HexBox: Interactive Box Modeling of Hexahedral Meshes

F. Zoccheddu!, E. Gobbetti?®, M. Livesu® @, N. Pietroni*© and G. Cherchi'

!University of Cagliari, Italy
2CRS4, Ttaly
3CNR IMATI, Italy
4University of Technology Sydney, Australia

Figure 1: HexBox is an easy to use box modeling tool for hexahedral meshing. It can be used to create and project a conforming hexmesh
onto a target geometry (as in this example), or to model a novel hexmesh from scratch, like in a pure modeling environment.

Abstract

We introduce HexBox, an intuitive modeling method and interactive tool for creating and editing hexahedral meshes. Hexbox
brings the major and widely validated surface modeling paradigm of surface box modeling into the world of hex meshing. The
main idea is to allow the user to box-model a volumetric mesh by primarily modifying its surface through a set of topological
and geometric operations. We support, in particular, local and global subdivision, various instantiations of extrusion, removal,
and cloning of elements, the creation of non-conformal or conformal grids, as well as shape modifications through vertex
positioning, including manual editing, automatic smoothing, or, eventually, projection on an externally-provided target surface.
At the core of the efficient implementation of the method is the coherent maintenance, at all steps, of two parallel data structures:
a hexahedral mesh representing the topology and geometry of the currently modeled shape, and a directed acyclic graph that
connects operation nodes to the affected mesh hexahedra. Operations are realized by exploiting recent advancements in grid-
based meshing, such as mixing of 3-refinement, 2-refinement, and face-refinement, and using templated topological bridges to
enforce on-the-fly mesh conformity across pairs of adjacent elements. A direct manipulation user interface lets users control
all operations. The effectiveness of our tool, released as open source to the community, is demonstrated by modeling several
complex shapes hard to realize with competing tools and techniques.

CCS Concepts
» Computing methodologies — Mesh geometry models; Mesh models;

1. Introduction lation [SHG*22], making them a core ingredient of many software

tools used by the automobile, naval, aerospace, medical, and ge-
Hexahedral meshes are a prominent volumetric mesh representa- ological industries, as well as for many applications in computer
tion. They are largely used as computational domains for the res- graphics and animation.

olution of partial differential equations for physically based simu-

https://orcid.org/0000-0003-0831-2458
https://orcid.org/0000-0002-4688-7060
https://orcid.org/0000-0002-8271-2102
https://orcid.org/0000-0003-2029-1119

F. Zoccheddu, E. Gobbetti, M. Livesu, N. Pietroni & G. Cherchi/ HexBox

Despite extensive research, the lack of reliable and effective au-
tomatic methods for hexahedral meshing is a well established and
well documented open scientific problem [PCS*22], up to the point
that manually crafting hexahedral meshes can still be considered
the industry standard [LQS17]. At the same time, interactive and
semi-interactive modeling of hexahedral meshes is notoriously a
difficult problem, and modeling sessions are known to be tedious
and time consuming among practitioners. Prominent interactive in-
dustrial software tools [CUB23, Cor23, ANS23, Alt23] combine
scripting facilities and a user interface. They are powerful and ro-
bust, but the learning curve to master these tools is overly shallow,
and counter-intuitive behavior is openly reported even in the official
material (Sec. 2.2). Academic research has recently investigated
novel solutions that aim to sidestep the well established ones. Still,
the current attempts are not mature enough or rely on intrinsically-
limited modeling paradigms and solution spaces (Sec. 2.3).

In this paper, we introduce HexBox, a novel interactive tool for
generating hexahedral meshes that brings box modeling, the widely
validated surface modeling paradigm, into the world of hexmesh-
ing. The choice of box modeling for hexmesh creation is the dis-
tinctive trait that differentiates HexBox from alternative systems.
Existing tools implement customized interface paradigms and re-
quire specific training (Sec. 2.3). Instead, we take intrinsic advan-
tage of the fact that box modeling is arguably one of the most com-
mon, intuitive, and best-understood 3D modeling paradigms, and is
already implemented in all major 3D software packages [Vaul2].
Bringing it to a novel platform (hexmeshing), we ensure that any
modeler, professional or hobbyist, is already familiar with it.

Employing the box modeling paradigm for creating and editing
hexahedral meshes poses, however, important challenges. First of
all, tools must provide ways to control also the inner structure of the
meshes and not only their surface. Moreover, and most importantly,
all modifications mush obey the topological constraints intrinsic of
hexahedral meshing. A direct implementation of the box model-
ing concept for volumes is not applicable, because the so-generated
meshes would contain arbitrary polyhedra that are not cuboids.

Our tool realizes fundamental box modeling tools, such as sub-
division and extrusion, ensuring that they meet all required con-
straints, and complements them with a broad set of additional facil-
ities that are specifically designed for hexahedral meshing (Sec. 3).
This includes local and global volumetric grid refinement, element
removal (useful to control mesh topology), sub-mesh cloning (to
copy/paste pre-baked portions of a mesh) plus a variety of alter-
native tools to relocate mesh vertices, e.g., via alignment, rota-
tion, group scaling, projection to circles, lines, or target surfaces.
HexBox takes care of all the topological constraints that must be
fulfilled, ensuring that at any time during modeling, the mesh con-
tains only hexahedral elements. This also includes enforcing, on
demand, mesh conformity around areas with different refinements,
which we address by exploiting recent advancements in adaptive
grid-based meshing [PCS*22](§4.6). A direct manipulation user in-
terface lets users perform modeling by applying operations to se-
lected areas of the mesh, provide immediate feedback, and exploit-
ing the data structures maintained during modeling to also imple-
ment undoing, redoing, and parameterized replication of actions, as
well as preservation of history across editing sessions (Sec. 4).

This set of features make it possible to use HexBox as a pure
modeling tool to create hexahedral meshes from scratch, as well
as a remeshing tool, importing a reference surface and projecting
the modeled mesh onto it (Fig. 1). In this article, and in the ac-
companying videos, we showcase a variety of diverse meshes cre-
ated with our tool, both CAD and free-form. We strongly believe
that HexBox significantly advances state of the art in interactive
hexmesh modeling, and, to maximize its impact and foster more
research on interactive techniques, we released its code as Open
Source (github.com/cg3hci/HexBox).

2. Related Works

Our work introduces significant advances in hexahedral mesh gen-
eration and processing. A full review of the field is out of the scope
of this paper. In the following, we only focus on the methods most
closely related to ours, organizing them into methods that are fully
automatic and methods that enjoy some form of user interaction,
both in the industry and in academia. We refer the reader to a recent
survey [PCS*22] and associated SIGGRAPH course [PCS*23] for
a broader perspective.

2.1. Automatic methods

The most widely-studied fully automatic approaches explored by
the computer graphics community in recent years employ adap-
tive grids [GSP19,PLC*21, LPC22, Mar09], polycubes [XGDC17,
GSZ11, LVS*13, FXB16, FBL16, CLS16, MCBC22, DPM*22,
GLYL20, HIS*14], or frame fields [NRP11, LLX*12, JHW*13,
LZC*18,KLF16,SVB17, CC19, PBS20, BBC22]. Grid-based ap-
proaches are versatile and unconditionally robust, but lack fine
control on mesh quality and are prone to creating meshes with
poor geometry and topology [LPC22]. Frame-field approaches pro-
duce higher quality meshes that follow geometric features, but ex-
isting methods are brittle and easily fail even on toy-like input
shapes [PCS*22](§8.1). Polycube methods are positioned in be-
tween but are not robust enough to ensure high quality blind pro-
cessing of all shapes in a black-box setting. Moreover, to be effi-
ciently used as a computational domain for simulations, hexmeshes
must often be locally refined according to domain specific crite-
ria [Bla00], which automatic techniques can only indirectly control.
The lack of combined robustness, mesh quality, and fine control
prevents a smooth transition to the industry and ultimately moti-
vates the still prominent use of interactive techniques in industrial
practice, even though these are notoriously tedious, costly, and time
consuming [LQS17].

2.2. Interactive tools in industrial practice

Given the lack of satisfactory automated solutions, interactive
methods have been investigated since the early days of the dis-
cipline. Sandia CUBIT [CUB23] (and its industrial twin, Core-
Form [Cor23]) are prominent tools that combine user interac-
tion with a scripting language. Alternative industrial tools that
rely on similar approaches are also released by other compa-
nies [Alt23, ANS23]. The principal paradigm is domain decompo-
sition, in which the user is provided with tools to split the initial
volume into smaller chunks (e.g., via cutting planes) and to mesh

https://github.com/cg3hci/HexBox

FE. Zoccheddu, E. Gobbetti, M. Livesu, N. Pietroni & G. Cherchi / HexBox

each component separately. This local meshing step is highly crit-
ical, because of both topological [Mit96, Thu93, Eri13] and algo-
rithmic constraints that often prevent the meshing of a sub-volume,
even with simple geometry. In particular, mesh conformity is typ-
ically enforced by first producing a quad tessellation of the shared
interfaces and then filling the interior of each cavity with hex-
ahedra using a direct meshing strategy [LW08, MH99, TBM96,
VPR19,Mit99, CSS06, KBLK 14]. However, direct methods are of-
ten heuristic and/or computationally expensive, making it hard for
the software to assist the user even in basic tasks, such as recogniz-
ing whether a given decomposition is already meshable or guiding
early decisions during the decomposition. In other words, it is en-
tirely up to the experience of the user to decide how to split and
when to stop. Even worse, confusing situations in which the soft-
ware declares its inability to mesh a geometry even though a cor-
rect mesh can actually be computed if the user forces the software
to proceed anyways indeed occur, and are even reported in the offi-
cial CoreForm education material (see the video [Cor22] starting at
minute 14:39). For all these reasons, this modeling paradigm offers
a poor interactive experience and the learning curve is extremely
shallow.

2.3. Research trends in interactive hex modeling

Researchers have devoted most of their efforts to the improvement
of automatic techniques, exploring novel paradigms for interactive
hexmesh modeling only recently [PCS*22](§8.2).

A number of frameworks offer interactive visualization facilities
to inspect the geometry and topological structure of a given hexa-
hedral mesh [BTP*19, XC18, NWW21]. However, they only sup-
port visualization and not editing. A limited amount of user inter-
action is present in methods that are predominantly automatic but
either permit or require user intervention to solve small (often crit-
ical) tasks, such as manually selecting the best cutting membranes
for block decomposition [LPP*20, CZL21] or carefully position-
ing singular vertices inside the domain [YLZ22, YWL*22]. These
methods, however, provide limited control to the user. Skeleton-
driven meshing tools such as [ZBG*07,LMPS16,PBS22,L.ZLW15,
ULP*15, LAPS17, LLD12] could potentially be endowed with a
user interface and employed for interactive hexmeshing, using
existing skeleton modeling facilities [JLW10, BJD*12, BMW12,
BAS14, BMU*15]. However, this class of solutions has a narrow
scope because it only applies to tubular shapes.

Methods inspired by the principles of Iso Geometric Analy-
sis [NABR15] aim to unify the representations used for design and
simulation. To this end, a few attempts to higher order (spline) vol-
ume modeling have been published in recent years [ABM19,ME16,
ABC*19], but these contributions are mainly concerned with top-
ics that do not apply to the application context that we target (linear
meshing), such as smart positioning of quadrature points, blending
of basis functions and solid trimming.

Takayama [Tak19] introduced a fully interactive method to man-
ually design the dual structure of a hexahedral mesh. Users interac-
tively create cutting membranes using implicit functions sampled at
the vertices of an underlying tetrahedral mesh. Cut positioning and
local bending are controlled through point handles. Profile sketch-
ing can also be used to synthesize geometrically or topologically

Figure 2: HexBox supports the creation of hexahedral meshes that
are outside of the scope of previous fully interactive modeling ap-
proaches working in polycube space [LZS*21], either because they
contain internal singularities (three leftmost prisms with valence 3,
5, and 11), or because fitting cuboids in the user interface is prob-
lematic due to the presence of non axis-aligned topological features
(triangular ring) or twisting (rightmost bar).

complex membranes. The tool operates smoothly, but has intrinsic
limitations that make the approach hardly able to scale on com-
plex shapes. Since the cutting membranes are Hermite RBF func-
tions [MGV11], they are shape-unaware. It is therefore hard to en-
sure that they remain inside the object without traversing its surface
tangentially, especially around narrow or highly curved regions.
Perhaps most importantly, operating in the dual setting makes mod-
eling hardly intuitive even for experts in the field, because the user
is never able to see how the mesh looks like during modeling.
Switching back and forth between primal and dual would allevi-
ate this problem, but is practically unfeasible because dualization
is time consuming (minutes) and introduces permanent changes to
the underlying tetrahedral mesh due to the mesh refinement neces-
sary to incorporate cuts in the connectivity. The creation of 9 mod-
els of moderate complexity took the author about 8 hours [Tak23].
Moreover, meshes are uniform, and local adaptivity is theoretically
possible but hardly realizable considering the impact that transition
schemes have on the dual structure.

Li et al. [LZS*21] introduced a fully interactive polycube-based
meshing pipeline in which users can create, edit, and perform
Boolean operations between sets of axis aligned cuboids whose
union defines a polycube hexmesh [GSZ11]. The system interac-
tively optimizes cuboid shapes in order to closely approximate the
input model, also taking care of the volume mapping that is nec-
essary to transfer the hexmesh from polycube to object space. The
system is well engineered and operates flawlessly on commodity
hardware. Reported modeling times span between 6 and 21 minutes
for models with moderate complexity. On the negative side, the user
is restricted to operate in a parametric space (polycube space) that
does not fully cover the space of all possible hexahedral meshes.
For example, internal singularities are intrinsically impossible to
realize with this tool, which can, at best, push external singular
lines (polycube edges) inwards by means of padding [CAS™19] or
orthogonal cuts [GLYL20]. In Fig. 2 we show a few representative
examples of meshes that are not replicable with this tool, either for
topological or geometric reasons. Adaptive meshing is also not sup-
ported, but could in principle be incorporated in the system (e.g.,
using generalized adaptive refinement [PLC*21]).

It should be noted that both these fully interactive approaches
are not intended to model a shape from scratch, but rather act much
more like remeshing tools, taking in input a tetrahedralization of
the target shape and processing it to turn it into a hexmesh. Con-

F. Zoccheddu, E. Gobbetti, M. Livesu, N. Pietroni & G. Cherchi/ HexBox

versely, the tool we propose has a broader scope and can be used
either for pure modeling, designing a hexmesh from scratch, or it
can be given as input a reference (surface) geometry and act as a
remeshing tool, using a projection operator to conform to the tar-
get domain. In both cases, it natively supports adaptivity, automat-
ically providing the necessary topological bridges to grant mesh
conformity. Mesh adaptivity is highly important in real applica-
tions, as it permits to balance complexity with simulation accu-
racy [WGM11,WDL*12,SHG*22].

3. Anatomy of HexBox

HexBox realizes hexmesh creation and editing through a modeling
engine driven by a graphical user interface that provides control as
well as immediate feedback. Since our goal is to support the fa-
miliar box-modeling paradigm for hexmeshes, we concentrate on
a basic set of operations required for that purpose, i.e., refining an
initial model to work at different levels of details, adding or remov-
ing parts to modify shape and topology, as well as copying regions
to reuse modeling efforts. All these operations have to be adapted
to maintain consistent hex meshes, and be implemented in a form
suitable for integration within a direct manipulation interface that
has to offer low-latency results.

At the core of the efficient implementation of our method is the
coherent maintenance, at all steps, of two parallel data structures:
a hexahedral mesh representing the connectivity and geometry of
the currently modeled shape, and a directed acyclic graph (DAG)
that links hexahedra (element nodes) to topological changes (oper-
ation nodes) such as subdivisions, face extrusions, and elements’
removal. In addition to permitting the undoing of operations, the
DAG makes it possible to realize all the advanced modeling fea-
tures efficiently.

In the following, we will first describe topological (Sec. 3.1) and
geometric (Sec. 3.2) operations that act on the mesh structure and
its vertices. We will then describe how these operations relate to
updates of the DAG and how the DAG can be used to implement
advanced modeling actions (Sec. 3.3).

3.1. Box modeling for hexahedral meshes

Constructing hexahedral meshes using a box modeling paradigm
requires the implementation of features that modify the mesh con-
nectivity, by adding, removing, or replacing elements, while main-
taining strict topological requirements. To this end, we recast re-
finement (Sec. 3.1.1) and extrusion (Sec. 3.1.2) to the realm of hex-
ahedral meshes, and define a new copy-paste operation to copy se-
quences of operations from one region of the mesh and apply them
to another (Sec. 3.1.3). We also introduce element removal as a way
to control the mesh topology (Sec. 3.1.4).

3.1.1. Mesh refinement

Subdividing a hexahedron into smaller elements that occupy the
same volume is a fundamental operation in box modeling, as it is
required to define the resolution at which other geometric and topo-
logical operations will be performed. We grant maximum flexibil-
ity to the user, providing both global and local refinement operators

(Fig. 3). The former allows to quickly reach the base level of de-
tail on top of which finer modeling operations will be performed,
as well as to define the inner spatial resolution of the volumetric
grid. The latter is useful to adapt the local mesh size to secondary
smaller scale features, for example when the user desires to ap-
proximate a target shape, or to increase the resolution in a region
of interest to precisely catch a physical phenomenon during simu-
lation [WGM11, WDL*12].

Global refinement is supported through two alternative schemes:
2-refinement, where each edge of each hexahedron is bisected at its
midpoint, creating 8 sub-elements (Fig. 3, left); and 3-refinement,
where each edge of each hexahedron is trisected, creating 27 sub-
elements (Fig. 3, middle). Having two alternative schemes with dif-
ferent densities allows the user to control the speed at which mesh
resolution grows more precisely, avoiding excessive refinement that
is not strictly needed for modeling, especially when multiple global
refinement steps are cascaded.

Local refinement is also supported through two alternative
schemes: the 3-refinement introduced above and a second local sub-
division option that we call face refinement, which allows to lo-
cally edit the singular structure of the mesh, splitting a hexahedron
into six sub-elements so as to decompose the selected face into five
quads, one central and four lateral (Fig. 3, right). This type of split,
introduced in [ISS09], is particularly useful to prepare the mesh for
a subsequent extrusion of the central element because the lateral
elements protect it, acting as a padding layer. Practical occurrences
of face refinement are shown in our results (Sec. 5). We specifically
chose, instead, to not support the 2-refinement for local subdivision
because of its peculiar effects on the handling of mesh conformity
during editing operations, as we will detail in the following para-
graphs.

Figure 3: The three refinement operations we provide in our tool to
manage the resolution of the modeled shape. On the left, a single
hexahedron is split into 8 new hexahedra, while in the middle into
27 new hexahedra. On the right, we split a single face of a hexahe-
dron, introducing 6 new elements.

The application of local subdivision operators introduces hang-
ing nodes, i.e., new vertices that lie on edges or faces of the mesh,
creating a non-conforming topology (e.g., the red vertices in Fig. 4,
left). The treatment of hanging nodes is a widely studied topic in
the literature, both from a mesh generation standpoint and from the
point of view of the numerical solvers. HexBox strives for maxi-
mum flexibility, permitting the user to create both non-conforming
and conforming meshes. Non-conforming meshes are, in fact, di-
rectly supported by numerical techniques such as Discontinuous
Galerkin [CWM™16], albeit at the cost of a more complex mathe-
matical formulation and implementation with respect to conformal

FE. Zoccheddu, E. Gobbetti, M. Livesu, N. Pietroni & G. Cherchi / HexBox

solvers. On the other hand, hanging nodes could also be suppressed
by substituting the hexahedra adjacent to refined cells with generic
polytopal cells, but also this choice would produce meshes that re-
quire a specialized polytopal solver, such as VEM [BdVBMR14].
Suppressing hanging nodes while retaining an all-hex topology is
by far the solution that maximizes the compatibility of the mesh
with the plethora of existing numerical solvers.

Suppression of hanging nodes was mostly studied in the con-
text of adaptive grid-based hexmeshing [PCS*23](§4.6), where
conformity must be restored locally, without affecting the whole
mesh (Fig. 4, middle). This is achieved using dedicated transition
schemes that allow hanging nodes to be incorporated within the
mesh structure (Fig. 4, right).

In general, methods to suppress hanging nodes in 2-refined grids
are considered superior to the ones that suppress nodes generated
by 3-refinement, because all possible cases can be solved with
closed-form solutions and the mesh growth is lower [LPC22]. How-
ever, these methods impose non-local pairing constraints on the re-
fined patterns [PLC*21] and, most importantly, require mesh du-
alization. While this is not an issue for automatic methods, mod-
eling a hexmesh interactively by operating in the dual space is ex-
tremely complex and costly, as already demonstrated by previous
attempts [Tak19]. For this reason, in HexBox we decided to prior-
itize speed and ease of modeling over a slight advantage in terms
of mesh resolution, forbidding the use of local 2-refinement opera-
tions.

Figure 4: Local refinement of a single hexahedron (left) yields a
non conformal mesh containing hanging nodes (in red). Conformity
can be easily restored by globally propagating the refinement to all
mesh elements (middle). Alternatively, the transition schemes listed
in Fig. 5 allow to obtain a much coarser conforming mesh (right).
Pale orange areas denote the extent of the transition region used to
restore mesh conformity.

Fig. 5 illustrates the three schemes that we use to suppress hang-
ing nodes around 3-refined areas, introduced in [ISS09]. Substi-
tuting hexahedral cells that are adjacent to the refined area along
a convex edge (left), a face (middle) or a concave edge (right), the
associated hanging nodes are incorporated into a conforming mesh.
A closed form transition scheme for elements that are adjacent to
a refined area through a concave corner is, however, impossible to
devise. This is a known limitation of 3-refinement approaches, and
is faced by iteratively applying the base scheme in Fig. 3 (middle)
and those in Fig. 5, until reaching a configuration that can be treated
with the available schemes [PCS*22](§4.6).

The overall process that iteratively applies the transition schemes
and removes the hanging nodes, bringing the mesh into a state of

Figure 5: The three transition schemes we use to restore mesh con-
formity around refined areas. These schemes remove hanging nodes
from hexahedra with: a single subdivided edge (left), a single sub-
divided face (middle), and two subdivided adjacent faces (right).

conformity is called makeConforming. A graphical illustration of
the makeConforming operation is described in Fig. 6.

While it would be possible to automatically apply it after each
local refinement operation, this could prevent the user to obtain the
desired result because makeConforming would likely install tran-
sition schemes into elements that the user might desire to further
split with 3-refinement. For this reason, we support the editing of
not conforming meshes and let the user decide when to apply make-
Conforming by calling it from the interface.

Figure 6: The makeConforming operation incorporates the hang-
ing nodes into the structures, restoring the conformity of the mesh.
Starting from the hexahedra refined by the user (orange), mesh
conformity is obtained by installing the transition schemes listed
in Fig. 5 in the adjacent elements. In this example, the blue elements
are replaced with the schemes in Fig. 5 left, the red elements with
the one in Fig. 5 middle, and the green elements with the schema
in Fig. 5 right. More than one iteration of the makeConforming can
be required in order to reach the conformity of the mesh (mesh on
the right).

3.1.2. Extrusion

While subdivision creates new elements to occupy the same vol-
ume, the user can cover new volume by extruding one or more
surface faces, producing a new element adjacent to them. The ex-
trusion action must combine a topological operation, which simply
consists in adding the new element to the grid, linking it to the cor-
rect face, edges, and vertices, with geometric operations that need
to assign plausible positions to the new vertices. In the simplest
case, i.e., when the extrusion starts from a single face (Fig. 7, left),
our tool creates the vertices of the new hexahedron in the direc-
tion given by the normal of the selected face at a distance equal to

F. Zoccheddu, E. Gobbetti, M. Livesu, N. Pietroni & G. Cherchi/ HexBox

the average length of its edges. If the extrusion originates from two
faces sharing the same edge (Fig. 7, middle) or three faces sharing
the same vertex (Fig. 7, right), both forming concave configura-
tions, the vertices of the new hexahedron are generated in the di-
rection of the average of the normals of the selected faces. Clearly,
the newly created elements, as well as all the other elements of
the mesh, can be subsequently moved in the modeling space as de-
scribed in Sec. 3.2.

Sk
T

Figure 7: We implement the addition of new elements via face ex-
trusion, handling three possible configurations. On the left, a new
hexahedron is created by extruding a single face; in the middle, a
new hexahedron is created starting from two adjacent faces, while
on the right, the new element is created through the extrusion of
three adjacent faces. New elements are highlighted in orange, while
the new vertices are depicted as black circles.

&
ikt

3.1.3. Copy and paste

Since many real-world objects include multiple approximately sim-
ilar parts, it is important to support the creation of mesh portions
by replication in other areas of an already modeled shape (Fig. 8).
Think, for example, of gear teeth, branches, protuberances, arms or
legs, and other protrusions. For this reason, we directly support the
copy and paste of mesh portions that have been created by repet-
itive extrusion (Sec. 3.1.2). The user can thus select an extruded
mesh portion (Fig. 8, left), create a cloned version and connect it
to other faces of the modeled mesh (Fig. 8, middle). The user can
choose one, two or three connected faces on which to paste the
copied branch, as if the new portion had been initially generated in
place by face extrusion. Once the new portion has been pasted on
the mesh, the user can change the orientation, as shown in Fig. 8,
right. Clearly, the position of the vertices of the elements compos-
ing the cloned portion can then be varied subsequently, as for all
the other elements of the mesh, as described in Sec. 3.2.

3.1.4. Hexahedra removal

While the previous operations increase the complexity of the mod-
eled mesh, hexahedra removal reduces the element count and
makes it possible to obtain cavities or grooves by digging from the
surface toward the inside of the model. It also permits the creation
of models with any genus by creating holes. The removal operation
simply requires the selection of the elements to be removed and the
update of the mesh structure.

B F G

Figure 8: HexBox allows the user to copy and paste portions of the
modeled mesh. A branch is selected (left), cloned, and pasted on
another mesh area (middle). The user can then rotate the cloned
branch as desired (right).

In principle, objects with a genus greater than zero may also be
created by connecting elements coming from different portions of
the surface (e.g., creating a torus by connecting the two ends of
a deformed cylinder). The connection of non-adjacent portions of
a locally-refined hexmesh, however, is very complex except in the
simplest cases, since the system would need to handle the connec-
tion of parts with differing refinement levels and different geomet-
ric shapes. For this reason, we do not support this operation, and
we offer the users tools to create holes by deleting elements from
the mesh structure. The idea is that the user adopts a coarse-to-fine
approach during the modeling, first creating the basic structure of
the shape and then enriching it with the desired details. Once the
expected connectivity has been obtained through combinations of
extrusion and subdivision, as explained in the previous sections,
one or more elements can be removed in order to change the genus
of the modeled shape. The effectivess of this restricted approach
for creating complex shapes is illustrated in our results (Sec. 5).

3.2. Purely-geometric operations

In addition to creating the mesh connectivity and topology, while
immediately obtaining a starting 3D shape through the assignment
of default geometric properties, HexBox allows the user to modify
the geometry by moving vertices in 3D, individually or in groups.
At any stage of the modeling pipeline, the user can perform these
operations through an (assisted) direct manipulation or by applying
automatic methods. We support a broad variety of basic geometric
techniques, based on rotations, scalings and projections to circles,
spheres, planes and lines. Despite trivial from a geometry process-
ing standpoint, these tools heavily contribute making HexBox an
easy-to-use modeling tool, and we encourage the reader to watch
the accompanying videos to assess the impact that these facilities
have on the modeling experience. In the following, we concentrate,
instead, on the features that allow users to employ the tool for the
approximation of a target surface, i.e., projection and sharp feature
handling.

3.2.1. Projection to a target surface

When HexBox is used as a remeshing tool, projection is used to
displace the vertices of the hexmesh so as to match the input tar-
get geometry. Our projection algorithm takes inspiration from the
quad reprojection method of QuadWild [PNA*21], in the sense that
it uses an inverse projection operator to approximate the target ge-
ometry well. In short, rather than projecting the hexmesh vertices
directly to the target geometry, we do the opposite, projecting the

FE. Zoccheddu, E. Gobbetti, M. Livesu, N. Pietroni & G. Cherchi / HexBox

Vt2
Vel
4
H
v /
) Kﬂ.«“"""bs\ /
¥ b\
----- = Ps1 Ps2

target surface [l modeled mesh surface

Figure 9: An example of the projection system implemented in
HexBox. The vertex vs is attracted to the target mesh in the di-
rection computed as the weighted sum of the vectors ps1 — v;1 and
Ds2 — Vi2, where the vt are the vertices of the target mesh, ps their
projection points on the hexmesh surface and vs is the hexmesh ver-
tex we want to move forward towards the target shape.

target geometry to the modelled shape and using the so generated
vectors to devise per-vertex displacements for the hexmesh sur-
face points. The main intuition behind this approach is that, in a
direct projection setup, portions of the target geometry that are be-
hind narrow passages are seldom reached by projecting rays. With
our inverse approach, ray-inaccessible regions still project to the
hexmesh geometry, providing the necessary attraction to permit the
hexmesh to sneak in, ensuring higher geometric fidelity.

To convert projections from the target geometry to the hexmesh
into vertex displacements we proceed as follows: for each surface
vertex of the hexmesh, we compute a displacement vector that is
defined as a weighted sum of all vectors that project a vertex of
the target mesh onto a quad face incident to it (Fig. 9). For this
step, we take advantage of the HexBox interface (Sec. 4), permit-
ting the user to select the weighting scheme that produces the best
result. Various ways to combine such vectors are provided in the
system, such as the length of projection vectors, the inverse dis-
tance between the base point of each projection vector and the ver-
tex to relocate, quadrilateral barycentric coordinates [Flo15], or a
combination of those. In case no vertex of the target mesh projects
onto the quads incident to a hexmesh surface vertex, we move it by
means of Laplacian smoothing, thus accommodating the motion of
its neighbors.

Left alone, the surface projection described above can easily gen-
erate flipped elements. Surface projection is therefore coupled with
a displacement of interior vertices, which are required to follow and
accommodate the evolution of the surface. Internal vertices are re-
located by means of a one or more steps of Laplacian smoothing,
the amount of smoothing being controllable by the user. In order to
forbid the inversion of mesh elements, all vertex relocations, both
on the surface and internal, are executed with a line search algo-
rithm, iteratively halving the displacement vector if the Jacobian of
any of the incident hexahedra becomes negative. We also provide
the possibility of applying a padding step [MT95] near the surface
of the modeled shape, in order to increase the degrees of freedom
with which the projection algorithm can work.

While this approach is fully robust, in the sense that it strictly
guarantees the generation of a valid simulation mesh with all pos-
itive Jacobians, it may generate poor approximations of the target
shape because of the line search stop criterion. In some cases, the
user may disable the line search filtering and proceed by a free
projection, obtaining higher geometric fidelity at the cost of looser

guarantees on mesh quality (see the attached video of the modeling
of the Cow in Fig. 1).

We emphasize that our simplified projection strategy is not
aimed to overcome more robust and convoluted methods such
as [GSP19,L.ZS*21], which could also be incorporated in our sys-
tem thanks to its modular design. In particular, when used with-
out explicit checks on the Jacobians, our tool does not provide
guarantees of correctness and may likely introduce degenerate or
inverted elements during projection. When this happens, we rely
on an off-the-shelf untangling algorithm to repair the broken ele-
ments [LSVT15].

3.2.2. Handling sharp features

CAD geometries are rich of sharp features that must be precisely
encoded in the mesh for a faithful simulation (e.g., in fluid dynam-
ics). HexBox fully supports sharp feature preservation by allowing
users to select edge chains on the target surface and correspond-
ing edge chains on the surface of the modeled mesh, as detailed
in Sec. 4. These correspondences are then used as hard constraints
in the projection and smoothing processes. Note that this interac-
tive selection of sharp linear features allows the user to select which
characteristics are required to be preserved on a case-by-case ba-
sis, permitting to handle also non geometric features that may be
relevant for simulation, such as separation between materials with
different physical properties. For the pure geometric part, we also
support automatic feature detection via dihedral angle threshold-
ing. Users can of course combine the two strategies, starting from
an imperfect feature network computed automatically and improv-
ing it interactively. In Fig. 13, we included several models (Block,
Cylinders2, CAD1, CADS, CAD7, CADS, Knob) in which sharp
features preservation was a key ingredient.

3.3. Modeling with a DAG

In HexBox, all the topological and mesh connectivity operations
that the user performs during the modeling process are stored in a
Directed Acyclic Graph (DAG). A similar approach was taken by
Face Extrusion Quad Meshes [PBS22] for supporting interactive
editing of quad meshes. Our DAG comprises element nodes cor-
responding to the mesh hexahedra, and operation nodes encoding
the topological operations of hexahedra subdivision, face extrusion,
and element removal. In addition, to also cover geometric modifi-
cations, the position of the vertices is stored in an auxiliary vector,
which is updated and stored at each modeling step together with the
DAG. The union of the DAG and the vertex position vector allows
us to reconstruct the whole history of the modeling session, starting
from the initial cube and keeping track of every operation.

Our DAG representation has a single root, which is, in all cases,
an element node (i.e., the initial cube). Going deeper into the hier-
archy, element nodes are children of an operation node if they have
been generated as a result of that operation. Conversely, operation
nodes are children of an element node if the operations have been
applied to that element. Logically, no arcs are allowed between two
element nodes or two operation nodes.

It is essential to underline that the operation nodes do not have
a one-to-one correspondence with the primitive modeling actions

F. Zoccheddu, E. Gobbetti, M. Livesu, N. Pietroni & G. Cherchi/ HexBox

described in Sec. 3.1 and Sec. 3.2. Indeed, a single mesh structure
modification action performed by the user can generate multiple el-
ement nodes and operation nodes, while a single geometric action,
such as vertex moving, projection, or smoothing, does not gener-
ate nodes but only acts on the vertex position vector. Also, note
that not every element node in the DAG necessarily corresponds to
a hexahedron in the mesh at the current state of the modeling. In
fact, all the elements that have been part of the mesh at some step
of the modeling are stored in the DAG, including those that have
been removed or subdivided and thus replaced by smaller hexahe-
dra (which correspond to their descendants in the DAG).

Having the modeling history stored in the DAG simplifies the ef-
ficient implementation of several modeling features. For example,
cloning a portion of the mesh generated by extrusion starting from
a hexahedron 4 simply copies the sub-graph with /4 as a root and
adds it as a child of the node representing the hexahedron in which
we want to replicate the cloned shape. We can then traverse the sub-
graph and apply all operations relative to the new root to update the
current mesh. Actually, since the results of operations are cached
with the nodes, we do not redo the operation from scratch, but di-
rectly reuse the cached mesh structure of the subgraph, relocating
it by suitably transforming the vertices.

Another operation in which the DAG is crucial is undoing the
last performed operations and restoring the modeling process to a
previous state. With the DAG, we can go up the hierarchy towards
the root, undoing all operations one by one (i.e., removing from the
mesh the hex cells corresponding to the created element nodes or
adding back the removed ones).

Finally, storing the modeling in the DAG also allows us to save
the state of the modeling and resume it in a later session, always
maintaining the possibility of moving forward and backward in the
list of the performed operations (starting from the initial cube).

m| m] O 0
fent AR AR
ooonooon 0oooogoo Jooooooo
[¢) © 0
O

Figure 10: A modeling session with all the performed operations
stored in a DAG. On the top line, the mesh at each step of the mod-
eling pipeline. On the bottom, the DAG with different elements and
operation nodes (yellow = subdivision, red = removal, blue = ex-
trusion).

For clarity of exposition, Fig. 10 illustrates how a simple model-
ing session is stored in our DAG structure. We start from the single
cube stored in the root of the DAG. We split the cube with a 2-
refinement subdivision, and this action is stored in the DAG with
an operation node of type "subdivision" (yellow circle) having the
root as a parent and a child node for every generated new hexahe-
dra (gray squares). Then a hexahedron is removed, and this action
is encoded by adding an operation node of type "removal" as a child

of the node representing the removed hexadron (red circle). Finally,
we create a new hexahedron via extrusion of a face of an existing
hexahedron, and this consists in adding an operation node of type
"extrusion" as a child of the selected hexahedron (blue circle) and
an element node as a child of the just added extrusion node (blue
square).

4. User interface

All the operations described in the previous section are made avail-
able to the user through a Graphical User Interface (GUI) that aims
to cover modeling and remeshing features.

The HexBox GUI has a window divided into two parts: a main
canvas, where a 3D view of the mesh is displayed throughout the
modeling process, and a side panel summarizing the available mod-
eling tools and their parameters (see Fig. 11). The side panel also
shows the list of actions performed during the editing session. In
this list, we distinguish the actions applied and those canceled with
green and red colors, and we provide a brief informative human-
readable description of the actions. For the user, restoring the mod-
eling to a previous state is always possible. Both viewing and
restoring modeling actions are possible thanks to the GUI access
to the DAG, which maintains the modeling state. This possibility is
available across editing sessions since we can store and restore the
entire state on a file by serializing and deserializing the mesh and
DAG structures.

Figure 11: The GUI of HexBox comprises a main canvas, in which
the modeled shape is displayed, and a side panel with the model-
ing tools. This screenshot shows the interface in light mode, but
according to user preferences, the whole application can be set in
dark mode.

As illustrated in the accompanying videos, for modeling a new
shape, the application opens with a single cube displayed on the
main canvas. If desired, the user can load a reference mesh to be
used as a guide during the modeling process and possibly as a target
mesh for the projection operation. This mesh is displayed in semi-
transparency, overlapped with the modeled mesh, and can be shown
or hidden as desired. A trackball interface is used to manipulate the
view and see the model from different angles.

FE. Zoccheddu, E. Gobbetti, M. Livesu, N. Pietroni & G. Cherchi / HexBox

Rocket
Cylinders1

CADG CADI10

CAD9 CAD3

CAD2
CAD4

CADI11

CADI12

Cogwheel2

Curve

Figure 12: Gallery of models created from scratch using HexBox.

Editing actions are activated in the side panel or through key-
board shortcuts. Global modifications are applied to the entire
model (e.g., 2-refinement of the entire grid), while local topo-
logical or geometric modifications require the prior selection of
the affected elements. HexBox streamlines selection by applying
a context-dependent and mouse-position-dependent process that
strives to understand which element the user wishes to select. When
a single element is required for the operation, visual feedback while
the mouse is hovering highlights the currently selected edge, ver-
tex, and face. These are the face under the cursor, and its closest
edge and vertex.

For the extrusion operation, the user can select whether to ex-
trude from the current face, edge, or vertex. If a face is selected, the
element grows from it. If an edge is selected, the extrusion occurs
from the two adjacent faces. When selecting a vertex, the extrusion
occurs from the three adjacent faces, as described in Sec. 3.1.2. For
the 3-refinement of one or more hexahedra, selecting one or more
elements to apply the refinement is sufficient. Face selection is ob-
tained by clicking on the target face during element selection. Once
the refinement has been applied, the makeConforming operation
can be optionally executed to restore the conformity of the mesh
structure. The copy-paste action involves selecting an element and
marking it as copied, then paste it onto one, two, or three selected
faces as described for the extrusion. The local configuration of the
elements in the destination area determines the orientation of the
cloned portion in its new location. The user can rotate it and move
its vertices in space as desired. The removing operation simply con-
sists of selecting one or more elements and then deleting them. In
the case of vertex or edge selection, all adjacent elements are re-
moved.

In addition to selecting single elements, HexBox allows multi-
ple selections of entire mesh areas. In particular, it is possible to
select or deselect all vertices in a viewed area by drawing a rectan-
gle with the mouse. In this case, all the vertices that project within
the user-bounded area are selected. More complex selections can

be obtained by adding or subtracting the set of vertices created by
different rectangle selections. Note that also inner vertices may be
selected with this operation, allowing the tool to apply operations
also on inner elements.

The group selection operation is essential when the user wants
to move entire clusters of vertices in space. Once the vertices have
been selected, with a combination of tools on the side panel of the
GUI or keyboard shortcuts, it is possible to translate, rotate or scale
the elements marked by the selected vertices.

Keyboard shortcuts allow users to lock transformations along
one or more axes, where applicable. For example, it is possible
to scale only on two axes out of three, rotate on a single axis, or
translate along a single axis. The GUI provides a real-time preview
of the applied transformation, which give the user immediate feed-
back. The real transformation is only applied when the user con-
firms it. Finally, for finer tweaks, the user can manually assign the
transformation values by typing values or dragging sliders in the
side panel.

As mentioned in Sec. 3.2.2, we offer the possibility of mark-
ing sharp features through the selection of mesh and target edge
chains. The pairs of chains in the target mesh and in the modeled
mesh are displayed with matching colors overlaid over the respec-
tive meshes. The user can decide whether to view all the pairs of
chains together or view them individually. Once satisfied with the
selection, the user can start the projection or smoothing processes
and go back to edit the selected features if necessary.

5. Discussion

We implemented HexBox in C++, using Cinolib [Liv19] for vol-
ume mesh processing and Dear ImGUI [Cor] for the user inter-
face. To maximize the impact of our research, we publicly re-
leased the source code (github.com/cg3hci/HexBox) and
uploaded output models in the HexaLab online database [BTP*19].

https://github.com/cg3hci/HexBox

F. Zoccheddu, E. Gobbetti, M. Livesu, N. Pietroni & G. Cherchi/ HexBox

Block Cylinders2

Ghost

CAD7

CADI1

Knob

Vertebra

Torus

CADS

CADS

Cactus
Indorelax

Figure 13: Gallery of models created using HexBox as a remeshing tool, i.e., modeling a hexmesh and projecting its skin onto a target

surface mesh.

We also emphasize that HexBox is expected to be a live project.
While this article describes the framework as it is today, we plan to
introduce new features and ameliorate the current ones with future
works, hopefully with the contribution of the hexmesh community
(more on this in Sec. 6).

In the following, we briefly discuss the main characteristics and
outcomes of the current design and implementation. A series of
accompanying videos illustrate the behavior of the system through
live captures of modeling sessions. A representative set of created
models is presented in Fig. 12 and Fig. 13, and detailed in Tab. 1.

Figure 14: HexBox allows users to model a wide range of mesh
topologies, regardless of the number of handles and inner cavities.
The Tic-tac-toe model has genus 5. The Hollow-sphere model has
one cavity.

Shape Space. HexBox is a quite versatile tool, which allows to
fully cover the range of existing hexmesh topologies, both at a
local and at a global level. Specifically, HexBox users can create
hexmeshes with any genus (Fig. 14) and number of connected com-
ponents (Fig. 15), and also have full control on the singular struc-
ture, creating singular edges of any valence, in the interior and on
the surface (Fig. 2). Alternative techniques, both interactive and au-
tomatic, do not exhibit the same flexibility: frame field methods are

more versatile and permit internal singularities, but only with re-
stricted valence [PBS20]. Grid-based methods are fully automatic
and robust, but can hardly control mesh connectivity, which in-
evitably does not align with the object curvature and also contains
poor shaped elements around high valence edges [LPC22]. Poly-
cube methods do not permit internal singularities and, as the au-
thors of [LZS*21] confirmed, interactive polycube modeling does
not also permit to create simple models like the ones shown in
Fig. 2, either because they contain unsupported singularities or be-
cause of the presence of twisting and non axis aligned components
for which fitting a cube is problematic with their user interface.
We emphasize that even though HexBox covers all possible mesh
topologies and edge valences, this does not necessarily mean that
any mesh can be created with ease. In particular, the sequence of
operations necessary to reproduce the wanted mesh structure may
be non intuitive in a box-modeling workflow or may be hindered
by the user interface.

Singularity alignment. Having full operative control on the mesh
geometry and topology enables the generation of high quality
hexmeshes that endow a coarse block decomposition. In particu-
lar, operating in a coarse to fine manner through a sequence of
splitting and extrusions, the box modeling paradigm intrinsically
ensures that singular vertices align, permitting even to non expert
users to easily create high quality mesh connectivities (Fig. 16).
Creating block-structured meshes with controlled singular struc-
ture is relevant both for shape compression [Tau04] and for higher
order methods for the resolution of PDEs. These methods rely on
a finite number of templated solutions to lay basis functions over
local clusters of adjacent elements [WZT* 18]. They are therefore
mostly incompatible with automatic methods, which do not offer
direct control on the mesh connectivity.

Performance. Supporting an interactive modeling workflow re-
quires the application to provide high-frequency feedback for direct

FE. Zoccheddu, E. Gobbetti, M. Livesu, N. Pietroni & G. Cherchi / HexBox

Model #H G #B #Sing VVE Edge Val | SJ (min/max/avg) | Feat Mod/Rem | Time
Block 1584 3 100 96 /384 2/3/4/5 0.18/0.99/0.72 yes rem 4:00
Cactus 2136 0 202 82/488 1/2/3/74/6 0.07/0.99/0.85 - rem 2:25
CADI 5564 0 196 52/372 2/3/4/51/6 0.10/0.99/0.92 yes rem 4:00
CAD2 17 0 1 8/76 1/2 0.58/1.00/0.91 yes mod 2:30
CAD3 186 1 18 247122 1/2/3/4 0.02/1.00/0.77 yes mod 1:30
CAD4 2704 4 99 68 /708 1/2/3/4 0.07/1.00/0.80 yes mod 4:00
CADS 720 1 10 20/252 1/2/3/4 0.06/0.99/0.91 yes rem 5:00
CAD6 31 0 22 40/176 1/2/3/4 0.30/1.00/0.73 yes mod 1:00
CAD7 1536 1 8 16 /224 1/2/3/4 0.01/0.99/0.77 yes rem 3:15
CADS 5120 1 164 92/572 2/3/4/5/6 0.04/0.99/0.74 yes rem 6:00
CAD9 55 1 46 40/82 1/2/3/4/5 0.19/1.00/0.74 yes mod 0:45
CADI10 1253 2 929 334/828 1/2/3/4/5/6/8 0.00/1.00/0.73 yes mod 2:15
CADL11 274 0 218 568/1340 1/2/3/4 0.20/1.00/0.73 yes mod 6:00
CADI12 750 1 598 226 /541 1/2/13/4/5/6 0.01/0.99/0.76 yes mod 2:00
Cogwheell (Fig. 17) 688 1 256 264/772 1/2/3/4 0.20/1.00/0.85 yes mod 2:42
Cogwheel2 1320 1 1266 632/1460 1/2/3/4/5/6/7 0.00/1.00/0.91 yes mod 4:30
Cow (Fig. 1) 3424 0 116 128/564 2/3/4/5/6 0.45/0.99/0.84 - rem 4:56
Curve 832 0 1 8 /240 1/2 0.30/0.99/0.89 yes mod 4:00
Cylinders1 137 0 101 104/ 236 1/2/3/4/5 0.23/1.00/0.63 yes mod 2:15
Cylinders2 1960 0 119 104 /568 1/2/3/4/5 0.15/0.99/0.81 yes rem 2:15
Ghost 490 0 55 25/ 148 1/2/3/4 0.43/0.99/0.88 - rem 2:00
Hollow-sphere (Fig. 14) 604 - 26 16/ 168 1/2/3/4 0.13/0.99/0.80 - rem 1:30
Indorelax 6176 2 133 92/706 2/3/4/5/6 0.43/0.99/0.84 - rem 9:00
Knob 1600 0 17 16 /208 1/2/3/4 0.08/0.99/0.89 yes rem 4:20
Rocket 385 0 22 40/340 1/2/3/4 0.15/0.99/0.83 yes mod 7:00
SGP (Fig. 15) 40 - 27 68/202 1/2/3 1.00/1.00/1.00 yes mod 0:40
Tic-tac-toe (Fig. 14) 5688 5 5688 1466/4840 1/2/3/4/5/6/7/8 | 0.00/1.00/0.68 yes mod 3:45
Torus 192 1 8 16 /128 1/2/3/4 0.08/0.97/0.66 - rem 2:15
Vertebra 2601 1 118 130/ 563 2/3/4/5/6 0.27/0.99/0.86 - rem 5:00

Table 1: For each model we report: number of hexahedra (#H), genus (G), number of block domains (#B), number of singular vertices/edges
(#Sing V/E), the list of edge valences (Edge Val), scaled Jacobians (SJ), presence of sharp features (Feat), modeling or remeshing strategy
(Mod/Rem), and modeling time, in minutes (Time). Meshes created in a modeling session are shown in Fig. 12. Meshes created in a remeshing
session are shown in Fig. 13. For meshes that do not appear in any of these mosaic images, we specify the image were they are shown.

manipulation actions, as well as minimize the latency of process-
ing operations. During normal operations (selection, viewing), the
method renders a static model cached in graphical memory. On a
standard PC (intel i5-13600k CPU, 32GB DDR4, integrated graph-
ics), we verified that a model with over 7M faces can be rendered at
over 130 Hz during viewing and selection. Actions that only mod-
ify geometry by moving vertices (Sec. 3.2) add little overhead, and
are generally sufficiently fast to be done with direct manipulation
(consistently over 30Hz). In the current implementation, the most
costly actions are those that add/remove elements (Sec. 3.1), whose
cost heavily depends not only on the number of primitives touched,
but is dependent on the global mesh size, since we update the full
graphical representation each time the mesh is modified. We can
easily remove this limitation by implementing partial updates of the
graphical representation. In any case, these operations are not per-
formed inside a direct manipulation action, but are triggered by the
user that can wait for their completion. In most practical cases, the
latency is small enough to provide the illusion of immediate com-
pletion. The MakeConforming operation, for instance, takes 61ms
on the benchmark PC for going from 11K elements to 16K ele-
ments to fix a mesh where a large number of faces have interfaces

with three levels of 3-refinement of difference (i.e., a face in an
element connected to 9% faces in the neighbor element). Signifi-
cantly growing the mesh size leads however to larger delays. For
instance, it may take over one minute to ensure conformance of an
8M-elements mesh if we increase the refinement-level difference
to four (one face matched with 9* faces). The latter case, however,
is very extreme, and we may still avoid blocking the application by
launching refinement in a separate thread. It should be noted, how-
ever, that the manually modeled hexahedral meshes are typically
much smaller than our extreme case. For instance, the HexalLab
database [BTP*19] currently contains 908 unique meshes with an
average element count of 30K (maximum 590K).

Modeling with HexBox. Fig. 12 shows a variety of hexahedral
meshes that were generated from scratch with our tool. Screen cap-
tures of the modeling sessions in the additional material. Mesh fea-
tures and modeling time are conveniently reported in Tab. 1. Over-
all, these models showcase a large variety of mesh genera, sharp
features and singular types, practically confirming the breadth of
our modeling space.

F. Zoccheddu, E. Gobbetti, M. Livesu, N. Pietroni & G. Cherchi/ HexBox

)

Figure 15: Modeling a hexmesh with multiple connected compo-
nents (right) starting from a single cube (left) is possible with
HexBox. The desired effect can be obtained by using hex removal
to separate the various components (transition from second to third
column).

Figure 16: Topological structure comparison between a hexmesh
automatically computed with a polycube method [LVS™13] (left)
and a mesh created with HexBox (right). Although the polycube
mesh contains less singular vertices and edges, these do not align
well (red circles), generating a denser coarse block decomposition.
Note that the polycube is quite coarse and does not even endow
the ears, which would increase the geometric fidelity but also fur-
ther increase the number of block domains. Manually crafting a
hexmesh with box modeling intrinsically promotes the singular-
ity alignment, yielding meshes with shape aligned edge flow and
coarser layout.

Copy/Pasting. For shapes containing repetitive elements, such as
dents in mechanical wheels or decorative patterns in artistic pieces,
HexBox offers a copy/paste facility that allows to model a certain
block once and install it in different places, also controlling its lo-
cal orientation. This option greatly simplifies the modeling process.
To validate this feature we executed a simple experiment, which
consists in modeling a wheel gear with 16 dents in two different
ways: by modeling each dent separately, and then by modeling a
single dent once and then copy/pasting it. Using copy/paste allowed
the modeler to save more than 35% of the time, producing exactly
the same mesh (Fig. 17). We point the reader to the accompanying
videos to observe the two modeling sessions.

Figure 17: Starting from a plain wheel (left), we modeled a single
dent in HexBox (middle) and then copy/pasted it to insert all the
others (right). The whole process took 2:42 min. Making the same
model (Cogwheell) creating each dent separately took 4:15 min.

Remeshing with HexBox. When a surface mesh representation of
the target shape is known, HexBox can be used as a remeshing
tool, exploiting a projection operator that positions the boundary
vertices of the hexmesh onto the target surface (Sec. 3.2.1). Besides
the projection step, these modeling sessions are similar to session
where the hexmesh is created from scratch. Meshes created in this
way are depited in Fig. 1 and in Fig. 13. As for the pure modeling
examples, also these meshes exhibit a good variety of topological
and geometric features. Notably, remeshing of CAD shapes exhibit
a good preservation of the sharp features, which are preserved by
our projection operator.

6. Conclusion and future works

We have presented HexBox, an intuitive modeling method and in-
teractive tool for creating and editing hexahedral meshes using a
box modeling approach. The main idea behind the tool is to sup-
port volumetric modeling by modifying its surface through a set of
operations that are familiar to a wide community of modelers, low-
ering the entrance barrier. To do so, we had to extend and combine
many state-of-the-art solutions in grid-based meshing, taking into
account the needs of interactive applications based on direct manip-
ulations, with their constraints on low-latency and high-frequency
feedback. As demonstrated by our results (Sec. 5), the current tool
implementation is of immediate practical use, and surpasses cur-
rent interactive modeling solutions (see Sec. 2) in terms of speed
of modeling and complexity of the modeling space. We have also
shown how we can cover both modeling from scratch, and creating
and projecting a conforming hexmesh onto a target geometry.

While HexBox already contains a significant set of modeling
tools and facilities, we plan to further extend it to permit users to
model even more complex shapes (such those in [BRK*22]), and to
further improve the modeling experience. In particular, most of our
efforts for the near future will be devoted to: provide facilities to
model with extrinsic symmetries, which would allow to approx-
imately halve the modeling effort of roughly symmetric shapes;
introduce tools for smooth subdivision volumes (akin [BWX02]);
improve the projection system in (Sec. 3.2.1), which currently is
not always able to obtain a satisfactory geometric fidelity while re-
taining the positiveness of all elements’ Jacobians. We also plan to
perform a user evaluation to identify the strengths and weaknesses
of our interactive approach. Furthermore, to keep the project alive

FE. Zoccheddu, E. Gobbetti, M. Livesu, N. Pietroni & G. Cherchi / HexBox

and foster the creation of a community around our tool, in addition
to releasing the full source code and a gallery of created meshes,
we will produce documentation and video tutorials.

Last but not least, we are investigating methods to allow users to
start the modeling session from a non-cube root, such as an exist-
ing mesh. While it is directly feasibile with little implementation
effort to allow our DAG’s root to encode complex structures (i.e.,
an entire mesh) rather than a single cube, thus allowing users to
alter the structure of existing meshes, the real challenge is to ex-
tend HexBox to load an existing mesh and reconstruct the DAG
representing a potential modeling session leading it.

Acknowledgments

The authors are particularly grateful to L. Pitzalis and R. Scateni for
their valuable contributions in the preliminary phase of this work,
and to F. Protais for helping us with the projection code. E. Gobbetti
acknowledges the contribution of Sardinian Regional Authorities to
CRS4 Visual and Data Intensive Computing Activities. G. Cherchi
gratefully acknowledges the support to his research by PRIN 2020
project, funded by the Italian Ministry of University and Research
(MUR), CUP: F73C22000430001.

References

[ABC*19] ANTOLIN P., BUFFA A., COHEN E., DANNENHOFFER J. F.,
ELBER G., ELGETI S., HAIMES R., RIESENFELD R.: Optimizing
micro-tiles in micro-structures as a design paradigm. Computer-Aided
Design 115 (2019), 23-33. 3

[ABM19] ANTOLIN P., BUFFA A., MARTINELLI M.: Isogeometric
analysis on v-reps: first results. Computer Methods in Applied Mechanics
and Engineering 355 (2019), 976-1002. 3

[Alt23] ALTAIR:. https://www.altair.com/hypermesh/,
2023. [Accessed: 2023-03-21]. 2

[ANS23] ANSYS.. https://www.ansys.com/products/
meshing, 2023. [Accessed: 2023-03-21]. 2

[BAS14] BZAERENTZEN J. A., ABDRASHITOV R., SINGH K.: Interactive
shape modeling using a skeleton-mesh co-representation. ACM Trans.
Graph. 33,4 (2014), 1-10. 3

[BBC22] BRUCKLER H., BOMMES D., CAMPEN M.: Volume
parametrization quantization for hexahedral meshing. ACM Trans.
Graph. 41,4 (2022), 1-19. 2

[BAVBMR14] BEIRAO DA VEIGA L., BREzzI F., MARINI L. D.,
Russo A.: The hitchhiker’s guide to the virtual element method. Math-
ematical models and methods in applied sciences 24, 08 (2014), 1541—
1573. 5

[BJD*12] BOROSAN P., JIN M., DECARLO D., GINGOLD Y., NEALEN
A.: Rigmesh: automatic rigging for part-based shape modeling and de-
formation. ACM Trans. Graph. 31, 6 (2012), 1-9. 3

[BlaO0] BLACKER T. D.: Meeting the challenge for automated confor-
mal hexahedral meshing. In Proc. 9th International Meshing Roundtable
(2000), Springer, pp. 11-20. 2

[BMU*15] BARBIERI S., MELONI P., USAI F., SCATENI R., ET AL.:

Skeleton lab: an interactive tool to create, edit, and repair curve-
skeletons. In STAG (2015), pp. 121-128. 3

[BMW12] BARENTZEN J. A., MISZTAL M. K., WELNICKA K.: Con-
verting skeletal structures to quad dominant meshes. Computers &
Graphics 36, 5 (2012), 555-561. 3

[BRK*22] BEAUFORT P.-A., REBEROL M., KALMYKOV D., L1U H.,

LEDOUX F., BOMMES D.: Hex me if you can. Computer Graphics
Forum 41, 5 (2022), 125-134. 12

[BTP*19] BRACCI M., TARINI M., PIETRONI N., LIVESU M.,
CIGNONI P.: Hexalab. net: An online viewer for hexahedral meshes.
Computer-Aided Design 110 (2019), 24-36. 3,9, 11

[BWXO02] BAJAJC., WARREN J., XU G.: A smooth subdivision scheme
for hexahedral meshes. The visual computer 18, 5/6 (2002), 344-356.
12

[CAS*19] CHERCHI G., ALLIEZ P., SCATENI R., LYON M., BOMMES
D.: Selective padding for polycube-based hexahedral meshing. Com-
puter Graphics Forum 38, 1 (2019), 580-591. 3

[CC19] CoRrRMAN E., CRANE K.: Symmetric moving frames. ACM
Trans. Graph. 38,4 (2019), 1-16. 2

[CLS16] CHERCHI G., LIVESU M., SCATENI R.: Polycube simplifica-
tion for coarse layouts of surfaces and volumes. Computer Graphics
Forum 35,5 (2016), 11-20. 2

[Cor] CoORNUT O.: Dear ImGui. https://github.com/
ocornut/imgui. [Accessed: 2023-03-21]. 9

[Cor22] COREFORM LLC: Coreform cubit basics: Hex meshing funda-
mentals. https://youtu.be/TOfg-Pknl_A?t=879,2022. [Ac-
cessed: 2023-04-02]. 3

[Cor23] COREFORM:. https://coreform.com/products/
coreform-cubit/government/, 2023. [Accessed: 2023-03-21].
2

[CSS06] CARBONERA C. D., SHEPHERD J. F., SHEPHERD J. F.: A con-
structive approach to constrained hexahedral mesh generation. In Pro-
ceedings of the 15th international meshing roundtable (2006), Springer,
pp. 435-452. 3

[CUB23] CUBIT:. https://cubit.sandia.gov, 2023. [Ac-
cessed: 2023-03-21]. 2

[CWM™*16] CHAN J., WANG Z., MODAVE A., REMACLE J.-F., WAR-
BURTON T.: Gpu-accelerated discontinuous galerkin methods on hybrid
meshes. Journal of Computational Physics 318 (2016), 142-168. 4

[CZL21] CA1 W.-H., ZHAN J.-M., LU0 Y.-Y.: User-intervened struc-
tured meshing methods and applications for complex flow fields based
on multiblock partitioning. Journal of Computational Design and Engi-
neering 8, 1 (2021), 225-238. 3

[DPM*22] DUMERY C., PROTAIS F., MESTRALLET S., BOURCIER C.,
LEDOUX F.: Evocube: A genetic labelling framework for polycube-
maps. Computer Graphics Forum 41, 6 (2022), 467-479. 2

[Eri13] ERICKSON J.: Efficiently hex-meshing things with topology. In
Proceedings of the twenty-ninth annual symposium on Computational
geometry (2013), pp. 37-46. 3

[FBL16] Fu X.-M., BA1 C.-Y., L1U Y.: Efficient volumetric polycube-
map construction. Computer graphics forum 35, 7 (2016), 97-106. 2

[Flo15] FLOATER M. S.: Generalized barycentric coordinates and appli-
cations. Acta Numerica 24 (2015), 161-214. 7

[FXB16] FANG X., XU W., BAO H., J.: All-hex meshing using closed-
form induced polycube. ACM Trans. Graph. 35, 4 (2016), 1-9. 2

[GLYL20] Guo H.-X., Liu X., YAN D.-M., Liu Y.: Cut-enhanced
polycube-maps for feature-aware all-hex meshing. ACM Trans. Graph.
39,4 (2020), 106-1. 2,3

[GSP19] GAoO X., SHEN H., PAN0OZZzO D.: Feature preserving octree-
based hexahedral meshing. Computer graphics forum 38,5 (2019), 135—
149. 2,7

[GSZ11] GREGSON J., SHEFFER A., ZHANG E.: All-hex mesh genera-
tion via volumetric polycube deformation. Computer graphics forum 30,
5(2011), 1407-1416. 2,3

[HIS*14] HUANG J., JIANG T., SHI Z., TONG Y., BAO H., DESBRUN
M.: {;-based construction of polycube maps from complex shapes. ACM
Trans. Graph. 33,3 (2014), 1-11. 2

[ISS09] 11O Y., SHIH A. M., SONI B. K.: Octree-based reasonable-
quality hexahedral mesh generation using a new set of refinement tem-
plates. International Journal for Numerical Methods in Engineering 77,
13 (2009), 1809-1833. 4,5

https://www.altair.com/hypermesh/
https://www.ansys.com/products/meshing
https://www.ansys.com/products/meshing
https://github.com/ocornut/imgui
https://github.com/ocornut/imgui
https://youtu.be/TOfq-Pknl_A?t=879
https://coreform.com/products/coreform-cubit/government/
https://coreform.com/products/coreform-cubit/government/
https://cubit.sandia.gov

F. Zoccheddu, E. Gobbetti, M. Livesu, N. Pietroni & G. Cherchi/ HexBox

[JHW™*13] JIANG T., HUANG J., WANG Y., TONG Y., BAO H.: Frame
field singularity correction for automatic hexahedralization. IEEE Trans-
actions on Visualization and Computer Graphics 20, 8 (2013), 1189-
1199. 2

[JLW10] J1Z., Liu L., WANG Y.: B-mesh: a modeling system for base
meshes of 3d articulated shapes. Computer Graphics Forum 29,7 (2010),
2169-2177. 3

[KBLK14] KREMER M., BOMMES D., LiM I., KOBBELT L.: Advanced
automatic hexahedral mesh generation from surface quad meshes. In
Proceedings of the 22nd International Meshing Roundtable (2014),
Springer, pp. 147-164. 3

[KLF16] KowALSKI N., LEDOUX F., FREY P.: Smoothness driven
frame field generation for hexahedral meshing. Computer-Aided De-
sign 72 (2016), 65 — 77. 23rd International Meshing Roundtable Special
Issue: Advances in Mesh Generation. 2

[LAPS17] LIVESU M., ATTENE M., PATANE G., SPAGNUOLO M.: Ex-
plicit cylindrical maps for general tubular shapes. Computer-Aided De-
sign 90 (2017), 27 - 36. 3

[Livl9] LIVESU M.: cinolib: a generic programming header
only c++ library for processing polygonal and polyhedral
meshes. Transactions on Computational Science XXXIV (2019).
https://github.com/mlivesu/cinolib/. 9

[LLD12] LIN H., LiAo H., DENG C.: Filling triangular mesh model
with all-hex mesh by volume subdivision fitting. State Key Lab of CAD
& CG, Zhejiang University Report No: TR ZJUCAD 2 (2012), 2012. 3

[LLX*12] L1Y. LiuY., XU W., WANG W., GUO B.: All-hex meshing
using singularity-restricted field. ACM Trans. Graph. 31, 6 (Nov. 2012).
2

[LMPS16] LI1VvESU M., MUNTONI A., PuprpO E., SCATENI R.:
Skeleton-driven adaptive hexahedral meshing of tubular shapes. Com-
puter Graphics Forum 35,7 (2016), 237-246. 3

[LPC22] LIVESU M., PITZALIS L., CHERCHI G.: Optimal dual schemes
for adaptive grid based hexmeshing. ACM Trans. Graph. 41, 2 (2022).
2,5,10

[LPP*20] LIVESU M., PIETRONI N., PUPPO E., SHEFFER A., CIGNONI
P.: Loopycuts: Practical feature-preserving block decomposition for
strongly hex-dominant meshing. ACM Trans. Graph. (SIGGRAPH) 39,
4(2020). 3

[LQS17] Lu J. H.-C., QUADROS W. R., SHIMADA K.: Evaluation
of user-guided semi-automatic decomposition tool for hexahedral mesh
generation. Journal of Computational Design and Engineering 4, 4
(2017), 330-338. 2

[LSVT15] LIVESU M., SHEFFER A., VINING N., TARINI M.: Practical
hex-mesh optimization via edge-cone rectification. ACM Trans. Graph.
(Proc. SIGGRAPH 2015) 34, 4 (2015). 7

[LVS*13] LIVESU M., VINING N., SHEFFER A., GREGSON J.,
SCATENI R.: Polycut: Monotone graph-cuts for polycube base-complex
construction. ACM Trans. Graph. (Proc. SSGGRAPH ASIA 2013) 32, 6
(2013). 2,12

[LWO08] LEDOUX F., WEILL J.-C.: An extension of the reliable whisker

weaving algorithm. In Proceedings of the 16th international meshing
roundtable (2008), Springer Berlin Heidelberg, pp. 215-232. 3

[LZC*18] Li1u H., ZHANG P., CHIEN E., SOLOMON J., BOMMES D.:
Singularity-constrained octahedral fields for hexahedral meshing. ACM
Trans. Graph. 37,4 (2018), 93-1. 2

[LZLW15] Liu L., ZHANG Y., L1U Y., WANG W.: Feature-preserving
t-mesh construction using skeleton-based polycubes. Computer-Aided
Design 58 (2015), 162-172. 3

[LZS*21] L1 L., ZHANG P., SMIRNOV D., ABULNAGA S. M.,
SOLOMON J.: Interactive all-hex meshing via cuboid decomposition.
ACM Trans. Graph. 40, 6 (2021), 1-17. 3,7, 10

[Mar09] MARECHAL L.: Advances in octree-based all-hexahedral mesh
generation: handling sharp features. In Proceedings of the 18th interna-
tional meshing roundtable. Springer, 2009, pp. 65-84. 2

[MCBC22] MANDAD M., CHEN R., BOMMES D., CAMPEN M.: Intrin-
sic mixed-integer polycubes for hexahedral meshing. Computer Aided
Geometric Design 94 (2022), 102078. 2

[ME16] MASSARWIF., ELBER G.: A b-spline based framework for vol-
umetric object modeling. Computer-Aided Design 78 (2016), 36-47. 3

[MGV11] MACEDOI., Gois J. P., VELHO L.: Hermite radial basis func-
tions implicits. Computer Graphics Forum 30, 1 (2011), 27-42. 3

[MH99] MULLER-HANNEMANN M.: Hexahedral mesh generation by
successive dual cycle elimination. Engineering with computers 15, 3
(1999), 269-279. 3

[Mit96] MITCHELL S. A.: A characterization of the quadrilateral meshes
of a surface which admit a compatible hexahedral mesh of the enclosed
volume. In STACS 96: 13th Annual Symposium on Theoretical Aspects of
Computer Science Grenoble, France, February 22—24, 1996 Proceedings
13 (1996), Springer, pp. 465-476. 3

[Mit99] MITCHELL S. A.: The all-hex geode-template for conforming a
diced tetrahedral mesh to any diced hexahedral mesh. Engineering with
Computers 15 (1999), 228-235. 3

[MT95] MITCHELL S. A., TAUTGES T. J.: Pillowing doublets: Refin-
ing a mesh to ensure that faces share at most one edge. In Proc. 4th
International Meshing Roundtable (1995), pp. 231-240. 7

[NABR15] NGUYEN V. P., ANITESCU C., BORDAS S. P., RABCZUK
T.: Isogeometric analysis: an overview and computer implementation
aspects. Mathematics and Computers in Simulation 117 (2015), 89-116.
3

[NRP11] NIESER M., REITEBUCH U., POLTHIER K.: Cubecover— pa-
rameterization of 3d volumes. Computer Graphics Forum 30, 5 (2011),
1397-1406. 2

[NWW21] NEUHAUSER C., WANG J., WESTERMANN R.: Interactive
focus+ context rendering for hexahedral mesh inspection. /EEE Transac-
tions on Visualization and Computer Graphics 27, 8 (2021), 3505-3518.
3

[PBS20] PALMER D., BOMMES D., SOLOMON J.: Algebraic representa-
tions for volumetric frame fields. ACM Trans. Graph. 39, 2 (Apr. 2020).
2,10

[PBS22] PANDEY K., BERENTZEN J. A., SINGH K.: Face extru-
sion quad meshes. In ACM SIGGRAPH 2022 Conference Proceedings
(2022), pp. 1-9. 3,7

[PCS*22] PIETRONI N., CAMPEN M., SHEFFER A., CHERCHI G.,
BOMMES D., GAO X., SCATENI R., LEDOUX F., REMACLE J.-F.,
LIVESU M.: Hex-mesh generation and processing: A survey. ACM
Trans. Graph. 42, 2 (oct 2022). 2, 3,5

[PCS*23] PIETRONI N., CAMPEN M., SHEFFER A., CHERCHI G.,
BOMMES D., GAO X., SCATENI R., LEDOUX F., REMACLE J.-F.,
LIVESU M.: A course on hex-mesh generation and processing. In
ACM SIGGRAPH Asia 2022 Courses (New York, NY, USA, 2023), SIG-
GRAPH Asia ’22, Association for Computing Machinery. 2, 5

[PLC*21] PiTtzALIS L., LIVESU M., CHERCHI G., GOBBETTI E.,
SCATENI R.: Generalized adaptive refinement for grid-based hexahe-
dral meshing. ACM Trans. Graph. (SIGGRAPH Asia) 40, 6 (2021). 2, 3,
5

[PNA*21] PIETRONI N., NUVOLI S., ALDERIGHI T., CIGNONI P.,
TARINI M.: Reliable feature-line driven quad-remeshing. ACM Trans.
Graph. 40, 4 (jul 2021). 6

[SHG*22] ScCHNEIDER T., HU Y., GAO X., DUMAS J., ZORIN D.,
PANOZZO D.: A large-scale comparison of tetrahedral and hexahedral
elements for solving elliptic pdes with the finite element method. ACM
Trans. Graph. 41, 3 (mar 2022). 1,4

[SVB17] SOLOMON J., VAXMAN A., BOMMES D.: Boundary element
octahedral fields in volumes. ACM Trans. Graph. 36,4 (May 2017). 2

[Tak19] TAKAYAMA K.: Dual sheet meshing: An interactive approach
to robust hexahedralization. Computer Graphics Forum 38, 2 (2019),
37-48.3,5

FE. Zoccheddu, E. Gobbetti, M. Livesu, N. Pietroni & G. Cherchi / HexBox

[Tak23] TAKAYAMA K.:. Personal communication, 2023. 3

[Tau04] TAUTGES T. J.: Moab-sd: integrated structured and unstructured
mesh representation. Engineering With Computers 20 (2004), 286-293.
10

[TBM96] TAUTGES T.J., BLACKER T., MITCHELL S. A.: The whisker
weaving algorithm: a connectivity-based method for constructing all-
hexahedral finite element meshes. International Journal for Numerical
Methods in Engineering 39, 19 (1996), 3327-3349. 3

[Thu93] THURSTON W.: Hexahedral decomposition of polyhedra. Post-
ing to sci. math 25 (1993). 3

[ULP*15] UsAI F., LIVESU M., PuPPO E., TARINI M., SCATENI R.:
Extraction of the quad layout of a triangle mesh guided by its curve
skeleton. ACM Trans. Graph. 35, 1 (2015), 1-13. 3

[Vaul2] VAUGHAN W.: Digital Modeling. New Riders, 2012. 2

[VPR19] VERHETSEL K., PELLERIN J., REMACLE J.-F.: Finding hex-
ahedrizations for small quadrangulations of the sphere. ACM Trans.
Graph. 38,4 (2019), 1-13. 3

[WDL*12] WACKERS J., DENG G., LEROYER A., QUEUTEY P., VI-
SONNEAU M.: Adaptive grid refinement for hydrodynamic flows. Com-
puters & Fluids 55 (2012), 85-100. 4

[WGMI11] WYMAN N., GALPIN P., MIRSKY M.: A method for
geometry-sensitive, cfd solver independent mesh adaptation. In Eleventh
International Conference on Computational Fluid Dynamics (ICCFDI1)
(2011). 4

[WZT*18] WEI X., ZHANG Y. J., TOSHNIWAL D., SPELEERS H., LI
X., MANNI C., EVANS J. A., HUGHES T. J.: Blended b-spline con-
struction on unstructured quadrilateral and hexahedral meshes with op-
timal convergence rates in isogeometric analysis. Computer Methods in
Applied Mechanics and Engineering 341 (2018), 609-639. 10

[XC18] XU K., CHEN G.: Hexahedral mesh structure visualization and
evaluation. IEEE Transactions on Visualization and Computer Graphics
25,1(2018), 1173-1182. 3

[XGDC17] Xu K., GAO X., DENG Z., CHEN G.: Hexahedral mesh-
ing with varying element sizes. In Computer Graphics Forum (2017),
vol. 36, Wiley Online Library, pp. 540-553. 2

[YLZ22] Yu Y., LiuJ. G., ZHANG Y. J.: Hexdom: polycube-based
hexahedral-dominant mesh generation. In Mesh Generation and Adap-
tation: Cutting-Edge Techniques. Springer, 2022, pp. 137-155. 3

[YWL*22] YuY.,, WEIX.,LIA. LiuJ. G.,,HEJ., ZHANG Y. J.: Hex-
gen and hex2spline: polycube-based hexahedral mesh generation and
spline modeling for isogeometric analysis applications in Is-dyna. In Ge-
ometric Challenges in Isogeometric Analysis. Springer, 2022, pp. 333—
363.3

[ZBG*07] ZHANG Y., BAZILEVS Y., GoswAMI S., BAajal C. L.,
HUGHES T. J.: Patient-specific vascular nurbs modeling for isogeomet-
ric analysis of blood flow. Computer methods in applied mechanics and
engineering 196, 29-30 (2007), 2943-2959. 3

