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Abstract: Accurate detection and analysis of somatic variants in cancer involve multiple third-party

tools with complex dependencies and configurations, leading to laborious, error-prone, and time-

consuming data conversions. This approach lacks accuracy, reproducibility, and portability, limiting

clinical application. Musta was developed to address these issues as an end-to-end pipeline for

detecting, classifying, and interpreting cancer mutations. Musta is based on a Python command-line

tool designed to manage tumor-normal samples for precise somatic mutation analysis. The core is

a Snakemake-based workflow that covers all key cancer genomics steps, including variant calling,

mutational signature deconvolution, variant annotation, driver gene detection, pathway analysis, and

tumor heterogeneity estimation. Musta is easy to install on any system via Docker, with a Makefile

handling installation, configuration, and execution, allowing for full or partial pipeline runs. Musta

has been validated at the CRS4-NGS Core facility and tested on large datasets from The Cancer

Genome Atlas and the Beijing Institute of Genomics. Musta has proven robust and flexible for somatic

variant analysis in cancer. It is user-friendly, requiring no specialized programming skills, and enables

data processing with a single command line. Its reproducibility ensures consistent results across

users following the same protocol.

Keywords: cancer; somatic mutations; mutational patterns; mutational signatures; somatic variant

detection; machine learning; precision medicine

1. Introduction

The large amount of data coming from cancer genomes, via high-throughput next-
generation sequencing (NGS) technology, has recently revolutionized the studies in on-
cology, enabling comprehensive analyses of somatic variants and addressing the need for
affordable data analysis tools, oriented to their identification and interpretation [1]. In
fact, both single nucleotide variants (SNVs) and small insertions and deletions (INDELs)
play a critical role in the initiation and progression of cancer [2]. Unfortunately, the spe-
cific somatic mutations that drive tumor growth exhibit high variability across different
cancer types, and even within individual tumors [3]. Hence, it is vital to accurately iden-
tify and interpret these mutations for comprehensive understanding of cancer genome
characterization, clinical genotyping, and treatment strategies [4].

However, the accurate identification and interpretation of somatic mutations in cancer
samples remain a major challenge due to the inherent complexity and heterogeneity of
cancer genomes [5]. This complexity varies among different tumor types, and even among
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patients with the same cancer type [6]. Additionally, detecting low allele frequency vari-
ants present in a small fraction of cancer cells is difficult using conventional sequencing
methods [5]. Sequencing artifacts, such as errors during library preparation, sequencing, or
data processing, can lead to false-positive or false-negative results, affecting the accuracy
of somatic mutation detection [7]. Furthermore, cross-contamination between tumor and
normal tissues during sample collection, processing, or sequencing can introduce spurious
results. Another challenge is intratumor heterogeneity, which refers to the extensive genetic
diversity among different tumor cells within the same tumor. Intratumor heterogeneity
can arise due to clonal evolution or spatial heterogeneity, and can impact the accuracy of
somatic mutation calling and structural and functional interpretation of mutations [5,6].

To address these challenges, researchers have developed various bioinformatics tools
for processing and analyzing cancer genomic data, each with its strengths and limitations [8].
These tools typically encompass multiple analysis steps, including read alignment, variant
calling, variant annotation, detection of driver genes, pathway analysis, assessment of
tumor heterogeneity, and deconvolution of mutational signatures [8].

However, using third-party software for detecting and analyzing mutations in cancer
poses further challenges and problems, such as inaccuracies, difficulties in reproducibility,
and limited clinical applicability [8]. The complex dependency trees and configuration
requirements of these tools can often exacerbate these issues. All these aspects highlight
the necessity of user-friendly and streamlined pipelines that offer reproducible, reliable
and accurate results. Developing such pipelines is crucial for standardizing the analysis
of cancer genomic data and ensuring result reproducibility across different datasets and
research groups [8].

To overcome these limitations, we present Mutation and Somatic Tumor Analysis
(Musta): a novel, affordable, and reliable end-to-end pipeline for detecting, classifying, and
interpreting somatic mutations in cancer. Musta is designed to provide a standardized
framework that offers accurate detection and comprehensive analysis of somatic variants
while being at the same time user-friendly and cost-effective.

2. Results

Musta is currently used for cancer sample data analysis at the CRS4-NGS Core. Its
reliability has been extensively tested on published data from “The Cancer Genome Atlas”
repository. Each cohort counts hundreds of samples in distinct patients. Furthermore,
Musta was also tested on published data from the genome archive of Beijing Institute of
Genomics, with 23 samples of liver cancer from the same patient [9].The performance
evaluations of Musta were conducted on a Dell server with dual Intel Xeon Gold 6238R
processors, each featuring 28 cores at 2.2 GHz, a 38.5 M cache, and 128 GB of RAM. The
server, configured with a total storage capacity of 40 TB in a RAID 5 setup, provided ample
resources for robust analyses. The server runs CentOS Linux release 7.9.2009, with Docker
version 20.10.11 and GNU Make version 4.3. During evaluations, each job in the Snakemake
workflow efficiently utilized 4 out of the 56 available cores on the server.

2.1. Evaluating Musta in a Hepatocellular Carcinoma (HCC) Dataset

In the initial evaluation of Musta, we focused on its performance in analyzing the HCC
dataset. A set of 23 tumor biopsies, along with a tumor-adjacent matched normal sample
(N1), were sequenced at an average depth of 74.4× [9]. The samples were systematically
distributed across the tumor tissue slice, categorized into four quadrants (A–D), with a
central sample (Z1). Furthermore, the 23 sequenced samples were evenly distributed within
the tumor, with 12 samples positioned on the periphery and 11 samples on the inside (see
Figure 1a in [9]).

2.1.1. Detection

To evaluate the performance of Musta’s Detection module on HCC datasets, we
executed the Musta detect command with all variant callers enabled. The results were then
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compared with the findings of the original study [9]. To provide a more comprehensive
representation and facilitate interpretation, data from comparative results are summarized
in plots and diagrams in Figures 1 and 2. Initially, a purely quantitative assessment is
conducted by comparing the total numbers and counts of “pass” variants, along with the
execution times for each variant caller and sample (Supplementary Table S1). Additionally,
Supplementary Table S1 includes data on the amount of non-swapped physical and virtual
memory used, the number of MB read and written, and CPU usage time.

Figure 1. Performance evaluation of Musta’s detection module on HCC datasets. This figure provides

a comprehensive comparison of the variant calling results from the Musta Detection module and the

original study by [9]. (a,b) display the execution times for each variant caller across different samples:

(a) highlighs the runtime of each variant caller for each sample while (b) shows the average runtime

for a single sample. (c,d) illustrate the total counts of pass variants reported by each variant caller:

(c) exhibits the number of variants called by each variant caller for each sample while (d) shows the

average number of called variants in a single sample per variant caller.

In the overall variant caller analysis, distinctive characteristics emerge, as clearly
depicted by the plots for runtime (Figure 1a,b) and the number of somatic variants
(Figure 1c,d). LoFreq stands out for its consistency and reliable results, featuring quick
runtimes but potentially limited sensitivity due to a lower count of reported variants. MuSe,
despite variable runtimes, contributes to a comprehensive overview with its moderate to
high number of reported variants. Mutect2 proves stable in runtimes, achieving a balance
between precision and sensitivity with a moderate count of reported variants. Strelka2
excels in quick execution, offering a high quantity of variants but requiring careful filtering.
VarDict, albeit slower, provides an extensive set of variants, emphasizing the trade-off
between time and results. VarScan2 demonstrates versatility with moderate runtimes and
a balance between precision and sensitivity, offering a well-rounded choice. The consensus
strategy prioritizes variants identified by multiple callers, ensuring a more conservative
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selection. However, when integrating permissive and restrictive callers, there is a potential
drawback: the rejection of a significant portion of variants called by the permissive ones.
It is important to note the variation in execution times: Strelka2, LoFreq, and VarScan2
complete their analysis in a few tens of minutes, Mutect2 and MuSe take about an hour and
a half, and VarDict requires over 24 h. Excluding VarDict, the Detection module typically
takes about 4 h to analyze a single sample.

Figure 2. Musta against original study data (Ling [9]). This figure shows a comparison of the number

of somatic variants validated by Ling and the results from Musta. (a) heatmap highlights common

somatic variants between variant callers and their contribution in Musta results. (b) root mean

square error (RMSE) for all variant callers against Ling results, demonstrating Musta’s precision.

(c) Venn diagram highlighting the concordance between Musta and Ling analysis, showing nearly 90%

overlap, with Musta identifying 137 unique variants and Ling 30. (d) underscores Musta’s robustness,

showing that nearly 99% of somatic mutations were identified by at least four out of six variant

callers, indicating the high quality and comprehensive coverage of Musta’s ensemble approach.

In general, individual variant callers share more mutations with Musta than with other
variant callers, confirming Musta’s superiority as an ensemble approach (see Figure 2a
and Supplementary Table S2). Mutect2 and Strelka2 are exceptions, sharing a signifi-
cant portion of the identified somatic mutations. Additionally, VarDict demonstrates the
highest concordance with Strelka2. Let us now examine the number of somatic variants
per sample, identified and validated by [9], and the comparison with Musta’s results
(Supplementary Table S3). For a comprehensive validation, and to demonstrate the efficacy
of the ensemble approach, we also compare the results of individual variant callers and
of combinations of them. From the calculation of the root mean square error (RMSE) for
all variant callers, concerning Ling’s results, it becomes apparent that Musta exhibits the
lowest RMSE, indicating the highest precision (Figure 2b). Interestingly, Musta’s precision
is enhanced when employing all variant callers compared to the combinations offered by
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the options: –strict (run only Mutect2, LoFreq, Strelka2), –soft (VarScan2, VarDict, MuSe),
and –fast (LoFreq, VarScan2, Strelka2). After this initial quantitative analysis, we turn to a
qualitative analysis to check for agreement on the mutations detected. The Venn diagram
in Figure 2c highlights the concordance between Musta and Ling analysis to be nearly
90%. From the same diagram analysis, it emerges that Musta identified 137 variants unseen
by Ling analysis, while there are only 30 mutations identified in the original study not
captured by Musta. The robustness and reliability of Musta are further underscored by
Figure 2d, where it is evident that nearly 99% of the somatic mutations were identified
by at least four out of six Variant Callers, indicating not only the comprehensive coverage
provided by Musta, but also the high quality of its results. This highlights the solidity of its
ensemble approach in capturing a wide range of somatic mutations, thus confirming its
reliability in the analysis of cancer samples.

2.1.2. Classification

After identifying somatic mutations in tumor samples, the subsequent classification
of these mutations is vital for understanding their biological significance and clinical
implications, particularly in identifying driver mutations pivotal for cancer progression.
Musta employs two variant annotation options: the Ensemble Variant Effect Predictor (VEP)
and GATK’s Funcotator. Their results are summarized in Figure 3 and Supplementary
Table S4, which also include detailed metrics such as the amount of non-swapped physical
and virtual memory used, the number of MB read and written, and CPU usage time,
providing a comprehensive overview of the resource consumption.

Figure 3. Performance evaluation of Musta’s classification module on HCC datasets. This figure

summarizes the results and efficiency of the Ensemble Variant Effect Predictor (VEP) and GATK’s

Funcotator used in the Musta framework. (a,b): Runtime efficiency comparison. VEP annotates

a sample in 15 min, while Funcotator takes over 7 h. (c,d): Quantitative outcomes. Funcotator

identifies slightly fewer genes than VEP, but offers more detailed classifications per gene.

One striking difference between the two variant annotation tools is their runtime
efficiency (see Figure 3a,b). VEP completes annotation for a single sample in approximately
15 min, demonstrating rapid processing. In contrast, Funcotator requires significantly more
time, with an average runtime of over seven hours per sample. This substantial difference
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may influence the choice of annotation tool based on specific analysis requirements and
available computational resources. When comparing the quantitative classification out-
comes (Figure 3c,d), Funcotator tends to identify slightly fewer genes compared to VEP.
However, Funcotator provides a richer variety of classifications per gene, albeit with only a
marginal difference. This suggests that while Funcotator may identify fewer genes overall,
it offers more detailed classifications for each identified gene.

Furthermore, a qualitative analysis reveals that both tools classify the same set of genes
as frequently mutated genes (FLAG), as shown in Figure 4a,b, indicating a high level of
agreement in identifying genes relevant to hepatocellular carcinoma (HCC). These findings
are consistent with previous studies in the literature, which have already identified these
top genes as strongly correlated with hepatocellular carcinoma [10–18]. This convergence
reinforces the reliability of both tools for cancer analysis. Given the high level of agreement
and robustness observed, the choice between VEP and Funcotator ultimately depends
on user preferences. Factors such as runtime requirements, computational resources,
familiarity with each tool’s functionalities, and ease of access to additional files may
influence the decision-making process.

Figure 4. Comparison of frequently mutated genes (FLAG) classified by VEP and Funcotator. Both

tools classify the same set of genes as frequently mutated genes (FLAG), indicating high agreement

in identifying genes relevant to hepatocellular carcinoma (HCC).

2.1.3. Interpretation

In this section, the outcomes of the Interpretation module are examined (refer to
Supplementary Table S5 for details on non-swapped physical and virtual memory usage,
MB read and written, and CPU usage time), focusing on the comparative analysis between
the Hepatocellular Carcinoma (HCC) and the Liver Hepatocellular Carcinoma (LIHC)
datasets [19] obtained from “The Cancer Genome Atlas” repository. The aim is to ascertain
the concordance and consistency of results across these datasets, notwithstanding inherent
disparities in sample size and diversity.

The comparison outcomes are illustrated in Figures 5–7 However, before delving
into the interpretation of the results, it is essential to acknowledge a significant inherent
bias: the LIHC dataset comprises 365 samples from distinct patients, whereas the HCC
dataset consists of only 23 samples from a single patient, representing a singular case of
hepatocellular carcinoma. Consequently, it is expected that the LIHC results exhibit greater
diversity and wider distribution compared to those of HCC.
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Figure 5. Performance evaluation of Musta’s interpretation module on HCC and LIHC datasets:

frequently mutated genes. The (a) shows the Top 10 mutated genes in TCGA-LIHC dataset, while

(b) illustrates a comparison between Top 10 mutated genes in TCGA-LIHC and HCC (Ling) datasets.

TTN gene is identified as the most mutated gene in both datasets, aligning with literature on Hep-

atocellular Carcinoma. The HCC dataset shows mutations in all samples, while the LIHC dataset

exhibits variable numbers of samples with mutations, reflecting greater diversity.

An initial positive observation is evident from Figure 5a,b, where the gene TTN
emerges as the most mutated gene in both datasets. This finding aligns with existing
literature [10], which strongly associates TTN mutations with Hepatocellular Carcinoma. It
is notable that in the HCC dataset, genes are mutated across all samples, whereas in the
LIHC dataset, the number of samples with mutated genes varies, reflecting the diversity
inherent in a cohort of multiple patients.
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Figure 6. Performance evaluation of Musta’s interpretation module on HCC and LIHC datasets:

mutational signatures from the SBS databases. Both datasets feature SBS22, linked to Hepatocellular

Carcinoma, as the first signature.

The decisive evidence comes from the subsequent plots, which compare the Muta-
tional Signatures extracted from the two datasets, from the SBS databases. In both datasets,
the first signature is SBS22, associated with exposure to aristolochic acid and significantly
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correlated with Hepatocellular Carcinoma (Figure 6a,b), As expected, three distinct sig-
natures were extracted from the LIHC dataset, while only one was extracted from the
HCC dataset.

Figure 7. Performance evaluation of Musta’s interpretation module on HCC and LIHC datasets:

transition and trasnversion ratios. Transition and transversion ratios are more uniformly distributed

in the LIHC dataset. In contrast, the HCC dataset shows a predominance of T>A mutations.

This aligns with the observations in Figure 7a,b, where the LIHC dataset shows
a more uniform distribution of Transition and Transversion ratios, whereas the HCC
dataset exhibits a clear predominance of T>A mutations, overshadowing the others during
signature extraction.
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In conclusion, the comparative analysis reveals notable concordance between the HCC
and LIHC datasets, despite differences in sample size and diversity. As we have often
pointed out, and it is still worth reiterating, these findings enhance our understanding of
the mutational landscape of Hepatocellular Carcinoma and underscore the importance of
robust interpretation methods in genomic analysis.

2.2. Evaluating the Scalability and Portability of Musta

Musta leverages Docker, Snakemake, and Conda to ensure maximum scalability and
portability. Tested on CentOS 7.9.2009, Ubuntu 20.04 and, later, Windows 11 Professional
(with WSL 2 and Docker Desktop) and macOS, Musta demonstrates comprehensive cross-
platform compatibility.

For scalability, Musta adopts a conservative approach to core management, always
leaving one core free to prevent overloads. This requires a minimum dual-core system.
Performance, memory usage, and storage utilization are influenced by the tools in the
Detection and Classification modules and the number of samples. On an 4-core, 16 GB
RAM system, the Detection module runs effectively with the ‘–fast’ option, and the Clas-
sification module with VEP annotations. Systems with 16–128 GB RAM and 4–56 cores
can incorporate more variant callers and annotators. Musta’s flexibility allows users to add
variant caller results without regenerating VCFs, enhancing resource management and
user convenience. However, intermediate files can occupy up to 50% of the total size of
input BAM files, so adequate disk space is necessary.

Finally, an internet connection is essential for downloading packages, updates, and
dependencies, ensuring smooth installation and operation of Musta.

3. Discussion

Musta, both in tests and routine analysis, has proven to be a robust and flexible pipeline
for accurate detection and comprehensive analysis of somatic variants in cancer. Its ease of
installation and setup enables users, even without specific skills in computational program-
ming, to process cancer data using a single command line. Furthermore, Musta encourages
and simplifies the definition of protocols, thus adhering to an analysis style that adopts
best data processing practices [8], and thereby enabling the transfer and reproducibility of
analysis and results.

Currently, Musta is being utilized for cancer sample data analysis at the CRS4-NGS Core. Its
reliability has been extensively tested on the Liver Hepatocellular Carcinoma (LIHC) dataset [19]
obtained from TCGA Research Network (https://www.cancer.gov/tcga, accessed on 21
July 2024). Each cohort comprises hundreds of samples from distinct patients. Additionally,
Musta has been tested on published data from the genome archive of the Beijing Institute
of Genomics, including 23 liver cancer samples from the same patient. All software tools
incorporated into Musta have been carefully chosen after an in-depth literature review and
practical testing, with the selection guided by the need to meet reliability, reproducibility,
and confidence in results, while also ensuring ease of use. The Dockerized version of
Musta ensures consistent and reproducible results across multiple platforms, making it a
valuable tool for project collaborations. Moreover, Musta promotes the good practice of
standardization, precise protocol definition, and seamless transferability to other users,
ensuring consistency and reliability across analyses.

In summary, Musta represents a significant advancement in the field of somatic vari-
ant analysis in cancer, offering a reliable, flexible, and easily reproducible approach for
researchers engaged in precision oncology research.

4. Materials and Methods

Musta is a comprehensive end-to-end pipeline developed to streamline the detection,
classification, and interpretation of somatic mutations in cancer samples. Musta’s foun-
dation is a user-friendly Python-based command-line tool that easily handles matched
tumor-normal samples and that simplifies the analysis process for researchers, regardless

https://www.cancer.gov/tcga
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of their programming expertise. Researchers can initiate the entire analysis by executing a
single command line, making Musta accessible and efficient even for those without specific
programming skills.

4.1. Overview

The Musta framework efficiently organizes cancer sample processing tools into three
distinct analysis modules: detection, classification, and interpretation (Figure 8). Re-
searchers have the flexibility to run each module independently, or combine all three
modules for a more comprehensive analysis workflow. The Musta framework is designed
with a layered architecture (Figure 9): the core is a Snakemake-based workflow [20], encap-
sulated in a Python framework and running in a Docker container [21]. A user-friendly
Command-Line Interface (CLI) enables users to issue commands and provide input data.

Figure 8. Overview of the Musta framework for cancer sample analysis. This figure illustrates the

workflow of the Musta framework, which efficiently organizes cancer sample processing tools into

three distinct analysis modules: detection, classification, and interpretation. The process begins with

input BAM files, which are detailed in the samples.yaml file. Each paired normal and tumor BAM

file is sent to one of the six variant callers in the detection module. The VCF files generated by each

variant caller are then processed by the Ensemble step (SomaticSeq), which produces a consensus

VCF. This consensus VCF is subsequently passed to the Classification module, where two Variant

Annotators (VEP and Funcotator) generate an annotated MAF file. This annotated MAF file serves as

the input for the final step, the Interpretation module, which generates plots and tables to facilitate

data analysis and visualization.

The source code and the latest version of Musta framework is freely available at https:
//github.com/next-crs4/musta (accessed on 21 July 2024). A simple Makefile bootstraps
Musta, taking care of the installation, configuration and running modules and allowing the
execution of the entire pipeline or any individual module depending on the starting data.
The detection module accepts BAM files as input, the classification module works with
VCF files and the interpretation module accepts MAF files.

https://github.com/next-crs4/musta
https://github.com/next-crs4/musta
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By running make bootstrap, the Musta Docker image is built and the executable file
musta is conveniently linked in the user’s bin path. With this setup, you can easily access
Musta commands using the musta executable. The command musta --help will show a
brief usage help.

The basic structure of the Musta command is as follows:

musta COMMAND --workdir WORKING-DIR --samples-file SAMPLES-FILE [options]

Here is an overview of these components:

• COMMAND: This can be one of the following: detect, classify, or interpret. It selects
the specific module the user wants to run. The command musta COMMAND --help will
show a brief usage help for each command.

• --workdir WORKING-DIR: This parameter designates the working directory, which is
the destination folder for analysis. This is the folder where (i) the Snakemake pipeline
will be deployed, (ii) analysis logs will be stored, and (iii) all analysis outputs will be
generated.

• --samples-file SAMPLES-FILE: this parameter points to a YAML file that lists the
datasets the user wants to analyze.

For detailed usage instructions and user options, including the complete directory
structure of the destination folder and the required YAML structure for the datasets file,
please refer to the Musta documentation available at https://next-crs4.github.io/musta
(accessed on 21 July 2024).

Figure 9. Layered architecture of the Musta framework. The Musta framework is built with a

layered architecture, ensuring efficient and organized processing of cancer samples. At its core is

a Snakemake-based workflow (version 7.15), encapsulated within a Python framework (version

3.8) and executed in a Docker container (version 20 and later). The Snakemake rules instantiate the

necessary Conda (version 4.12) environments to run the individual tools, ensuring compatibility and

reproducibility. Users interact with the system through a user-friendly Command-Line Interface

(CLI), enabling easy command execution and data input.

4.1.1. Snakemake Core

At the heart of Musta’s architecture resides a Snakemake-based workflow. Snake-
make, a powerful and versatile workflow content manager, offers modularity, scalability,
and reproducibility. Within the Snakemake environment, the workflow is orchestrated
through a set of rules that efficiently connect input datasets to their corresponding outputs.
Snakemake smartly schedules rules, ensuring they run only when their necessary input
files are available. It can also handle multiple rules simultaneously, making it scalable
on different systems, allowing users to efficiently run the workflow on local machines,
including high-performance computing clusters and cloud-based platforms. Furthermore,
Snakemake exhibits resilience by offering error recovery capabilities. In the event of an

https://next-crs4.github.io/musta
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interruption during pipeline execution due to an error, Snakemake identifies missing out-
put files, empowering users to resume the execution of failed jobs from the last available
correct results, once the issues are resolved. Another notable advantage of Snakemake is its
ability to manage software dependencies using Conda. This implies that Snakemake can
create dedicated independent virtual environments in which to execute analysis pipelines,
ensuring that all required software dependencies are present and in the correct versions. In
the context of Snakemake, the Musta workflow consists of two core files:

• Snakefile: This file represents the workflow’s core. It contains all the rules and
commands that define the sequence of tasks and dependencies within the pipeline.
Each rule specifies how to create output files from input files or other rules, and
may invoke commands, scripts, or generate output directly. The Snakefile essentially
orchestrates the entire analysis process.

• config.yaml: The config.yaml file complements the Snakefile by providing essential
input files and parameters for the workflow. It specifies the data sources, settings,
and configurations needed for Musta to execute the analysis correctly. This file helps
to configure the workflow according to the user’s specific requirements and data.
Furthermore, through boolean flags in the config.yaml, allow users to specify which
module to execute and which tools to enable.

The Musta Snakemake workflow is freely available at https://github.com/solida-core/musta
(accessed on 21 July 2024). Users who are experienced with Snakemake can run the work-
flow independently, outside of the Musta framework, by editing the Snakefile and the
config.yaml and running Snakemake commands.

4.1.2. Python framework

Through the integration of the Snakemake API library [22], the Python tool serves as
the conductor of the Snakemake pipeline. It effectively manages configuration, orchestrates
execution, and interprets user commands received through the CLI. In the following is
reported an overview of the Python tool’s functionality:

• Pipeline download. Initially, it downloads the pipeline into the working directory
(WORKING-DIR).

• Environment configuration. The tool sets up internal paths within the Docker container
environment.

• Edit samples.yaml. It edits the samples.yaml file, replacing user-local paths with
Docker volume paths.

• Edit config.yaml. It manipulates the config.yaml file to control execution by tog-
gling module and tool flags and constructing the workflow of rules.

• Workflow execution. Finally, this tool initiates the Snakemake workflow, ensuring the
execution of the defined tasks.

In summary, the Python tool acts as the orchestrator of the Snakemake pipeline,
configuring the environment, handling file paths, and executing the workflow based on
user-defined parameters and commands received through the CLI.

4.1.3. Docker Container

Musta is conceived for an easy installation on any computational platform and any
operating system through the Docker platform. Within the Musta architecture, the Docker
container acts as a boundary layer, separating the outer CLI layer from the inner Python
framework. This segregation allows a clear distinction between user interaction and core
functionality. Key to this setup is the use of Docker volumes. Both the input data and
the working directory are mounted as Docker volumes, providing access to the Python
framework inside the container. Importantly, this arrangement is entirely transparent to
the user, who will continue to work with familiar local file paths. This approach simplifies
data management and ensures that results are readily accessible for further analysis. As
previously mentioned, the make bootstrap command facilitates the creation of the Musta

https://github.com/solida-core/musta
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Docker image. Users can confirm the existence of this image by executing the docker image

command. For users familiar with Docker, direct access to the Musta Python tool is possible
using a command structured as follows:

docker run [docker volumes options] musta:Dockerfile musta [musta option]

However, managing Docker volume mounts manually can be cumbersome and time-
consuming. To streamline this operation, we have developed a user-friendly CLI that
resides at a higher layer in the Musta framework.

4.1.4. Command Line Interface

The Command Line Interface (CLI) is based on a Bash script and aims to provide a
seamless user experience by abstracting the presence of the Docker container, allowing users
to interface directly with the Python tool. Here is a breakdown of the CLI’s functionality:

• Input file and dataset check. The CLI performs an initial check on input files and
datasets. It ensures that they exist, are in the correct format, and that all required
accessory files are present. For example, it verifies that BAM files are indexed (with
corresponding BAI files for each BAM), checks that VCF files are in compressed (GZ)
format and indexed, and confirms the completeness of reference files.

• Constructing the Docker command. After verifying input files, the CLI constructs the
Docker command. For each input file, volumes are mounted in Docker, and the list of
arguments for the Musta Python tool is assembled. Finally, the Docker RUN command
is prepared.

The CLI streamlines the process by handling these tasks automatically, making it easier
for users to work with Musta and Docker without the need for detailed Docker knowledge.
It simplifies the interaction with the Musta Python tool, allowing users to focus on their
analysis rather than Docker container management.

4.2. Workflow Modules

The workflow for detection and analysis of somatic mutations in cancer usually begins
with the preprocessing of raw sequencing data and culminates in the identification of
somatic mutations. The goal is to generate a comprehensive and annotated list of muta-
tions that facilitates informed clinical decision-making [8]. Although there is currently no
universally accepted bioinformatics pipeline or set of tools for cancer analysis, several com-
mon elaboration steps are typically required and widely accepted. Downstream analysis
includes, among others, driver gene identification, pathway analysis, deconvolution of
mutational signature analysis, and estimation of tumor heterogeneity [5,23].

The preprocessing step aims to remove low-quality reads, adapter sequences, and
other artifacts from the raw sequencing data, because overall they could affect downstream
analyses. This step involves quality control, trimming, filtering, and alignment to a ref-
erence genome [24–27]. To simplify Musta, we have omitted the preprocessing step from
the pipeline. Users are encouraged to generate their preprocessed BAMs, following the
GATK Best Practices [27]. For user convenience, we recommend our dedicated Snake-
make pipeline available at https://github.com/solida-core/dima (accessed on 21 July
2024). This resource will guide users through the necessary steps for preprocessing their
data effectively.

4.2.1. Detection

The process of identifying somatic mutations in cancer begins with the comparison of
aligned tumor sequencing data to a corresponding normal or matched reference dataset.
This comparison makes it possible to distinguish between mutations that are tumor-specific
(somatic mutations) and those present in the patient’s germline (germline mutations).
Variants are subsequently filtered according to several criteria such as read depth, quality
score, allele frequency and functional annotation, to remove false positives and retain true
positives while minimizing false negatives [28].

https://github.com/solida-core/dima
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The landscape of available somatic variant detection tools is very broad, including
both commercial and open-source solutions [29–33]. However, the concordance among
these tools about variant callers is often low [34].Dramatically, different somatic variant
callers may yield divergent results when applied to the same dataset. This is because
each caller has its own strengths and limitations [29–33], thus resulting in such a low
concordance among them. Consequently, identifying a single best variant caller that can
consistently outperform others on different datasets is impractical [31,32]. To address
this issue, ensemble approaches have been introduced to harmonize the results generated
by multiple somatic variant callers [35–38]. To create an effective ensemble approach for
somatic mutation detection [39], two key issues need to be addressed:

1. Selecting diverse and accurate component callers. Choosing an optimal number of
component callers while ensuring diversity is crucial. Base learners must balance
high accuracy with diversity to build a robust ensemble [40,41]. Diversity is essential
because the benefit of an ensemble diminishes if all callers perform similarly. Con-
versely, too much diversity can lead to contradictory results, so a balanced selection
of diverse component callers is essential.

2. Combining individual caller results:

(a) Simple approaches like majority voting [42] and consensus approaches [35,43] rely
on majority decisions or consensus among individual caller results. However,
these do not take into account the quality of each caller’s results, although
weighted approaches are possible.

(b) Complex machine learning-based methods such as stacking, Bayesian ap-
proaches, decision trees, and deep learning [44–49] leverage prediction results
or metrics from individual callers as input features. Machine learning algo-
rithms are used to combine these features, offering increased robustness against
noise and errors. However, these methods often demand more computational
resources and may be less interpretable.

In summary, the selection of diverse and accurate component callers, as well as the
choice between simple and complex ensemble methods, plays a key role in improving
somatic mutation detection accuracy while taking into account computational complexity
and interpretability. After an initial in-depth literature review, practical testing, and screen-
ing, we selected six commonly used somatic variant callers: MuTect2 (v4.3.0) [50], VarScan2
(v2.4.4) [51], VarDict (v2019.06.04) [52], Strelka2 (v2.9.10) [53], LoFreq (v2.1.5) [54], and
MuSE (v1.0) [55]. To improve the sensitivity and specificity of somatic mutation detec-
tion by leveraging the strengths of each caller, we selected SomaticSeq (v3.8.0) [47] as the
ensemble approach for the Musta framework.

SomaticSeq integrates the VCF outputs from these six variant callers and processes
them to produce a single consensus VCF, thus providing a more accurate and reliable
set of somatic mutations. Compared to other ensemble and consensus tools—such as
SomaticCombiner [56], NeoMutate [46], BAYSIC [45] and Moss [57]—SomaticSeq stands
out for its consistent updates and maintenance, as well as its unique ability to accept
input not only from all six variant callers selected for the Musta framework, but also from
JointSNVMix [58], SomaticSniper [59], and Scalpel [60]. Additionally, it offers the flexibility
to input any arbitrary VCF file(s) from caller(s) that we did not explicitly incorporate,
paving the way for future improvements to Musta. These characteristics contribute to a
richer, more flexible, and user-adaptive pipeline.

While technically feasible to develop a pipeline based on the other aforementioned
ensemble and consensus tools, such an approach presents challenges that could compro-
mise the universality and accessibility we aimed to achieve with Musta, without offering
significant advantages. Each of these other tools has strengths and relevance to specific
aspects of variant calling. For example, SomaticCombiner integrates a new variant allelic
frequency (VAF) adaptive majority voting approach, which maintains sensitive detection
for variants with low VAFs. NeoMutate incorporates seven supervised machine learning
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(ML) algorithms to exploit the strengths of multiple variant callers using a non-redundant
set of biological and sequence features. BAYSIC performs an unsupervised, fully Bayesian
latent class analysis to estimate false positive and false negative error rates for each input
method. Moss, in addition to VCF files, also takes the original BAM files of the tumor and
normal samples as input. However, the downstream analysis flexibility achieved with
SomaticSeq is far more effective for a general approach to the problem. Overall, Somat-
icSeq’s adaptability and comprehensive input acceptance make it the superior choice for
developing a robust and versatile variant calling pipeline, enhancing both the utility and
ease of use for researchers.

SomaticSeq uses an ensemble strategy based on machine learning to integrate the
individual caller results. It employs a random forest classifier that takes into account
various features extracted from each variant caller’s output, such as allelic depths, base
quality scores, and mapping qualities. These features are used to train the classifier to
distinguish true somatic mutations from false positives. The trained classifier then combines
the predictions of the component callers and generates a final set of high-confidence
somatic mutations. SomaticSeq into our analysis pipeline, will improve the reliability and
completeness of somatic mutation analysis in cancer genomes.

In the context of Snakemake workflow, the Detection module involves rules that,
starting from BAM files, automatically performs variant calling in tumor-normal matched
mode, depending on provided input files for each sample. The rules are responsible for
efficiently preparing the input files for each variant caller selected, executing the variant
calling and the ensembles processes and retrieving the resulting VCF files. This includes
handling tasks such as format conversions and file compression and decompression, as
needed, and the indexing of the resulting VCF files for further downstream analysis. The
basic structure of the Musta command to invoke Detection module is:

musta detect --workdir WORKING-DIR --samples-file SAMPLES-FILE [options]

By default, the detection module within Musta is configured to perform the variant calling
using all six of the mentioned variant callers. However, Musta provides users with the
flexibility to customize their analysis according to their specific needs in the following ways:

• Excluding specific variant callers. If users wish, Musta allows specific variant callers
to be excluded from the analysis. This customization ensures that only the desired
variant callers are effectively applied to the data.

• Selecting preset combinations. Alternatively, users can choose from preset combina-
tions of variant callers. Musta offers predefined sets of variant callers that have been
optimized for specific analysis scenarios:
--strict run only restrictive variant callers: Mutect2, LoFreq, Strelka2.
--soft run only permissive variant callers: VarScan2, VarDict, MuSe.
--fast run only fast variant callers: LoFreq, VarScan2, Strelka2, MuSe.

4.2.2. Classification

Following the variant calling process, where somatic mutations are identified, it is
imperative to annotate these variants with functional information to gain insights into their
potential impact on the genome. At a fundamental level, gene annotation is performed to
determine whether the variant affects the protein-coding sequence of a gene. It specifically
identifies whether the variant is synonymous or non-synonymous, and assesses its impact
on splice sites and other specific genomic regions. This initial gene-level annotation is
crucial for understanding the potential functional consequences of the variant itself. To
enhance the annotation process, the identified variants are compared and annotated using
established and widely used databases, such as dbSNP [61], gnomAD [62], ClinVar [63],
and COSMIC [64]. These databases house a vast repository of curated genomic informa-
tion, enabling researchers to determine whether a particular variant has been previously
reported in the germline or has been associated with cancer-related genomic changes. This
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comparison is critical in assessing the significance of the variant and its potential relevance
to the specific tumor or tumor-associated disease under study.

To streamline the annotation process, researchers have several widely used and freely
available annotation tools at their disposal. These tools, such as the Ensemble Variant
Effect Predictor (VEP) [65], ANNOVAR [66], SnpEff [67], and Funcotator from GATK, play
a key role in annotating variants. They use diverse annotation algorithms and leverage
comprehensive genomic resources to provide detailed functional annotations for the identi-
fied variants. With the help of these tools, researchers can efficiently annotate large-scale
datasets, taking into account variant type, location, and potential functional impact. In a
comparative study [68], these variant annotation tools were evaluated using a ground-truth
set of 298 variants from a medical exome database. Notably, VEP exhibited the highest ac-
curacy, annotating 297 variants with HGVS nomenclature. In contrast, ANNOVAR showed
the highest discrepancy, with 20 variants showing inconsistencies. Another study [69]
reported a robust 92.6% concordance (100/108 variants) between SnpEff and VEP.

Based on the findings of these comparative studies, we have selected VEP (v106) as the
primary variant annotator for the Musta pipeline. However, to enhance the flexibility and
robustness of our pipeline, we recognize the unique capabilities and advantages of other
annotation tools. Therefore, we have integrated Funcotator (v4.3.0) as an option within
the pipeline, allowing users to choose and compare annotations generated by both VEP
and Funcotator. This approach empowers users to tailor their annotation strategy to their
specific research needs and preferences, ensuring that Musta can handle a variety of datasets
with different characteristics. Additionally, we are committed to further expanding the
annotation capabilities of Musta. The roadmap for a future release includes the integration
of SnpEff, providing users with even more flexibility and options in their analyses. By
incorporating multiple annotation tools, Musta aims to offer a comprehensive, adaptable,
and user-friendly solution for somatic variant annotation, capable of accommodating
diverse datasets and evolving research requirements.

By default, the classification module in Musta is configured to perform variant annota-
tion using VEP, but users have the flexibility to opt for Funcotator alone or in combination
with VEP. The fundamental structure of the Musta command for invoking the Classification
module is:

musta classify --workdir WORKING-DIR --samples-file SAMPLES-FILE [options]

After annotating somatic mutations using both VEP and Funcotator, the resulting annotated
Variant Call Format (VCF) files are further transformed into the Mutation Annotation For-
mat (MAF). In fact, the MAF format is accepted as the standard one for storing both somatic
and germline variants stemming from extensive cancer sequencing studies [70]. Once the
variants are in the MAF format, the pipeline moves to the final stage of interpreting these
variants through downstream analyses. These analyses are vital for unraveling the func-
tional significance and potential clinical implications of the annotated somatic mutations.

4.2.3. Interpretation

The downstream analysis of somatic mutation data commonly involves the utilization
of multiple independent software tools, employing various computational and statistical
approaches. In the Musta pipeline, this analysis is significantly facilitated by incorporating
the Maftools R package (v2.10) [71]. Maftools is a specialized bioinformatics tool designed
for the comprehensive analysis and interpretation of somatic variants stored in the MAF
format. It offers a wide range of downstream analysis and visualization modules that are
extensively used in cancer genomic studies, enabling researchers to perform driver gene
identification, pathway analysis, mutational signature analysis, enrichment analysis, and
association analysis, among others [5,23]. Moreover, Maftools addresses the challenge
of visualizing complex and heterogeneous data, providing researchers with an array of
visualization functions to generate publication-quality images such as oncoplots, lollipop
plots, and oncoprints. By incorporating Maftools into the Musta pipeline, we offer to
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researchers the possibility to effectively interpret somatic variants, derive meaningful
insights, conduct in-depth analyses, and communicate their findings more efficiently,
ultimately enhancing our understanding of the genomic landscape in cancer research.

1. Variant visualization. Within the Musta pipeline framework, Maftools presents a range
of graphical representations that assist in detecting mutation patterns and recurring
characteristics within the dataset.

• Summary plots provide an at-a-glance summary by showcasing variant counts
per sample and their distribution based on classification. They offer a high-level
overview of the mutation landscape within the dataset.

• Onco plots illustrate mutations across samples, revealing distribution patterns.
They are definitely valuable in cancer patient studies, providing a comprehensive
mutational view.

• Lollipop plots take the interpretation a step further by depicting mutations on
protein structures. This visual representation helps researchers to gain a better
understanding of the precise locations of mutations and their potential impact
on protein structure and thus function.

• Transitions and transversions plots categorize mutations into transitions and
transversions, providing insights into the mutational spectrum within the dataset.
Understanding these mutation types is crucial for unraveling mutational patterns.

• Rainfall plots are a powerful tool for visualizing mutation-rich areas within
cancer genomes. They are especially useful for identifying hypermutated regions,
a phenomenon known as kataegis [23,72]. These plots help pinpoint areas of
intense genomic alteration.

• Oncostrip allows researchers to zoom in on specific genes, simplifying the explo-
ration of features like mutual exclusivity. This focused view aids in uncovering
relationships and interactions among genes of interest.

2. Somatic interactions. Recent advances in cancer genomics research have shown that
many disease-causing genes in cancer are often mutated in a mutually exclusive
manner [73,74]. Identification of such gene sets can reveal de novo pathways and
underlying mechanisms of tumorigenesis. For this, Musta performs a Fisher’s exact
test on all combinations of genes, to detect such mutually exclusive or co-occurring
sets of genes.

3. Detecting cancer driver genes. Cancer driver genes provide selective growth ad-
vantage to cancer cells when mutated [3]. Several mathematical approaches have
been developed to identify such driver genes [5,75–77]. In the context of the Musta
framework, detection of such associated genes is based on the oncodriveCLUST
algorithm [78]: the concept is that a majority of the mutations in oncogenes are
clustered around mutational hotspots, whereas mutations on passenger genes are
randomly distributed.

4. Pfam domains. In each type of cancer, specific protein domains are notably enriched
with mutations [79,80]. The process of identifying and categorizing protein domains
based on their mutation frequency serves the dual purpose of discerning the pre-
dominant domain affected within a particular cancer cohort. This approach further
aids in pinpointing highly disrupted pathways and protein families that share similar
functions, offering insights into the intricacies of deregulated mechanisms.

5. Tumor heterogeneity. Tumors are generally heterogeneous, composed of multiple
clones and undergoing continuous evolution [81]. Heterogeneity can be inferred by
clustering and classifying variants into sub clones, according to their allele frequen-
cies [82,83]. Although clustering of variant allele frequencies gives us a fair idea on
heterogeneity, it is also possible to measure the extent of heterogeneity in terms of a
numerical value. MATH score is a simple quantitative measure of intra-tumor hetero-
geneity, which expresses the width of the variant allele frequency (VAF) distribution [84].
High MATH scores are found to be associated with poor prognosis and survival [85].
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6. Mutational signature analysis. As cancer progresses, it develops a characteristic
mutational pattern that unveils the underlying mutagenic processes at play. This
revealing pattern can be deciphered through dimensional reduction techniques like
non-negative matrix factorization (NMF) [23]. By decomposing a matrix containing
nucleotide substitutions categorized into 96 substitution classes, based on their sur-
rounding bases, specific mutational signatures, unique to each cancer type, emerge.
These mutational signatures offer a blurred picture of the intricate mutational land-
scape of cancers. However, by cross-referencing them with validated signatures, we
can achieve a clearer and more focused picture. This further enriches our understand-
ing of the distinct processes that drive cancer progression.
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