative state-of-the-art works.

achieves state-of-the-art performance in both tasks, despite the lower
computational burden compared to those baselines. To evaluate the
gated view synthesis network (GVS), we compared our performance
to the one achieved by state-of-the-art methods [12, 50, 54], which are
representative and suitable for VR applications, as discussed in Sec. 2,
and for which source code was available.

In Tab. 4, we present our quantitative results compared to the solu-
tions already exploited for panoramic VR applications [54] that can
be trained end-to-end and for which a comparison with respect to

Method PSNR↑ SSIM↑ LPIPS↓
MPI 32 [50, 54] 17.59 0.768 0.263

MPI 64 [50] 17.93 0.783 0.258

MPI 128 [50] 18.22 0.789 0.252

GVS (Our) 22.97 0.817 0.178

Table 4: GVS quantitative performance. We show GVS quantitative
performance compared to other state-of-the-art works.

ground truth was possible [50, 54]. Specifically, MPI [50] is adopted
by PanoSynthVR [54] to generate multi-cylinder-images (in their case
with 32 layers) from a single panoramic view, as well as by MatryOD-
ska [2] to generate low-resolution views form stereoscopic panoramic
input. We also considered Synsin [59], but no official panoramic im-
plementation was available, and only low-resolution results have been
presented [60].

Since such multi-layer approaches have a limited working range, we
adopt the PNVS benchmark called easy set [60], which limits motion
to 0.1-0.2cm. Differently from the experiments proposed in the PNVS
paper [60], we choose to test on Structured3D full resolution (i.e.,
512× 1024), since the benchmark proposed in the PNVS paper [60]
was run at a resolution of 256×512, way too low for our applications.

Tab. 4 summarizes the results with standard metrics: Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) [58], and
the Learned Perceptual Image Patch Similarity (LPIPS) [67]. These
results show how our method outperforms other solutions in terms of
accuracy in all metrics. It should be noted that the current approaches
are adaptations of methods based on planar or semi-planar projections,
while our method fully exploits depth and layout data.

Qualitative results on a variety of indoor scenes are presented in
Fig. 4, Fig. 5, Fig. 6, and Fig. 7. Fig. 4 shows our performance com-
pared with a recent approach for VR applications based on MPI [54],
using the same target position and converting the cylindrical output of
that system to an equirectangular map. As in Tab. 4, we adopt data for



which ground truth is available [60]. In this regard, the same images
provided by PanoSynthVR are not usable for direct comparison, since
these are cylindrical crops and not full equirectangular scenes. The
comparison shows how our method is able to predict occluded and
disoccluded parts even in the presence of significant structural occlu-
sions, such as corridors to particularly bulky furniture. Furthermore,
besides our superior performance in terms of accuracy, it should be
noted that the compared solution, although returning a perceptual plau-
sible view, does not reconstruct a spatially reliable scene, probably due
to approximation with a limited number of planes/cylinders.

In Fig. 5, we present instead qualitative examples of our performance,
illustrating different tasks. Alongside the input source image, we show
the predicted source depth, the predicted layout translated at the target
position, our prediction at the target position, and the ground truth
target. In this case, it is noticeable the correlation of depth and layout
quality with the generated output view.

In addition to the results on synthetic scenes, we present in Fig. 6
qualitative performances on real-world, user-captured scenes. Here we
exploit the training with Structured3D [70] to predict depth, layout,
and novel views, from an input 6720× 3360 images captured by a
Ricoh Theta S. Also in this case our method returns visually realistic
reconstructions. Finally, we present a qualitative comparison with

(a) OmniNeRF [12] (b) Our

Fig. 7: Comparison to NeRF. we show a comparison to OmniNeRF [12],
using data released by the authors. As the details clearly show, our
solution provides better accuracy in many parts of the scene.

a NeRF approach. As recent omnidirectional image-based methods
attempt to build a NeRF structure from a single image (Sec. 2), in Fig. 7
we show a comparison to a NeRF-based approach for equirectangular
images, OmniNeRF [12]. In this case, as no ground truth is available,
we present a qualitative assessment of the data made available by the
authors, considering their same spatial range (i.e., 30cm). As clearly
highlighted in Fig. 7 details, our solution provides better accuracy in
many parts of the scene. In this context, we expect that our work could
be used to generate input views for further NeRF processing.

4.5 Discussion and ablation study

Tab. 5 illustrates the results of an ablation study made to analyze the
major technical choices of our method. The first test (first and second
row in Tab. 5) shows the importance of effective depth estimation.
The accuracy of depth is critical to synthesize the new pose, as the
correct displacement of elements visible from the new view depends on
it [59]. In our ablation study, the first row presents results where depth
is estimated with a domain-independent approach with a baseline that
exploits only multi-resolution aggregation [60] but without compression
according to a preferred direction. Using gravity-aligned features here
results in a great increment in performance.

Row 3 and 4 in Tab. 5 show the contribution of layout knowledge
to handle occlusion and disocclusion. In this case, we detail the per-
formance difference between using a standard layout estimation with
Manhattan World post-processing [47], vs. our approach (i.e., ATL
- row 4). Finally, in row 5 we show our full-configuration perfor-
mance, even using our novel geometric perceptual and style losses (see
Sec. 3.3). It should be noted how this contribution mainly affects SSIM
and LPIPS.

GAF MW ATL GPS PSNR↑ SSIM↑ LPIPS↓
- - - - 16.87 0.693 0.325

✓ - - - 18.28 0.751 0.206

✓ ✓ - - 19.12 0.776 0.186

✓ - ✓ - 22.01 0.798 0.181

✓ - ✓ ✓ 22.97 0.817 0.178

Table 5: Ablation stats. We show the effect of several key choices of
our approach. In bold is the adopted configuration. GAF: gravity aligned
features-based depth estimation; MW: standard Manhattan World layout
estimation; ATL: Atlanta transform structure estimation; GPS: geometric
perceptual and style loss.

Our model proves versatile on different types of indoor scenes, even
as the type of real or synthetic input data varies. However, there are
cases, mainly in real-world scenes very different from training data,
where our method did not produce plausible images. In such bad cases
(i.e., illustrated and discussed in the supplementary material), the lack
of performance depends on the quality of the depth associated with
the initial view. This depth, in fact, depends on the projection of the
visible pixels or any associated features, which is, in fact, the real input
to the actual view synthesis network. In this sense, even the commonly
used soft z-buffer method [52] may be subject to error and may be the
subject of future work.

We also noted that, even if the structure and depth of the scene are
predicted once and remain the same for all frames, visible instabilities
may occur in the form of flickering in the application in which a new
image is generated per frame. Examples are visible in the accompa-
nying video. This is due, mainly, to small changes in the reprojection
that trigger large changes in predicted images. We plan to mitigate this
problem through the inclusion of regularization terms, as well as by
augmenting the training sets.

Another important discussion point is the resolution of the generated
images. Currently, the biggest limitation is the resolution of the avail-
able training datasets, which is still below the capabilities of modern
VR viewers. Although new datasets will soon be available at higher res-
olutions, one practical solution is now the use of fast super-resolution
methods [6, 57]. The accompanying video shows the configuration
where a 2x upsampling of the presented view is combined with the
prediction at the 1024x512 resolution.

5 CONCLUSIONS

We have presented a novel deep learning approach that extracts geo-
metric and structural information from a single panorama in order to
quickly synthesize plausible panoramic images from close-by view-
points within a workspace suitable for VR applications.

Our end-to-end approach is particularly compact and lightweight,
and introduces several innovations. In particular, our novel integrated
network for estimating an environment’s depth and permanent structure
produces elements that are crucial requirements for ensuring reliable
view synthesis. By incorporating novel domain-specific loss functions,
we shift the major computational load on the training phase, and obtain
an extremely lightweight network at prediction time. As a result, our
method automatically produces compelling new poses ready for inter-
active use. Moreover, the extracted floor plan and 3D wall structure can
also be used to support room exploration.

Our future work will concentrate on further improving the perfor-
mance, especially on larger-size images, as well as the stability for its
use in real-time exploration. We also plan to integrate this work with
other solutions for the dynamic exploration of panoramic images, such
as automatic room emptying and editing [36, 51].

ACKNOWLEDGMENTS

This publication was made possible by NPRP-S grant NPRP14S-0403-
210132 by Qatar National Research Fund (a member of Qatar Founda-
tion) and by Sardinian Regional Authorities through project XDATA.
The findings herein reflect the work, and are solely the responsibility
of the authors.



REFERENCES

[1] M. Aly and J.-Y. Bouguet. Street view goes indoors: Automatic pose

estimation from uncalibrated unordered spherical panoramas. In Proc.

WACV, pp. 1–8, 2012. 1

[2] B. Attal, S. Ling, A. Gokaslan, C. Richardt, and J. Tompkin. Matryodshka:

Real-time 6dof video view synthesis using multi-sphere images. In Proc.

ECCV, pp. 441–459. Springer, 2020. 1, 3, 8

[3] T. Bertel, N. D. Campbell, and C. Richardt. MegaParallax: Casual 360°

panoramas with motion parallax. IEEE TVCG, 25(5):1828–1835, 2019. 2

[4] T. Bertel, M. Yuan, R. Lindroos, and C. Richardt. Omniphotos: casual

360 vr photography. ACM Transactions on Graphics (TOG), 39(6):1–12,

2020. 2

[5] M. Broxton, J. Flynn, R. Overbeck, D. Erickson, P. Hedman, M. Duvall,

J. Dourgarian, J. Busch, M. Whalen, and P. Debevec. Immersive light field

video with a layered mesh representation. ACM Transactions on Graphics

(TOG), 39(4):86–1, 2020. 1, 3

[6] X. Deng, H. Wang, M. Xu, Y. Guo, Y. Song, and L. Yang. Lau-net:

Latitude adaptive upscaling network for omnidirectional image super-

resolution. In Proc. CVPR, pp. 9189–9198, June 2021. 9

[7] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using

convolutional neural networks. In Proc. CVPR, pp. 2414–2423, 2016. doi:

10.1109/CVPR.2016.265 6

[8] V. Gkitsas, V. Sterzentsenko, N. Zioulis, G. Albanis, and D. Zarpalas.

PanoDR: Spherical panorama diminished reality for indoor scenes. In

Proc. CVPR Workshops, pp. 3716–3726, 2021. 4, 5

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In Proc. CVPR, pp. 770–778, 2016. 4

[10] P. Hedman, S. Alsisan, R. Szeliski, and J. Kopf. Casual 3d photography.

ACM Transactions on Graphics (TOG), 36(6):1–15, 2017. 3

[11] P. Hedman and J. Kopf. Instant 3d photography. ACM Transactions on

Graphics (TOG), 37(4):1–12, 2018. 3

[12] C.-Y. Hsu, C. Sun, and H.-T. Chen. Moving in a 360 world: Synthe-

sizing panoramic parallaxes from a single panorama. arXiv preprint

arXiv:2106.10859, 2021. 1, 2, 3, 8, 9

[13] J. Huang, Z. Chen, D. Ceylan, and H. Jin. 6-DOF VR videos with a single

360-camera. In Proc. IEEE VR, pp. 37–44, 2017. 2

[14] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally and locally consistent

image completion. ACM Trans. Graph., 36(4), jul 2017. doi: 10.1145/

3072959.3073659 5

[15] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation

with conditional adversarial networks. In Proc. CVPR, pp. 1125–1134,

2017. 6

[16] H. Jia, H. Yi, H. Fujiki, H. Zhang, W. Wang, and M. Odamaki. 3d

room layout recovery generalizing across manhattan and non-manhattan

worlds. In Proc. CVPR Workshops, pp. 5188–5197, 2022. doi: 10.1109/

CVPRW56347.2022.00567 1

[17] Z. Jiang, Z. Xiang, J. Xu, and M. Zhao. Lgt-net: Indoor panoramic room

layout estimation with geometry-aware transformer network. In Proc.

CVPR, pp. 1654–1663, 2022. 1, 2

[18] L. Jin, Y. Xu, J. Zheng, J. Zhang, R. Tang, S. Xu, J. Yu, and S. Gao.

Geometric structure based and regularized depth estimation from 360

indoor imagery. In Proc. CVPR, pp. 889–898, 2020. 8

[19] V. Kelkkanen, M. Fiedler, and D. Lindero. Synchronous remote rendering

for VR. Int. Journal of Computer Games Technology, 2021:1–16, 2021. 1

[20] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.

ArXiv e-print arXiv:1412.6980, 2014. 6

[21] P. K. Lai, S. Xie, J. Lang, and R. Laganière. Real-time panoramic depth

maps from omni-directional stereo images for 6 dof videos in virtual

reality. In Proc. IEEE VR, pp. 405–412. IEEE, 2019. 6

[22] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab. Deeper

depth prediction with fully convolutional residual networks. In Proc. 3DV,

pp. 239–248, 2016. 2

[23] S. Lambert-Lacroix and L. Zwald. The adaptive BerHu penalty in robust

regression. Journal of Nonparametric Statistics, 28:1–28, 2016. 6

[24] D. C. Lee, M. Hebert, and T. Kanade. Geometric reasoning for single

image structure recovery. In Proc. CVPR, pp. 2136–2143, 2009. 2

[25] Y. Li, Y. Guo, Z. Yan, X. Huang, Y. Duan, and L. Ren. Omnifusion: 360

monocular depth estimation via geometry-aware fusion. In Proc. CVPR,

pp. 2801–2810, 2022. 2, 7

[26] K.-E. Lin, Z. Xu, B. Mildenhall, P. P. Srinivasan, Y. Hold-Geoffroy, S. Di-

Verdi, Q. Sun, K. Sunkavalli, and R. Ramamoorthi. Deep multi depth

panoramas for view synthesis. In Proc. ECCV, pp. 328–344. Springer,

2020. 3

[27] B. Luo, F. Xu, C. Richardt, and J.-H. Yong. Parallax360: Stereoscopic

360 scene representation for head-motion parallax. IEEE transactions

on Visualization and Computer Graphics, 24(4):1545–1553, 2018. Proc.

IEEE VR. 2

[28] Matterport. Matterport3D. https://github.com/niessner/

Matterport, 2017. [Accessed: 2022-09-25]. 6

[29] K. Matzen, M. F. Cohen, B. Evans, J. Kopf, and R. Szeliski. Low-cost 360

stereo photography and video capture. ACM TOG, 36(4):148:1–148:12,

2017. 1

[30] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,

and R. Ng. Nerf: Representing scenes as neural radiance fields for view

synthesis. Communications of the ACM, 65(1):99–106, 2021. 1, 2, 3

[31] J.-H. Nah. QuickETC2: Fast ETC2 texture compression using luma

differences. ACM Trans. Graph., 39(6), nov 2020. 7

[32] K. Nazeri, E. Ng, T. Joseph, F. Qureshi, and M. Ebrahimi. Edgeconnect:

Structure guided image inpainting using edge prediction. In Proc. ICCVW,

pp. 3265–3274, 2019. doi: 10.1109/ICCVW.2019.00408 5, 7

[33] NVIDIA. nvJPEG Libraries: GPU-accelerated JPEG decoder, encoder

and transcoder. https://developer.nvidia.com/nvjpeg, 2023. [Ac-

cessed: 2023-06-06]. 7

[34] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in

pytorch. In Proc. NIPS Workshop on Autodiff, 2017. 6

[35] G. Payen de La Garanderie, A. Atapour Abarghouei, and T. P. Breckon.

Eliminating the blind spot: Adapting 3D object detection and monocular

depth estimation to 360 panoramic imagery. In Proc. ECCV, pp. 812–830,

2018. 2

[36] G. Pintore, M. Agus, E. Almansa, and E. Gobbetti. Instant automatic

emptying of panoramic indoor scenes. IEEE Transactions on Visualization

and Computer Graphics, 28(11):3629–3639, 2022. Proc. ISMAR. 5, 9

[37] G. Pintore, M. Agus, E. Almansa, J. Schneider, and E. Gobbetti. SliceNet:

deep dense depth estimation from a single indoor panorama using a slice-

based representation. In Proc. CVPR, pp. 11536–11545, 2021. 2, 4, 7,

8

[38] G. Pintore, M. Agus, and E. Gobbetti. AtlantaNet: Inferring the 3D indoor

layout from a single 360 image beyond the Manhattan World assumption.

In Proc. ECCV, pp. 432–448, 2020. 2, 7, 8

[39] G. Pintore, E. Almansa, M. Agus, and E. Gobbetti. Deep3DLayout: 3d

reconstruction of an indoor layout from a spherical panoramic image.

ACM Trans. Graph., 40(6):250:1–250:12, 2021. 2, 4

[40] G. Pintore, C. Mura, F. Ganovelli, L. Fuentes-Perez, R. Pajarola, and

E. Gobbetti. State-of-the-art in automatic 3D reconstruction of structured

indoor environments. Comput. Graph. Forum, 39(2):667–699, 2020. 1, 2,

4

[41] M. Rey-Area, M. Yuan, and C. Richardt. 360monodepth: High-resolution

360deg monocular depth estimation. In Proc. CVPR, pp. 3762–3772, 2022.

2, 7

[42] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks

for biomedical image segmentation. In Proc. MICCAI, pp. 234–241, 2015.

5

[43] A. Serrano, I. Kim, Z. Chen, S. DiVerdi, D. Gutierrez, A. Hertzmann,

and B. Masia. Motion parallax for 360 rgbd video. IEEE Transactions

on Visualization and Computer Graphics, 25(5):1817–1827, 2019. Proc.

IEEE VR. 3

[44] K. Simonyan and A. Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 6

[45] Y. Su and K. Grauman. Kernel transformer networks for compact spherical

convolution. In Proc. CVPR, pp. 9434–9443, 2019. 2

[46] Y.-C. Su and K. Grauman. Learning spherical convolution for fast features

from 360 imagery. In Advances in Neural Information Processing Systems

30, pp. 529–539, 2017. 2

[47] C. Sun, C.-W. Hsiao, M. Sun, and H.-T. Chen. HorizonNet: Learning

room layout with 1D representation and pano stretch data augmentation.

In Proc. CVPR, pp. 1047–1056, 2019. 1, 2, 5, 7, 9

[48] C. Sun, M. Sun, and H.-T. Chen. HoHoNet: 360 indoor holistic under-

standing with latent horizontal features. In Proc. CVPR, pp. 2573–2582,

2021. 2

[49] K. Tateno, N. Navab, and F. Tombari. Distortion-aware convolutional

filters for dense prediction in panoramic images. In Proc. ECCV, pp.

732–750, 2018. 2

[50] R. Tucker and N. Snavely. Single-view view synthesis with multiplane

images. In Proc. CVPR, pp. 551–560, 2020. 1, 3, 7, 8

https://github.com/niessner/Matterport
https://github.com/niessner/Matterport
https://developer.nvidia.com/nvjpeg


[51] M. Tukur, G. Pintore, E. Gobbetti, J. Schneider, and M. Agus. SPI-

DER: A framework for processing, editing and presenting immersive

high-resolution spherical indoor scenes. Graphical Models, 128:101182:1–

101182:11, July 2023. 9

[52] S. Tulsiani, R. Tucker, and N. Snavely. Layer-structured 3d scene inference

via view synthesis. In Proc. ECCV, pp. 302–317, 2018. 5, 9

[53] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in

Neural Information Processing Systems, vol. 30, 2017. 4

[54] J. Waidhofer, R. Gadgil, A. Dickson, S. Zollmann, and J. Ventura.

PanoSynthVR: Toward light-weight 360-degree view synthesis from a

single panoramic input. In Proc. ISMAR, pp. 584–592. IEEE, 2022. 1, 2,

3, 7, 8

[55] F.-E. Wang, Y.-H. Yeh, M. Sun, W.-C. Chiu, and Y.-H. Tsai. BiFuse:

Monocular 360 depth estimation via bi-projection fusion. In Proc. CVPR,

pp. 462–471, 2020. 2, 7

[56] F.-E. Wang, Y.-H. Yeh, M. Sun, W.-C. Chiu, and Y.-H. Tsai. LED2-Net:

Monocular 360 layout estimation via differentiable depth rendering. In

Proc. CVPR, pp. 12956–12965, 2021. 2

[57] X. Wang, L. Xie, C. Dong, and Y. Shan. Real-ESRGAN: Training real-

world blind super-resolution with pure synthetic data. In Proc. ICCVW,

2021. 3, 7, 9

[58] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality

assessment: from error visibility to structural similarity. IEEE transactions

on image processing, 13(4):600–612, 2004. 8

[59] O. Wiles, G. Gkioxari, R. Szeliski, and J. Johnson. Synsin: End-to-end

view synthesis from a single image. In Proc. CVPR, pp. 7467–7477, 2020.

2, 3, 5, 6, 8, 9

[60] J. Xu, J. Zheng, Y. Xu, R. Tang, and S. Gao. Layout-guided novel view

synthesis from a single indoor panorama. In Proc. CVPR, pp. 16438–

16447, 2021. 1, 2, 3, 5, 6, 7, 8, 9

[61] M. Xu, C. Li, S. Zhang, and P. Le Callet. State-of-the-art in 360◦

video/image processing: Perception, assessment and compression. IEEE

Journal of Selected Topics in Signal Processing, 14(1):5–26, 2020. 1

[62] S.-T. Yang, F.-E. Wang, C.-H. Peng, P. Wonka, M. Sun, and H.-K. Chu.

DuLa-Net: A dual-projection network for estimating room layouts from a

single RGB panorama. In Proc. CVPR, pp. 3363–3372, 2019. 2, 4

[63] Z. Yi, Q. Tang, S. Azizi, D. Jang, and Z. Xu. Contextual residual ag-

gregation for ultra high-resolution image inpainting. In Proc. CVPR, pp.

7508–7517, 2020. 5

[64] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolu-

tions. In Y. Bengio and Y. LeCun, eds., Proc. ICLR, 2016. 5

[65] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Generative image

inpainting with contextual attention. In Proc. CVPR, pp. 5505–5514, 2018.

5, 6

[66] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Free-form image

inpainting with gated convolution. In Proc. ICCV, pp. 4471–4480, 2019.

5, 7

[67] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The un-

reasonable effectiveness of deep features as a perceptual metric. In Proc.

CVPR, pp. 586–595, 2018. 8

[68] Y. Zhang, S. Song, P. Tan, and J. Xiao. PanoContext: A whole-room 3D

context model for panoramic scene understanding. In Proc. ECCV, pp.

668–686, 2014. 2

[69] Y. Zhao, C. Wen, Z. Xue, and Y. Gao. 3d room layout estimation from

a cubemap of panorama image via deep manhattan hough transform. In

Proc. ECCV, pp. 637–654. Springer, 2022. 1, 2

[70] J. Zheng, J. Zhang, J. Li, R. Tang, S. Gao, and Z. Zhou. Structured3D: A

large photo-realistic dataset for structured 3D modeling. In Proc. ECCV,

pp. 519–535, 2020. 6, 7, 8, 9

[71] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. Stereo magnifica-

tion: learning view synthesis using multiplane images. ACM Transactions

on Graphics (TOG), 37(4):1–12, 2018. 3

[72] P. Zhu, R. Abdal, Y. Qin, and P. Wonka. Sean: Image synthesis with

semantic region-adaptive normalization. In Proc. CVPR, pp. 5104–5113,

2020. 5

[73] N. Zioulis, A. Karakottas, D. Zarpalas, F. Alvarez, and P. Daras. Spherical

view synthesis for self-supervised 360◦ depth estimation. In Proc. 3DV,

pp. 690–699, 2019. 6

[74] N. Zioulis, A. Karakottas, D. Zarpalas, and P. Daras. OmniDepth: Dense

depth estimation for indoors spherical panoramas. In Proc. ECCV, pp.

453–471, 2018. 2

[75] C. Zou, A. Colburn, Q. Shan, and D. Hoiem. LayoutNet: Reconstructing

the 3D room layout from a single RGB image. In Proc. CVPR, pp. 2051–

2059, 2018. 2, 7, 8

[76] C. Zou, J. Su, C. Peng, A. Colburn, Q. Shan, P. Wonka, H. Chu, and

D. Hoiem. Manhattan room layout reconstruction from a single 360

image: A comparative study of state-of-the-art methods. International

Journal of Computer Vision, 129:1410–1431, 2021. 6, 8

[77] C. Zou, J.-W. Su, C.-H. Peng, A. Colburn, Q. Shan, P. Wonka, H.-K. Chu,

and D. Hoiem. 3d manhattan room layout reconstruction from a single

360 image. ArXiv e-print arXiv:1910.04099, 2019. 2


	Introduction
	Related Work
	Methods
	Depth and 3D layout prediction
	Depth estimation block
	Layout estimation block
	Exploiting structural information

	Novel view synthesis
	Differential rendering
	Panoramic view synthesis

	Training and losses
	ADM loss functions
	GVS loss functions


	Results
	Training and testing datasets
	Setup and computational performance
	Run-time performance
	Performance vs. ground truth and competitors
	Discussion and ablation study

	Conclusions

