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Figure 1: PanoVerse. We present a framework for generation and exploration of immersive scenes representing indoor

environments. Starting from single panoramic images (left), we generate through a data-driven architecture stereo couples

covering the viewing workspace (middle), that can be explored by VR setups on lightweight WebXR viewers ready for Metaverse

applications (right).

ABSTRACT

We present a novel framework, dubbed PanoVerse, for the auto-

matic creation and presentation of immersive stereoscopic environ-

ments from a single indoor panoramic image. Once per 360◦ shot,

a novel data-driven architecture generates a �xed set of panoramic

stereo pairs distributed around the current central view-point. Once

per frame, directly on the HMD, we rapidly fuse the precomputed

views to seamlessly cover the exploration workspace. To realize

this system, we introduce several novel techniques that combine

and extend state-of-the art data-driven techniques. In particular, we

present a gated architecture for panoramic monocular depth estima-

tion and, starting from the re-projection of visible pixels based on

predicted depth, we exploit the same gated architecture for inpaint-

ing the occluded and disoccluded areas, introducing a mixed GAN

with self-supervised loss to evaluate the stereoscopic consistency
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of the generated images. At interactive rates, we interpolate pre-

computed panoramas to produce photorealistic stereoscopic views

in a lightweight WebXR viewer. The system works on a variety

of available VR headsets and can serve as a base component for

Metaverse applications. We demonstrate our technology on several

indoor scenes from publicly available data.

CCS CONCEPTS

• Human-centered computing; • Computing methodologies;

• Information systems;

KEYWORDS

Indoor Environments, Omnidirectional Images, Data-driven Meth-

ods, Immersive Stereoscopic Exploration, Metaverse Applications,

WebXR

ACM Reference Format:

Giovanni Pintore, Alberto Jaspe-Villanueva, Markus Hadwiger, Enrico Gob-

betti, Jens Schneider, and Marco Agus. 2023. PanoVerse: automatic gener-

ation of stereoscopic environments from single indoor panoramic images

for Metaverse applications. In The 28th International ACM Conference on 3D

Web Technology (Web3D ’23), October 9–11, 2023, San Sebastian, Spain. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3611314.3615914

https://orcid.org/0000-0001-8944-1045
https://orcid.org/0000-0003-3899-308X
https://orcid.org/0000-0003-1239-4871
https://orcid.org/0000-0003-0831-2458
https://orcid.org/0000-0002-0546-2816
https://orcid.org/0000-0003-2752-3525
https://doi.org/10.1145/3611314.3615914
https://doi.org/10.1145/3611314.3615914


Web3D ’23, October 9–11, 2023, San Sebastian, Spain Pintore and Jaspe, et al.

1 INTRODUCTION

In the context of digital content creation and immersive experiences,

omnidirectional panoramic images have emerged as a powerful tool

for constructing realistic and captivating indoor environments. A

panoramic image can be created by stitching together multiple

photographs or in single shots through specialized cameras (e.g.,

Ricoh Theta, LadyBug, or Insta360) and contains the entire scene

context visible from a viewpoint within a 360◦ �eld of view. When

presented through a Head-Mounted Display (HMD), the viewer

dynamically explores it by focusing on the desired content via

natural head movements, just like in the real world, leading to a

natural VR interface with a good degree of immersion [Xu et al.

2020].

In this context, panoramas have become one the main explo-

ration modes of real-world scenes in VR [Matzen et al. 2017]. In

particular, single panoramic images can be easily shared and ac-

cessed across various devices and platforms, making them highly

versatile and accessible. They can be seamlessly integrated into

websites, virtual reality applications, or mobile devices, allowing

a broad audience to experience and interact with indoor environ-

ments regardless of their location or the equipment they possess.

As a representation of the environment around the user, they also

have the potential to be an important building block for the con-

struction of the shared physical and digital realities popularized by

the Metaverse concept [Dong and Lee 2022].

Even though capturing a single shot panorama is a very ap-

pealing way to create a virtual clone of a real environment, the

limitation to viewer to rotating around the �xed location from

which the panorama was taken leads to the loss of binocular stereo,

which is very important to provide a sense of presence [Waidhofer

et al. 2022]. In order to provide stereo cues for full 360 degree ro-

tations, views from a continuous set of shifted viewpoints must

be available to the renderer. Capturing those views would require

complex setups, such as rotating stereo rigs, that are incompatible

with the need of quickly capturing, experiencing and sharing a

360◦ scene using consumer hardware. For this reason, research

has concentrated on view synthesis methods that, however, either

require complicated representations or are too heavy to run directly

on HMDs and interactive rates (Sec. 2).

To overcome these limitations, we propose in this paper a novel

framework, dubbed PanoVerse for fast and e�ective automatic

generation and exploration of stereoscopic immersive scenes from

single panoramic images. In our approach, we split the problem

in two phases. First, once per shot, we infer, through a novel data-

driven solution, a �xed set of panoramic stereo pairs distributed

around the current central view-point. Then, once per frame, di-

rectly on the HMD, we rapidly fuse the closest sampled panoramas

based on the current view direction to seamlessly cover the explo-

ration workspace. Our main contributions are the following:

• we introduce a novel architecture that generates shifted

views of an indoor panoramic image; the end-to-end archi-

tecture �rst estimates a depth map from a single panoramic

input, and then generates views by reprojection and inpaint-

ing. Unlike other state-of-the-art approaches in the litera-

ture [Pintore et al. 2021; Sun et al. 2021], the network is based

on a lightweight gated architecture, to ensure scalability and

possibility of deployment on commodity hardware, and a

dilated bottleneck, to maintain maximum visual detail when

re-projecting onto new views;

• we introduce a uni�ed network architecture with custom

training strategies for both depth estimation and view syn-

thesis. The same lightweight network is exploited for both

tasks, just adapting the �nal activation function and chang-

ing the training mode. To this end, we introduce for novel

view synthesis of a speci�c photometric loss, combined with

a GAN approach. As a result, photorealistic novel views

for both right and left eye are generated with low latency.

We moreover use super-resolution GAN-based architectures

to further increase the resolution between the stereo im-

ages [Wang et al. 2018].

• we achieve real-time stereoscopic exploration by transfer-

ring, once per scene, a set of precomputed stereo views dis-

tributed around the central viewpoint, and producing, once

per frame, seamless stereo couples that respond to head mo-

tion with low-latency and high frequency. The system is

integrated in WebXR and achieves real-time performance on

current HMD displays.

We evaluate the components of the architecture for generating

stereo couples, and we show how depth inference and inpaint-

ing networks achieve state-of-the-art performance. Moreover, we

demonstrate our technology on a variety of indoor high-resolution

scenes, and we test it on di�erent head-mounted displays, ranging

from Meta Quest to HTC Vive and Google Cardboard. The pro-

posed framework is easy to integrate in current panoramic viewers,

just replacing the current monoscopic renderers, and is intended

to work as a practical building block for deliver engaging and re-

alistic experiences that captivate audiences and enable them to

virtually explore and interact with indoor spaces in current and

future Metaverse applications.

Figure 2: Left: panoramic stereo couples work correctly for

the directions orthogonal to the baseline, while don’t pro-

vide correct stereopsis for directions parallel to the baseline.

Right: PanoVerse generates seamless stereo couples covering

the four quadrants of the approximated viewing workspace.

2 RELATED WORK

Our work deals with the generation of immersive content from

a single panoramic image of an interior environment. In the fol-

lowing, we brie�y review the most closely related work, referring

the reader to recent surveys on indoor reconstruction [Pintore

et al. 2020], panoramic imaging and applications for scene under-

standing [Gao et al. 2022], and 3D geometry extraction from 360◦

imagery [da Silveira et al. 2022] for a wider coverage.
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Given a single panoramic image, the classical solution for pre-

senting it on a VR headset consists of projecting the image on a

spherical dome centered around the user’s head, eventually taking

into account the eye position to generate each eye’s perspective.

Since all scene points are at the same position, given by the dome

radius, parallax e�ects are limited. For this reason, view synthesis

must take into account the geometry of the scene. Since visibility of

scene elements may change even for small shifts of the eye position,

this requires not only geometry estimation, but also the handling

of occlusions and disocclusions.

Depth estimation from monocular input is increasingly focusing

on data-driven solutions that derive hidden relations from large

amounts of examples, while applying priors that �t speci�c use

cases, in particular interior environments [Pintore et al. 2020]. Since

it has been shown that directly applying perspective methods to

360
◦ depth estimation in indoor environments produces suboptimal

results [Zioulis et al. 2018], current research explicitly exploit the

wide geometric context present in omnidirectional images, while

also handling wrap-arounds and distortions present in equirectan-

gular projections [Coors et al. 2018; Martin et al. 2020; Pintore et al.

2021; Rey-Area et al. 2022; Su and Grauman 2017; Tateno et al. 2018;

Zioulis et al. 2018]. In this work, we follow this trend, proposing a

simple light-weight pipeline that shares the same architecture as

the view synthesis network.

The recovered depth map can then be exploited for view syn-

thesis in various ways, that range from simply performing interpo-

lation through the rendering and in�lling of point clouds [Huang

et al. 2017] or the generation and rendering of view-independent

meshes from depth maps [Tukur et al. 2022] to the integration

and blending of depth maps or generated meshes with multiple

images or signals [Bertel et al. 2020; Luo et al. 2018]. Recently, end-

to-end view synthesis networks have been proposed to generate

shifted panoramic views at run time [Pintore et al. 2023; Xu et al.

2021]. These networks have proven to be able to infer compelling

views in a small neighborhood around the viewer (e.g., 50cm), but

are too demanding to be run directly on the embedded platforms.

For this reason, HMDs are supported only through remote render-

ing [Pintore et al. 2023]. In this work, we also employ an end-to-end

reprojection and synthesis network, but only to generate a small

set of stereo pairs once per panoramic view, without stringent fre-

quency requirements. Real-time rendering is then performed on

the HMD starting from these inferred views through a simple in-

terpolation method. Since we limit per-frame generation to stereo

pairs, our networks are much simpler than general prior solutions

for free-viewpoint synthesis [Pintore et al. 2023; Xu et al. 2021].

Interpolating images from di�erent viewpoints to generate novel

views has been widely researched, and e�ective solutions have been

proposed, even without the support of a prior depth estimation

step [Reda et al. 2022; Trinidad et al. 2019]. End-to-end networks

that perform this task have, however, the same computational con-

straints of depth estimation and view synthesis networks, and can-

not be executed at interactive rates on HMDs.

A modern trend for fast novel viewpoint synthesis from scenes

consists of considering layered depth representations, in which

each pixel is associated to multiple depth values. These layered

representations are used for view synthesis through extrapolation

and in-painting in a way to �ll holes [Hedman and Kopf 2018].

This approach has been successfully extended to work with single

panoramic images [Serrano et al. 2019]. Moreover, di�erent layered

representations have been considered in a way to generate more

accurate results: Broxton et al. [Broxton et al. 2020] create light

�eld videos through layered mesh representations, while Lin et

al. [Lin et al. 2020] propose multi-depth panorama. An alternative

version of layered depth representations consists of using multi-

ple �at planes at �xed depth in a way to capture a multi-plane

image (MPI), that can be used together with convolutional neural

networks [Tucker and Snavely 2020a; Zhou et al. 2018]. However,

MPIs are limited to viewpoints that are close to the origin, and

degrade when the viewpoint moves further. To address this lim-

itation, adaptive sampling schemes have been proposed [Li and

Khademi Kalantari 2020]. The concept of capturing the scene at

multiple �xed depths has been extended for panoramic imaging by

considering di�erent capturing proxies like multi-spherical images

(MSI) [Attal et al. 2020] or multi-cylinder images (MCI) [Waidhofer

et al. 2022]. Our proposed framework uses, instead, a discrete set

of stereo panoramic couples covering the exploration workspace

spanned during standard head movements, that we can seamlessly

blend during immersive exploration with VR setups. Compared to

the current state of the art, our system has the advantage of be-

ing lightweight both for inference of novel omnidirectional stereo

couples and for immersive exploration through WebXR viewers.

3 METHODS

The proposed PanoVerse system is composed by two main compo-

nents (see a schematic depiction in Fig. 1):

• a data-driven component for automatic generation of multi-

ple discrete stereo couples seamlessly covering the visible

scene around the observer (Sec. 3.1). In order to provide a

compact and lightweight architecture, we exploit a gated

network architecture in which a baseline is shared between

depth estimation and image synthesis. In Sec. 3.2 and Sec. 3.3

we explain such architecture and the di�erent specializations

respectively, for depth and view synthesis tasks;

• a WebXR rendering component presenting the immersive

scene during real-time exploration, selecting the closest

stereo couples according tu the current gaze direction and

blending them to generate per-eye images (Sec. 3.4).

3.1 Stereo couples generation

Even if an omnidirectional camera can capture an entire 360 �eld-

of-view of the scene, it is well known that, for two images taken by

an omnidirectional camera, only some parts of the images can be

used for the stereoscopic pair [Vanijja et al. 2006]. Speci�cally, two

panoramic images can be viewed as a stereo pair in a perpendicular

direction to the line connecting the two viewpoints, while they

will fail to give stereo perception when viewed in the direction

of the line connecting the two viewpoints since images from the

two cameras are behind each other (Fig. 2 left). To overcome this

issue, multiple stereo couples need to be generated to cover the

viewing workspace. In our system, we consider that during the

standard head motion for exploration of 360 panoramic images, we

can approximate the trajectory of two eyes as a circle centered at

the center of the head. These circular trajectories can be sampled to
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Figure 3: PanoVerse generation. A gated architecture is used to predict depth (left), as well as to synthetize a novel rgb view

(right). The encoder-decoder scheme follows a design commonly adopted for image inpainting, exploiting dilated convolutions

as bottleneck, and gated convolutions for encoding and decoding.

individuate discrete feasible points of view that can be used during

the real-time users head rotation and provide correct stereopsis for

a limited portion of the immersive workspace (Fig. 2 right).

In the proposed PanoVerse system, to demonstrate the concept

in the most challenging situation, we consider four stereo couples

mapping to the four quadrants (North, East, West, South), each of

them with a �eld of view of 90 degrees. Additional stereo couples

can be added for increasing granularity or, eventually, also for

taking into account limited 6-DOF head motion (see Sec. 5).

For the generation of the stereo poses, we consider the following

parameters: the intra-ocular distance � and the distance ' between

the head center and the eye axis (Fig. 2 right). A panoptic repre-

sentation for blending between adjacent couples is used on the

�y during rendering for taking into account the transition areas

between the quadrants and computing convincing stereo images to

be displayed on VR headsets.

3.2 Single panorama depth estimation

The fundamental task of enabling new view estimation and 3D

navigation of an immersive scene from a single image is depth

estimation. From the operational point of view, depth is essential to

establish the 3D position of visible points in space, and their novel

position in case of viewpoint change, which is just veri�ed in the

case of stereo image generation. Several methods exist in the litera-

ture for estimating depth from a single panoramic image, within

particular deep-learning approaches achieving impressive levels of

accuracy [Pintore et al. 2021; Rey-Area et al. 2022]. However, most

methods pay little attention to the computational complexity and,

in particular, the latency times required to achieve the prediction. In

the case of web and MetaVerse applications, these aspects become

important, in particular to allow for the execution of the code on

low-end machines and to reduce the time required from capture to

exploration start. To this end, in this work we designed a network

for depth prediction that was an e�cient compromise between

accuracy and cost. To predict depth, as well as to synthesize a novel

RGB view, as described in Sec. 3.3, we design the gated architecture

illustrated in Fig. 3. The encoder-decoder scheme follows a design

commonly adopted for image inpainting [Iizuka et al. 2017], thus

exploiting dilated convolutions as bottleneck [Yu and Koltun 2016],

and gated convolutions for encoding and decoding [Yu et al. 2018].

Compared to the baseline [Iizuka et al. 2017; Yu et al. 2018], our

design has fewer parameters, with a lighter single branch and it

includes several solutions, described below, to improve accuracy

and reduce computational complexity.

Furthermore, given the spherical nature of the image, we adopt

circular padding along the horizon for convolutions, thus remov-

ing longitudinal boundary discontinuity, and re�ection padding to

alleviate the singularities at the poles [Gkitsas et al. 2021].

The input of the depth estimation network consists of a single

equirectangular image, which is encoded through a sequence of

light-weight gated convolutions having di�erent strides (the six

layers in green in Fig. 3), so that the original size is reduced by

a factor of four in each direction. Each encoding convolution is

followed by instance normalization [Ulyanov et al. 2016] and ReLU

activation.

It should be noted that, here, gating acts as a self-attention weight

mask, di�erently from inpainting, where, instead, the mask is given

as input to indicate the pixels to be inpainted (Sec. 3.3).

We adopt a gated convolution (GC) approach [Yu et al. 2019],

expressed as:

� = 2>=E (,6, � )

� = 2>=E (,5 , � )

$ = f (�)
⊙

k (� )

(1)

where f is the Sigmoid function, which outputs values in the range

[0, 1], k is an activation function (ReLU in our case), and,6 and

,5 are two di�erent sets of convolutional �lters, which are used

to compute the gates and features respectively. GC enables the

network to learn a dynamic feature selection mechanism. In order

to simplify training and guarantee low latency at inference time, our

network uses a modi�ed version of GC called Light Weight Gated

Convolutions (LWGC), which reduces the number of parameters

and processing time while maintaining the e�ectiveness [Yi et al.

2020]. Speci�cally, we decompose � from Equation 1 into a depth-

wise convolution [Yi et al. 2020] (i.e., 3 × 3) followed by a 1 × 1

convolution, having, as a result, the same gating step but with only

:ℎ × :F ×�8= +�8= ×�>DC parameters. Repeated dilations [Yu and

Koltun 2016] are used for the bottleneck (Fig. 3, orange blocks), thus

increasing the area that each layer can use as input. It should be

noted that this is done without increasing the number of learnable

weights, but obtained by spreading the convolution kernel across

the input map. The dilated convolution operator is then implemented

as a gated convolution (i.e., Equation 1), but with some di�erences.
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It is expressed as:

�~,G = f (1 +

: ′
ℎ∑

8=−: ′
ℎ

: ′
F∑

8=−: ′
F

,: ′
ℎ
+8,: ′

F+9 · �~+[8,G+[ 9 ) (2)

where [ is a dilation factor, f (¤) is a component-wise non-linear

transfer function and 1 ∈ R�>DC is the layer bias vector. With [ = 1,

the equation becomes the standard convolution operation. In our

model, we adopt, respectively, [ = 2, 4, 8, 16 for the four bottleneck

layers. Using this strategy, we aggregate multi-scale contextual

information without losing resolution, thus capturing the global

context e�ciently by expanding the receptive �eld, avoiding addi-

tional parameters and preventing information loss. This is impor-

tant for both depth estimation and the image completion task, as

capturing su�cient context is critical for realism. By using dilated

convolutions at lower resolutions, the model can e�ectively cover

a larger area of the input image when computing each output pixel

than with standard convolutional layers [Iizuka et al. 2017]. The

network decoder (5 blue layers in Fig. 3) follows a scheme that is

symmetrical with respect to the scheme of the encoder. Five layers,

based on gated convolutions, restore the resolution of the output to

the original input resolution. It should be noted that such baseline

is the same for both the depth and RGB task, and di�ers, besides the

input, only in the �nal activation function, which is respectively

�!* for a depth output and C0=ℎ for the RGB output (i.e, following

original gated convolution approach[Yu et al. 2019]). Indeed, the

use of such a versatile baseline depends on its training. In our ap-

proach, we adopt as the loss function for the depth prediction task

the robust Adaptive Reverse Huber Loss (BerHu) [Lambert-Lacroix

and Zwald 2016], combined with a Structural Similarity Index Mea-

sure (SSIM), which measures the preservation of highly structured

signals with strong neighborhood dependencies. On the other hand,

we illustrate in Sec. 3.3 the speci�c training techniques for gen-

erating photorealistic images with parallax. As a result, such a

panoramic depth prediction approach returns accurate depth maps

for the input pose, as demonstrated by our results at Sec. 4.

3.3 Novel view-synthesis

The goal of this task is to compute a novel photorealistic spherical

image from a translated position. In our case, we assume as the

origin of the coordinates system the position of the input image,

and generate novel views for the left and right eye (Fig. 2). Without

loss of generality, in this paper we generate 4 couples of right-left

images will be generated, respectively for a North, East, South,

and West oriented panoramic view, heading in 4 directions spaced

each other 90346A44B . The resulting 8 spherical images, represent a

sampling of the whole 360 horizon around the ideal head’s center,

and will be combined in a unique pan-optic immersive environment

as described in Sec. 3.4. No particular change has to be made to the

architecture or rendering code to support a �ner angular sampling.

In this section, we will focus on the details of generating a single

pair of new stereo panoramic images from a single one as input. In

order to generate other views, the same procedure is generated by

simply re-executing the code with horizontally rotated input images

(e.g., by 90 degrees steps for the example discussed in this paper).

Assuming the interpupillar distance � ( 58mm in our experiments)

and the eye-axis to head center distance ' (100mm in our case), two

images (i.e., right and left) are generated for each input panorama,

at the positions (∓�/2, ') (Fig. 2 right).

Considering one of the two possible translations ) , a novel im-

age is obtained by applying a translation ) to the camera. View-

synthesis includes then two cascading steps: a rendering step, which

exploits the predicted depth �B and translation) to move pixels in-

formation to the new position, and a panoramic view synthesis step,

which transforms the reprojected information into a full output

image, inpainting disoccluded parts. Such a network takes as input

the translated pixels �̃C and the disocclusion mask �C , returning as

output the novel view �C .

For the rendering step, many view-synthesis methods adopt a

di�erential-rendering approach, such as a soft z-bu�er [Tulsiani

et al. 2018]. However, in our case, pixel rendering is not part of the

learnable layers by design, so we can directly project visible points

according to �B and ) . Direct projection is more accurate than soft

z-bu�er, and, if no splatting is performed, produces sharp images

while leaving several pixels in the new view to be inpainted. This

direct solution is better suited to our case with respect to more

elaborate spatting methods, since for stereo rendering the distance

of a few centimeters with respect to the center generates munch

narrower disocclusion zones than in the case of free viewpoint

motion.

In an equirectangular image, columns correspond to constant lon-

gitude/azimuth \ angles, while rows to constant latitude/elevation

q angles. Each pixel can be mapped to angular spherical coordi-

nates and vice-versa. This linear mapping between image domain

pixels and spherical domain angular coordinates allows for direct

transitions between image and spherical-based operations [Zioulis

et al. 2019]. Omitting the straightforward relationship between

Cartesian and spherical coordinates, the following equation relates

spatial (i.e, ) ) with angular displacements (i.e., �̃C pixels):



m3

mq

m\


=



sin(q) sin(\ ) cos(\ ) cos(q) sin(\ )
cos(q )
3 sin(\ )

0
− sin(q )
3 sin(\ )

sin(q ) cos(\ )
3

− sin(\ )
3

cos(q ) cos(\ )
3





mG

m~

mI


(3)

where 3 is the depth of the given pixel. According to this mapping

A61 values from the source image �B are scattered to the target image

�̃C (Fig. 3).

We assume then �̃C
3×ℎ×F

as the input to the view synthesis

network. As in typical inpainting approaches, we de�ne a binary

inpainting mask �C
1×ℎ×F , identifying missing parts in the rendered

image. �C is then concatenated to �̃C (i.e., along the batch dimen-

sion - 4 layers input). To process such input, we adopt the same

architecture of Fig. 3, but with a di�erent �nal activation function

(i.e., C0=ℎ) and training strategy. Then, we train inpainting net-

work by combining visual terms and geometric-consistency terms:

LEB = LE8B + L62 .

Visual terms include losses that measure the photorealistic qual-

ity of the output:

LE8B = _?GL?G + _?4A2L?4A2 + _BC~;4LBC~;4 + _03EL03E . (4)

Here the �rst term is a pixel-based !1 loss between the predicted

RGB image �C and the ground truth target image �6C , L?4A2 and

LBC~;4 are the data-driven perceptual and style losses [Gatys et al.
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2016], enforcing �>DC and �6C to have a similar representation in the

feature space as computed by a pre-trained +�� − 19 [Simonyan

and Zisserman 2014], while L03E is a discriminator-based loss

(i.e., PatchGAN [Isola et al. 2017]). _ weights are common for many

single pose inpainting problems [Yu et al. 2018]: _?G = 1.0, _BC~;4 =

100.0, _?4A2 = 1.0, _03E = 0.2.

L62 , instead, is a photometric loss, which combines the!1 penalty

function with structural dissimilarity !3 [Godard et al. 2017], under

a relative weighting factor [ (i.e., [ = 0.85 in our experiments). The

superscript � denotes multiplication with the binary mask �C :

L62 = [L⌈ (�
�
B , �

�
CB ) + (1 − [)

�����B − ��CB

��� (5)

where �B is the image at the source position, �CB is the novel image

at the target position projected back to �B position using �B , with

both images masked by �C .

For increasing the resolution of the immersive scene without

the need to train and execute the full view synthesis network on

large images, we use a pretrained GAN-based super-resolution

network [Wang et al. 2018] at 4x magni�cation in a way that orig-

inal stereo couples are converted to 4096G2048 resolution, that is

adequate for limiting artifacts on VR headsets.

3.4 Stereoscopic scene rendering

Figure 4: The panoptic representation is obtained by blend-

ing the stereo couples computed for the various workspace

quadrants.

The immersive rendering component consists of a viewer on

top of a panoptic representation built by integrating the stereo

panoramic couples representing the quadrants of the viewingworkspace.

During the exploration, the view position is extracted by the VR

headset and used for sampling the panoptic environment through

blending operation (Fig. 4). Speci�cally, we use the rotation angle

U along vertical direction for computing an interpolation factor

between two adjacent stereo couples according to the following

equation:

��� = g�(� + (1 − g)��� , (6)

where g is a blending factor depending on the angle between two

adjacent views, C is the computed image, S, D are the source and

destination directions (one between North, East, South and West),

and E is the eye for which the image is computed (Left or Right). For

what concerns the blending factor, we designed a smooth function

depending on a transition window that is able to provide a trade-o�

Figure 5: Blending factor. For computing the panoptic

blended images we consider a blending function for smooth-

ing the transition between adjacent views, depending on a

window parameterF .

between the need of reducing the misalignment artifacts due to the

discretization of the viewing workspace and the need of maximizing

the stereo perception. Given a normalized pixel distance G between

two adjacent views and a percent windowF , the blending factor is

computed as follows:

g (G) =




1 G ≤ ( 1
2
−F)

1

2
(1 + cos(c

G+F− 1

2

2F )) ( 1
2
−F) < G < ( 1

2
+F)

0 G ≥ ( 1
2
+F)

(7)

Fig. 5 shows various blending functions according to the window

parameterF , while Fig. 6 shows di�erent blended panoptic images

generated with di�erent parameters F (on the left F = 0.01, on

the middle F = 0.1, and on the right F = 0.5). Higher parameter

provides a softer transition between adjacent views at the cost of

reduction of stereopsis cue and an increase in ghosting artifacts. On

the other side, lowerF provides abrupt change between adjacent

views. The panoptic blended images computed for the left eye

and the right eye are then used as textures on a spherical dome

representing the immersive environment. By increasing the angular

sampling rate from the minimum of 90 degrees as done in this paper,

we can increase quality at the cost of data size, but without increase

in rendering times, since only the two nearest images are blended

together.

4 RESULTS

The PanoVerse system has been developed in Python using PyTorch

library for what concerns the automatic generation component,

and in WebGL and WebXR using Three.js library for what concerns

the immersive rendering component.

Dataset and training. For training our solutions, we harness

the availability of public panoramic scene datasets where ground

truth is available. To train and test depth estimation, we exploit

Structured3D [Zheng et al. 2020]), a large-scale (21K photorealistic

scenes), synthetic database of indoor scenes providing for each

panoramic image the ground truth depth. To train and test view

synthesis, instead, we exploit PNVS[Xu et al. 2021], a subset of

Structured3D scenes providing, for each source panoramic image,



PanoVerse Web3D ’23, October 9–11, 2023, San Sebastian, Spain

Figure 6: Smoothness trade-o� for panoptic blends. Examples of generated panoptic blended images for di�erent window

parameters (F = 0.01 on the top,F = 0.1 on the middle,F = 0.5 on the right).

Figure 7: Example of synthesized panoramic stereoscopic views for the main quadrant directions (North, East, South andWest).

three translated view. Since the baseline for stereo view is very

small, we choose the PNVS subset named easy (i.e., maximum 0.2-

0.3m range).

Computational performance. Our depth estimation and view syn-

thesis baseline is extremely lightweight. Tab. 1 shows learnable

parameters, GFlops and milliseconds to process a single image-

frame at di�erent input resolution. Although the expected output

Table 1: Computational performance. We show our compu-

tational performance and latency time for di�erent input

resolutions. Our results demonstrate how we diminish im-

ages with very low latency even when resolution increase.

Resolution Params GFLOPS ms/frame

256 × 512 6.06 M 41.03 15

512 × 1024 6.06 M 164.11 41

1024 × 2048 6.06 M 656.45 174

scene is static, it should be noted how the time to generate a novel

view is very low, reducing the latency from image acquisition to

start of exploration. For the low-density sampling used in this pa-

per, a full novel scene requires 8 novel views and 1 depth. Finer

resolution can be achieved by just increasing the number of novel

views.

Table 2: View synthesis performance: we show view synthesis

quantitative performance compared to other state-of-the-art

works which works at a minimum resolution of 1024 × 512.

Method PSNR↑ SSIM↑ LPIPS↓

SynSin [Wiles et al. 2020] 17.28 0.721 0.226

MPI [Tucker and Snavely 2020b] 17.59 0.725 0.223

Our 21.57 0.731 0.205

Table 3: Depth quantitative performance: we show depth

quantitative performance compared to other state-of-the-art

works.

Method MAE↓ MSE↓ RMSE↑ X1 ↑

HoHoNet [Sun et al. 2021] 0.081 0.065 0.206 0.958

SliceNet [Pintore et al. 2021] 0.082 0.054 0.198 0.961

Our 0.061 0.008 0.038 0.962

Tab. 2 summarizes our performance in terms of view synthesis

accuracy, benchmarked on PNVS [Xu et al. 2021]. We also com-

pared our performance to the one achieved by state-of-the-art meth-

ods [Tucker and Snavely 2020b; Wiles et al. 2020] which works

at a minimum resolution of 1024 × 512. Tab. 3 right summarizes

our performance on depth estimation, using as benchmark Struc-

tured3D [Zheng et al. 2020]. In this case, despited the fact that our



Web3D ’23, October 9–11, 2023, San Sebastian, Spain Pintore and Jaspe, et al.

Figure 8: Examples of synthesized panoptic stereoscopic views for scenes extracted from Structured3D dataset [Zheng et al.

2020]. On the left the panoptic image for the left eye, on the right the panoptic image for the right eye.

method has a low computational complexity, we achieve perfor-

mance comparable with other state-of-the-art works.

Visual assessment. We tested the immersive viewer on a Meta

Quest 2 attached to a Razer Blade 15 laptop and on an Android

mobile device Samsung Galaxy S 22 with a Google Cardboard. The

viewer runs on Google Chrome 114 web browser with WebGL 2

and WebXR enabled. Fig. 7 shows an example of the stereoscopic

viewpoints generated by our proposed architecture. Fig. 8 shows

some examples of the panoptic representations computed by blend-

ing the stereo couples representing the four workspace quadrants

for both eyes. The scenes are extracted from the public domain

dataset Structured3D [Zheng et al. 2020]. From the stereo panoptic
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Figure 9: The WebXR viewer enables immersive exploration of the indoor scene around the user on a variety of devices

(Android mobile device with Google cardboard in this case).

representations, stereo images are generated in real time and dis-

played on a variety of devices (Fig. 9), ranging from Oculus Quest

to Google Cardboard on mobile devices. We carried out a prelimi-

nary qualitative user study to assess the capabilities of the system

to provide immersive stereo cues: �ve subjects were requested to

explore the stereoscopic environment on Oculus Quest and provide

their opinion on immersion and stereoscopic perception of the gen-

erated scenes. All of them were able to perceive stereo cues for the

whole 360 viewing workspace, con�rming that the system is able

to generate an immersive experience. On the other hand, according

to the scene and the position, especially in the transition areas,

users perceived misalignment artifacts, due to the limited number

of views from which the panoptic representation is computed. In

the future, we plan to extend the user study in a way to quantify

the e�ects of the discretization and of the blending factors, and

to compare with other ways to compute stereoscopic panoramic

scenes.

5 CONCLUSIONS AND FUTUREWORK

We presented a framework for automatic generation of stereoscopic

indoor environments to be used in immersive Metaverse applica-

tions. Our method starts from single panoramic image of an in-

terior environment, and uses data-driven architectures for depth

estimation and novel view synthesis to quickly generate a set stereo

couples sampling the viewing workspace. At run-time, these pre-

computed stereo couples are delivered to a lightweight WebXR

viewer that supports stereocopic exploration by synthesizing views

that respond to head rotations through a composition of the pre-

computed images. The preliminary results show that the automatic

generation components achieve state of the art accuracy and the

visualization component is able to provide immersive experience

to casual users on a variety of devices, even in the very demanding

case of using only four precomputed stereo pairs. As future work,

we plan to investigate the trade-o� between the number of precom-

puted images and the quality of experience in a variety of settings.

We also plan to further improve immersivity by improving blend-

ing also taking into account a new synthesized depth. We will also

evaluate the possibility of exploiting this approach to also support a

limited amount of horizontal and vertical head motion. Finally, we

plan to use our panoramic capture and immersive rendering system

as a building block for the construction of applications that perform

actions in shared physical and digital realities, as popularized by

the Metaverse concept.
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