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Abstract

Relightable images created from Multi-Light Image Collections (MLICs) are among the most employed models for interactive

object exploration in cultural heritage (CH). In recent years, neural representations have been shown to produce higher-

quality images at similar storage costs to the more classic analytical models such as Polynomial Texture Maps (PTM) or

Hemispherical Harmonics (HSH). However, the Neural RTI models proposed in the literature perform the image relighting with

decoder networks with a high number of parameters, making decoding slower than for classical methods. Despite recent efforts

targeting model reduction and multi-resolution adaptive rendering, exploring high-resolution images, especially on high-pixel-

count displays, still requires significant resources and is only achievable through progressive rendering in typical setups. In this

work, we show how, by using knowledge distillation from an original (teacher) Neural RTI network, it is possible to create a

more efficient RTI decoder (student network). We evaluated the performance of the network compression approach on existing

RTI relighting benchmarks, including both synthetic and real datasets, and on novel acquisitions of high-resolution images.

Experimental results show that we can keep the student prediction close to the teacher with up to 80% parameter reduction and

almost ten times faster rendering when embedded in an online viewer.

CCS Concepts

• RTI → Neural RTI, Disk-NeuralRTI; • Relighting → Neural relighting; • RTI Viewer → Web based visualization;

1. Introduction

Reflectance Transformation Imaging (RTI) is a widely utilized
computational photography technique that enables capturing rich
surface representations, including geometric details and local re-
flective behavior of materials. This method involves the acquisi-
tion of Multi-Light Image Collections (MLICs), in the form of sets
of images from a stationary perspective with different lighting an-
gles. The resulting measurements are then fitted to compact models
replicating the measured behavior.

There are different types of classical RTI techniques [PDC∗19].
The most popular and widely utilized ones are Polynomial Tex-
ture Mapping(PTM), which is based on the second-order polyno-
mial [MGW01]), and Hemispherical Harmonics (HSH) [GKPB04],
exploiting the hemispherical basis defined from the shifted associ-
ated Legendre polynomials. However, the low-frequency approxi-
mation nature of these methods often fails to suitably represent the
subtle illumination effects generated by the intertwining of com-
plex local geometric and appearance characteristics [PCS18].

In recent years, neural network-based RTI regressors [RDL∗15a,
XSHR18a], such as NeuralRTI [DFP∗20,RBP∗23,RKG∗24], have
been shown to produce higher-quality images at similar storage
costs to the classic analytical models. However, these models use

a decoder with many parameters to create the relighted images,
which limits performance, hindering their suitability for real-time
interactive object exploration, particularly with high-resolution ac-
quisitions. For this reason, recent efforts have targeted the enhance-
ment of efficiency by manually optimizing the number of layers of
the network, streamlining decoding inside custom shaders, and in-
troducing an efficient level-of-detail management system support-
ing fine-grained adaptive rendering through on-the-fly resampling
in latent feature space [RKG∗24]. While the resulting viewer facil-
itates interactive neural relighting of large images, exploring high-
resolution images, especially on high-pixel-count displays, still re-
quires significant resources and is only achievable through progres-
sive rendering in typical setups. Earlier works have shown, through
experimental tests [DFP∗20, RBP∗23], that reducing the number
and size of the layers, keeping the same training procedure, can ob-
tain only limited performance boosts without quality degradation.

Building on previous work on network compression (Sec. 2), this
work introduces a knowledge distillation technique called Disk-
NeuralRTI for compressing the NeuralRTI decoder. The method
makes it possible to produce high-quality relighted images with a
limited percentage of the original decoding parameters, making it
possible to perform a smooth interactive relighting even in the case
of large images and limited computational power. To our knowl-
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edge, this is the first work applying this approach to the RTI re-
lighting domain. The results show that the resulting solution outper-
forms the manual tuning and is highly effective, making the Neural
RTI encoding usable in practical settings.

In the following, after briefly discussing related work (Sec. 2),
we describe our knowledge distillation solution (Sec. 3) and its per-
formance and capabilities on synthetic and cultural heritage models
(Sec. 4). We conclude by summarizing our findings and discussing
future works (Sec. 5 and Sec. 6).

2. Related Work

RTI is widely utilized in the CH domain to analyze surface prop-
erties [PDC∗19] and has also found applications in other do-
mains, such as manufacturing [NLGL∗21] and quality assess-
ment [COS19]. The main goal of RTI is interactive relighting, such
as inspecting the rendered surface to simulate a manually controlled
variation of the illumination direction. It allows CH researchers to
interactively visualize the surface based on a compact encoding of
the captured image stack.

Classical RTI. Most methods approximate the reflectance field
by directly mapping lighting parameters to final renderable val-
ues [PDC∗19,ZD14]. PTM [MGW01,ZD14] and HSH [GKPB04]
are the most widely used compact, low-complexity formulations.
While these methods require only a few data decodes and arith-
metic operations per pixel, they only support relatively low-
frequency, smooth behaviors. Radial Basis Function (RBF) in-
terpolation of the original data has been proposed as an al-
ternative to simple parametric functions [GCD∗18]. Still, the
method requires run-time access to the original massive image
stack and is not suitable for interactive relighting. It was later
combined with Principal Component Analysis (PCA) compres-
sion of the image stack and RBF interpolation in light space
to improve efficiency at the cost of a slight reduction in qual-
ity [PCS18]. Due to their versatility, compression rate, and fast
decoding, PTM, HSH, and/or RBF/PCA are included in publicly
available web-based tools for image-based relighting, e.g., We-

bRTIViewer [P∗19a], Pixel+ Viewer [VPH∗20], Marlie [JAP∗21],
Relight [P∗19b, PCS18], and OpenLIME [Ope22]. We provide a
plug-in alternative based on neural compression.

Neural-based RTI. In recent years, neural networks have
emerged as a viable technique for compression, nonlinear approx-
imation, and interpolation tasks involving large amounts of data.
They have also been applied to rendering settings [RDL∗15b,
XSHR18b, TFT∗20]. The NeuralRTI approach [DFP∗20] directly
targets the MLIC use case and has been proposed as a plug-in
replacement for standard RTI representations. It uses a fully con-
nected asymmetric autoencoder to encode the original per-pixel in-
formation into a low-dimensional vector and decode it to recon-
struct pixel values based on the pixel encoding and a novel light
direction. To deal with a large number of input images, the cod-
ing complexity has been improved by having the network work on
PCA-compressed data rather than in the original images [PB23].
However, due to the estimation of relighted images in Neural RTI
being at least two orders of magnitude more complex, which im-
pacts interactivity, practical applications—particularly in the Cul-
tural Heritage domain—still primarily rely on classical methods. To

address this issue, Righetto et al. [RBP∗23] introduced a modified
version of the original Neural RTI. Through a series of experiments,
they manually reduced the complexity while maintaining relighting
quality. However, this reduction was insufficient to ensure interac-
tive relighting for high-resolution images in case of limited com-
putational power. For this reason, they try to improve interactivity
by performing the decoding directly within pixel shaders and by
using an adaptive multi-resolution renderer to meet frequency re-
quirements [RKG∗24]. Despite these improvements, the relatively
high cost of the underlying network still results in unsatisfactory
performance when panning over high-resolution images on high-
pixel-count displays. To achieve optimal performance, further re-
search is needed to develop more efficient and higher compression
techniques for the underlying network.

Neural Network Compression. Advancements in neural net-
work compression have led to methods that automatically reduce
network sizes and evaluation costs, rather than relying on man-
ual adjustments. These compression techniques are typically cat-
egorized into four main types: parameter pruning, low-rank fac-
torization, network quantization, and knowledge distillation. Pa-
rameter pruning techniques [HMD15, GYC16, YZZ∗17] focus on
identifying and removing redundant or non-essential model param-
eters. While these methods can achieve high compression ratios,
they often involve converting fully-connected layers into sparsely-
connected ones. This transformation can complicate decoding and
potentially slow performance, particularly for small networks like
NeuralRTI decoded in GPU shaders. Low-rank factorization tech-
niques [TXZ∗15, BL16] utilize matrix and tensor decomposition
to identify the critical parameters in convolutional neural networks
(CNNs). However, these methods typically yield impressive results
mainly for moderately large to very large networks, many orders
of magnitude larger than the NeuralRTI decoder. Network quanti-
zation techniques [GLYB14, CBD15, HCS∗16] reduce the number
of bits required to represent each weight, leading to a compressed
network. This size reduction also enhances speed by improving
cache efficiency but, alone, can only achieve moderate compres-
sion if limited to GPU-supported data types. Finally, knowledge
distillation [HVD15] focuses on training a smaller (student) model
to replicate the behavior of a larger (teacher) model, transferring
knowledge from the large network to the smaller one while main-
taining prediction performance. In this way, the student model
learns to emulate the teacher’s predictions. While this technique
was initially devised for classification problems, it has also been
applied to regression (e.g., [TMI20, SDGA∗19]). In this work, we
build on a neural-based approach inspired by Neural RTI, and, to
the best of our knowledge, we are the first to apply knowledge dis-
tillation to RTI neural networks. We aim to reduce the Neural RTI
model size to enhance and optimize relighting performance.

3. Disk-NeuralRTI

Our approach is based on the NeuralRTI model, as illustrated
in Fig. 1a, which was introduced by Righetto et al. [RBP∗23,
RKG∗24]. This model is the teacher network and includes an en-
coder and a decoder network. We train the teacher network, T, fol-
lowing the same procedure described by Righetto et al. [RBP∗23].
The encoder comprises four layers, each with an Exponential Lin-
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(a) NeuralRTI scheme. The encoder has three hidden layers and the decoder has two hidden lay-

ers. Each hidden layer contains 50 units. The encoder receives RTI pixel data and produces a

9-dimensional code. The decoder concatenates the code vector with the light direction and outputs

a single RGB value.

(b) Disk-NeuralRTI. The encoder has the same architecture for student and teacher networks. The

student network decoder contains two layers, each with an R number of units. We tested it with R

values of 10 and 20.

Figure 1: Network architecture for original NeuralRTI (top) and Disk-

NeuralRTI (bottom).

ear Unit (ELU) activation function. It processes per-pixel RTI data,
which includes pixel values for various lighting directions, and
compresses this data into nine-dimensional latent space features.
The decoder network, shown on the right in Fig. 1a, includes two
hidden layers, each with 50 units. It takes as input the concatena-
tion of the pixel encoding and a 2D vector representing the light
direction. The decoder’s output is the predicted RGB pixel value
illuminated from the specified light direction. The teacher network
is trained end-to-end on all pixels or a subset of the original MLIC.
This training involves minimizing the mean squared error between
the predicted pixel values and the ground truth values across the
specified light directions. Once the training phase is complete, the
encoder can be used to generate the final latent features for each
pixel, which are stored in a per-pixel latent feature map. The en-
coder is then discarded. To compute relighted images, only the
learned decoder—along with its weights and biases—is used. The
decoder applies these to the per-pixel latent features and the inter-
actively set light directions to produce the final output.

The student network S (Fig. 1b, right) is derived by simplifying
the original network, specifically modifying only the decoder com-
ponent, as the encoder network does not impact interactive relight-
ing. Specifically, we decreased the number of units in each hidden
layer from the original 50 to significantly smaller values, aiming to
reduce the total number of parameters in the decoder while ensur-
ing interactive relighting for large images, even with limited hard-
ware resources.

In the NeuralRTI model, the total number of decoder weights
(W ) and biases (B) is given by W = (K + 2)×N +N ×N +N × 3
and B = N+N+3. With decoder layers of size N = 50 and a latent
feature vector of size K = 9, the number of weights and related
multiplications is W = 3200, and the number of biases and related
additions is B = 103. K = 9 latent code values are, instead, stored
per pixel, leading to a compression rate similar to standard PTM.

Setting the decoder layer size to N = 20 reduces the number of
weights and multiplications to W = 680 and the number of biases
and sums to 43, achieving an 80% reduction in computation and
memory fetches. A layer size of N = 10, leads, instead to W = 240
weights and multiplications, and 23 biases and sum, giving a 92%
reduction in computational cost and memory pressure. The theo-
retical speed-up is thus very significant: between ≈ 5× and ≈ 10×
for these configurations. Both cases were tested, and these adjust-
ments effectively maintained smooth interactive relighting during
our evaluations while achieving relighting accuracy comparable to
the original NeuralRTI (see Sec. 4).

We train the student network on all pixels (or a subset) by mini-
mizing the following loss function:

L =
1
n

n

∑
k=1

α||Ps −Pgt ||
2
k +(1−α)||Ps −Pt ||

2
k (1)

This function is a weighted combination of two components: the
student loss, which measures the difference between the student’s
predictions (Ps) and the ground truth pixel values (Pgt ), and the dis-
tillation loss, which measures the difference between the teacher’s
predictions (Pt ) and the student’s predictions (Ps). The parameter
α determines the weight of each loss component. The distillation
loss is specifically designed to capture the discrepancy between the
student and teacher models. By minimizing this loss during train-
ing, we enhance the student model’s ability to accurately replicate
the teacher’s predictions. The basic idea behind the approach is that
training a very compact model through distillation should be more
effective than training it directly on the original data. Fitting orig-
inal data with the larger teacher network is easier than fitting it
with the smaller student network, thanks to the larger number of
parameters. At the same time, the teacher model’s outputs are typi-
cally smoother/less noisy and may contain richer information than
the exact regression target values coming from the original images.
During distillation, the teacher model can thus provide hints about
the underlying distribution of the data, which can guide the student
model to learn more effectively to fit the original data and general-
ize better. The experiments are implemented using PyTorch on four
NVIDIA Ampere A100 GPUs, 64GB each.
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4. Results and Evaluation

We evaluated our DisK-NeuralRTI compression using two ap-
proaches. First, we assessed the quality of relighted images at dif-
ferent compression levels on the same benchmarks used to show-
case NeuralRTI’s advantages [DFP∗20], namely SynthRTI and Re-
alRTI. SynthRTI includes synthetic multi-light image collections
with various shapes and material combinations, while RealRTI
contains real captures of diverse surfaces. Additionally, we tested
the compressed network’s capability to deliver real-time relight-
ing for real-world use cases stemming from the cultural heritage
area, where we applied the method to novel high-resolution surface
captures. On these new datasets, we demonstrated the increased
rendering speed achieved with DisK-NeuralRTI compression using
the OpenLIME visualization framework.

4.1. Evaluation setup

All our results are presented using consistent configurations for
training and evaluation.

In all our experiments, we used 90% of the total RTI data pix-
els for training and reserved 10%, sampled uniformly across pixel
locations and light directions, for validation. Training for both the
teacher and the student network was carried out using the Adam
optimization algorithm [KB14], with a batch size of 64, a learning
rate of 0.01, a gradient decay factor of 0.9, and a squared gradient
decay factor of 0.99.

For distillation, we determined a single value of the parameter α

and used it for all our benchmarks. The selection was made by com-
puting the average relighting quality on a set of five real captures
from the ReaRTI dataset, testing the quality of the DisK-Neural
RTI compression varying the value of α in the range [0.1-0.9]. We
verified that the method is not very sensitive to the selection α in
the range [0.1..0.7], with a drop in quality only when alpha exceeds
0.8. For all of our tests, we thus set α = 0.6.

The network was implemented using the PyTorch open-source
deep-learning library, but was then converted to an OpenGL shader
for real-time display, using the methods described in previous
work [RBP∗23,RKG∗24]. After training, the per-pixel latent codes
are converted to byte size using offset and scale mapping and stored
as an image byte plane. The decoder parameters (weights and bi-
ases) and header information are saved in a JSON file. This JSON
file is used at runtime by a web viewer, that executes the inference
code inside the shader to relight images under new, arbitrary light
directions.

4.2. Evaluation on SynthRTI and Real RTI benchmarks

To provide a comparison with other published results, we evalu-
ated the method on public datasets containing real and synthetic
samples.

4.2.1. Description of the dataset

SynthRTI [Uni20b] is a collection of 51 multi-light image collec-
tions simulated using the Blender Cycles rendering engine. It is
divided into two subsets: SingleMaterial, featuring 24 captures of

Figure 2: Line chart showing the relighting quality (PSNR) as a function

of the number of decoder parameters for the SynthRTI Single-Material col-

lection. Training with DisK NeuralRTI results in metrics close to or better

than the teacher for the 723 parameters version.

three surfaces with 8 different materials and MultiMaterial, with 27
captures of the same surfaces with 9 material combinations. This
dataset allows the evaluation of relighting methods on matte, spec-
ular, and metallic materials and their ability to handle a wide range
of reflective behaviors. Each collection is divided into two sets of
images, corresponding to two different sets of light directions. The
first set, called Dome, corresponds to a classical multi-ring light
dome setup with 49 directional lights arranged in concentric rings
in the lx, ly plane at 5 different elevation angles (10,30,50,70,90
degrees). The second set, called Test, includes 20 light directions
at 4 intermediate elevation angles (20,40,60,80 degrees). We used
the Dome set to train our network and the Test set to evaluate the
quality of the relighted images.

RealRTI [Uni20a] includes 12 multi-light image collections
(cropped and resized to allow a fast processing/evaluation) acquired
with light domes or handheld RTI protocols [PDC∗19] on surfaces
with different shape and material complexity. In the original pa-
per [DFP∗20], the testing protocol for validating the relighting was
based on averaging leave-one-out training and testing results. In-
stead, we used the same approach used for SynthRTI, removing 5
test images at different elevations for each collection and training
the relightable images on the remaining ones. This makes the test
faster but similarly effective and challenging.

4.2.2. Religting quality evaluation

Fig. 2 presents the results of our tests on the Synth-RTI single ma-
terial dataset. The chart compares the relighting accuracy as the
decoder layer size is reduced from the original 50 units (3303 de-
coder parameters) to 20 (723) and 10 (263), while following the
original training protocol or using the DisK-NeuralRTI approach.
The results show that the proposed method leads to a slower de-
cline in relighting quality as the number of decoder parameters
decreases, maintaining performance close to the original with the
723-parameters configuration.

Tab. 1 compares the average PSNR and SSIM values of the com-
parisons between the ground truth test images and the ones re-
lighted with the original NeuralRTI method [DFP∗20], two ver-
sions of NeuralRTI with reduced layer size (20 and 10) but same
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NeuralRTI
(50)

NeuralRTI
(20)

NeuralRTI
(10)

DisK-NRTI
(20)

DisK-NRTI
(10)

PTM HSH 2.ord HSH 3ord PCA/RBF

Canvas 41,42/0,99 39,88/0,99 35,82/0,99 40,89/0,99 36,77/0,98 29,03/0.98 35,42/0,99 41,24/0,99 34,2/0,99
Tablet 29,13/0,88 26,45/0,83 25,7/0,81 30,53/0,90 26,99/0,84 23,79/0,81 27,63/0,84 29,92/0,87 25,87/0,80
Bas-relief 31,02/0,89 26,91/0,83 26,12/0,82 30,97/0,90 26,33/0,80 24,47/0.81 27,22/0.85 28,82/0.86 25,55/0,86
Average 33,86/0,92 31,08/0,88 29,21/0,87 34,13/0,93 30,03/0,87 25,76/0.87 30,09/0.89 33,33/0.91 28,54/0,88

Table 1: Average PSNR/SSIM values for the relighting of test images of SynthRTI SingleMaterial collections. Disk-NeuralRTI provides very good results with

a per-pixel encoding size of 9 parameters (as PTM and PCA/RBF) and a sufficiently small number of shared decoding parameters per image. With a layer

size of 20 elements, it actually provides better metrics than the teacher networks. Bold figures indicate best values. Figures in parentheses indicate the network

layers’ size.

training method, and the proposed DisK-NeuralRTI solution with
the corresponding layers’ sizes.

DisK-NeuralRTI achieves comparable or superior results to the
original method while using significantly fewer parameters. The
results are also better than all the classical methods, also those re-
quiring a huge per-pixel encoding size.

Figure 3: Line chart showing the relighting quality (PSNR) as a function

of the number of decoder parameters for the SynthRTI Multi-Material col-

lection. Training with DisK NeuralRTI results in metrics close to or better

than the teacher for the 723 parameters version.

Similar results are obtained on the SynthRTI multi-material
dataset. Fig. 3 shows the PSNR obtained as a function of the num-
ber of parameters for the standard and the DisK-NeuralRTI train-
ing. Tab. 2 shows the complete comparisons of the average metrics
also against classical methods, showing very good results for the
compressed Disk-NeuralRTI method up to a layer size of 20. The
decrease of the PSNR for smaller layers suggests that 20 can be a
nearly optimal solution for the layers’ size.

The improvements in the relighting quality for the same layers’
size with the new training procedure are also visually evident. Fig. 4
shows an example where it is possible to see that the layers’ shrink-
ing without the knowledge distillation approach results in artifacts,
especially in shadowed and highlighted details.

For the RealRTI dataset, the average quality decreases with the
layers’size behave similarly (Fig. 5). The average metrics, com-
pared with the classical methods (Tab. 3) show here smaller ad-
vantages. The compressed neural method does not outperform 3rd
order HSH.

It must, however, be considered that the 3rd order HSH encod-
ing requires a large number of per-pixel values (48), compared to

(a) NeuralRTI (20) (b) Disk-NRTI (20) (c) Ground Truth

Figure 4: (a) Relight with a test light direction of the SynthRTI multi-

material set using the NeuralRTI(20) model. (b) Relight with the same

light direction obtained with the Disk-NeuralRTI(20) compressed model.

(c) Ground truth image corresponding to the test direction. It is possible to

see (see arrows) that the layer size reduction with the original training (a)

results in the loss of accuracy of the specular reflections and shadows. The

image in (b) presents less artifacts compared with the ground truth (c)

the 9 elements used in all neural encodings (as well as PTM and
PCA/RBF), making it impractical for the transmission and render-
ing of large images (a 40 Megapixel image would results in a 2GB
encoding with 3rd order HSH, while the 9 byte per pixel encoding
of Neural RTI would be five times lighter).

A reason for the smaller advantages of NeuralRTI on this bench-
mark is probably that the sizes of the images are too small (often
less than 300× 300 pixels). The consequence is that the number
of pixels used to train the networks is quite limited compared to a
typical acquisition performed in an application domain, which is at
least 100 times higher. Some items also present poor relief varia-
tions and texture, so the pixels’ information is heavily correlated.
To verify the performance of the methods in more realistic con-
texts, we evaluated our method on a novel benchmark composed of
high-resolution MLICs from real cultural heritage applications.

4.3. Evaluation on real-world cultural heritage data

To evaluate the advantages of the compressed network in practi-
cal settings, we created another relighting quality benchmark with
three high-resolution MLIC captures of cultural heritage artifacts.
These artifacts are currently investigated in research projects where
practitioners need to visualize them interactively with good quality
and low latency.

4.3.1. Description of the datasets

The first dataset was captured on a lead sheet found in Cesarea
Marittima, Israel, during the excavations of an Italian archaeologi-
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NeuralRTI
(50)

NeuralRTI
(20)

NeuralRTI
(10)

Disk-NRTI
(20)

Disk-NRTI
(10)

PTM HSH 2 ord HSH 3 ord PCA/RBF

Canvas 33,33/0,96 31,94/0,95 28,97/0,93 32,63/0,95 29,95/0,94 25,17/0.93 28,45/0,92 30,03/0,95 27,95/0,95
Tablet 24,29/0,77 23,58/0,75 22,38/0,71 24,96/0,79 23,47/0,75 20,56/0,79 22,76/0,82 24,24/0,84 20,89/0,76
Bas-relief 26,08/0,83 25,20/0,80 23,97/0,76 26,83/0,84 24,94/0,80 22,34/0,76 23,81/0,78 25,10/0,79 21,54/0,81
Average 27,90/0,85 26,91/0,83 25,10/0,80 28,14/0,86 26,12/0,83 22,69/0,83 25,01/0,84 26,46/0,86 23,46/0,84

Table 2: Average PSNR/SSIM values for the relighting of test images of SynthRTI MultiMaterial collections. The 20-elements layer compression achieve better

results than the teacher network. Figures in parentheses indicate the network layers’ size.

NeuralRTI
(50)

NeuralRTI
(20)

NeuralRTI
(10)

Disk-NRTI
(20)

Disk-NRTI
(10)

PTM HSH 2 ord HSH 3 ord PCA/RBF

Average (12MLICs) 31,56/0,88 29,23/0,85 27,52/0,81 30,46/0,88 28,43/0,80 27,95/0,88 30,06/0,89 30,77/0,88 28,29/0,87

Table 3: Average PSNR/SSIM values for the relighting of test images of RealRTI collections. Values differ from [DFP∗20] as we changed the testing protocol

(see text). Figures in parentheses indicate the network layers’ size.

Figure 5: Line chart showing the average relighting quality (PSNR) as a

function of the number of decoder parameters for the RealRTI collection.

cal mission directed by Antonio Frova in the 1960s, which is now
at the Archaeological Museum of Milan. MLIC data were obtained
with a light dome (47 LED) and a Nikon D810 DSLR camera.

The other two datasets are two paintings, specifically two pan-
els from the retable of St. Bernardino (1455). This polyptych,
originally located in the chapel of St. Bernardino within the St.
Francesco church in Cagliari, Italy, is now housed and displayed at
the Pinacoteca Nazionale in Cagliari. The first panel, as shown in
Fig. 6b, measures 34×25 cm and is painted in oil on a wooden sup-
port, depicting the prophet Daniel. The second panel, illustrated in
Fig. 6c, is slightly larger (54×36 cm) and features a golden arched
frame with an image of Christ in pity, supported by an angel. Both
paintings were documented in their pre-restoration condition us-
ing a free-form setup. This setup included a 36.3 Megapixel DSLR
FX Nikon D810 Camera with a 50 AF Nikkor Lens and a hand-
held white LED (5500K) that spans the entire visible spectrum.
Approximately 60 images were taken for each Multi-Light Image
Collection (MLIC).

Using the relightable images created with these datasets after a
careful light calibration [PJZ∗21], we not only tested the effect of
the compression on these images as well (Tab. 4) but also evalu-
ated the frame rate of the interactive relighting performed on these
large images with the non-compressed and compressed decoder in-
tegrated into the OpenLime online viewer [RKG∗24].

4.3.2. Relighting quality evaluation

We split each dataset into a training and test set to test the quality
of the relighting on the new high-resolution images. The training
set is generated by selecting the images corresponding to the light
directions with the smaller angular distance from the directions of
the virtual dome of the SynthRTI Train dataset. The test set is gen-
erated by selecting images with light directions close to the ones in
the SynthRTI test dataset. We used the training set to fit the relight-
ing image model and the test set to evaluate the PSNR and SSIM
values against the ground-truth images, exactly as in the SynthRTI
benchmark.

Tab. 4 show that not only the quality of the relighting obtained on
the high-resolution test images with DisK-NeuralRTI is quite close
to the one obtained with the original model but also that the dif-
ference in the metrics with respect to the other methods is quite
large. The average PSNR obtained with our method is approxi-
mately 20% higher than the one obtained with third-order HSH,
which is a huge difference. This may indicate that, as the models
are trained on the full set of pixels, high-resolution images increase
the advantages obtained with the neural model, and these advan-
tages are kept also in the compressed version.

The advantages of the proposed compressed encoding can be
seen quite well looking at details of the relighted lamina (Fig. 7).
With smaller layer size the original Neural RTI fails to reproduce
high-frequency reflectance properties (Fig. 7 a). The proposed tech-
nique make the result quite close to the ground truth (Fig. 7 b).

The improvements in the relighting quality with the compressed
NeuralRTI method, also when compared with the best Fig. 8. The
third-order HSH cannot reproduce the strong highlights and the
difference in the reflectance of different materials (a). The same
relighting performed with the compressed Disk-NeuralRTI method
(b) results in a quite accurate highlight simulation and presents only
a slight color shift compared with the ground-truth test image (c).

4.3.3. Interactive relighting performances

As explained by Righetto et al. [RKG∗24], NeuralRTI rendering
has been integrated into the OpenLIME web-based image viewer.
OpenLIME renders an image using a graphic shader, which runs
the rendering algorithm in parallel on every pixel. The WebGL 2
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(a) Lamina (b) Retablo (small) (c) Retablo (big)

Figure 6: Example images of the real-world Cultural Heritage MLICs used for benchmarking. (a): lead sheet found in Cesarea Marittima, Israel. (b), (c):

Panels from the retable of St. Bernardino (1455), Cagliari, Italy.

(a) NeuralRTI (20) (b) Disk-NeuralRTI (20) (c) Ground Truth

Figure 7: Detail of the relighting from a test light direction of the Lamina surface, featuring specular regions and varying depth. (a) The Neural RTI with

layers size 20 and traditional training fails to reproduce the highlights visible in the ground truth image (c). The use of the student network provides an

accurate reproduction of the reflectance with the same layers’ size (b).

technology is exploited, which allows to run the shader on the com-
puter’s graphic card, considerably increasing the rendering speed.
Once the network is trained, the decoder’s parameters are extracted
and loaded in the shader as external variables. The latent space is
a matrix of dimension H ×W ×K, where H ×W is the image res-
olution, and K is the number of latent space features. The matrix
entries are stored as a set of RGB JPEG images, which are loaded
in the shader as samplers. The shader reads the content of each
sampler pixel by pixel. It applies the decoding operations: scalar
product between weights and input vector, sum with the biases, and
application of the activation function.

Despite the use of graphic cards, the number of operations re-
quired by neural rendering is large, and it could be unfeasible to use
it for large images and large viewports on commercially available,
medium-cost computers. For this reason, as shown by Righetto et
al. [RKG∗24], a set of strategies has been adopted to compensate
for a large number of operations, which has a big impact, espe-
cially on high-resolution images. The image is divided into tiles,
and each tile is relighted independently. Thus, only the visible tiles
on the screen must be rendered. Moreover, the resolution of the
screen and that of the relighted image are decoupled. In practice,
when the user changes interactively the light direction or performs
a zoom operation, the application tries to preserve rendering speed
by decreasing the resolution at which the decoding is performed
to match a target value of frame per second (fps), i.e., 20 fps. An

upscaled version of the relighted image is finally displayed on the
screen. When the user stops moving, full resolution rendering is
performed. Fig. 9 (a) shows the effect of this on the web viewer:
the snapshot captured during a zooming operation appears blurred
due to the low resolution used for decoding. Using the DisK-Neural
RTI encoding there is no need for downsampling and the snapshot
captured during a similar zooming (b) appears sharp.

To compare Disk-NeuralRTI (20) decoder performance against
the original NeuralRTI, we deactivated these optimization strate-
gies. The images have not been divided into tiles. We can thus
measure the actual fps reached at full resolution to see how the
two networks perform by relighting the whole image and removing
the resolution decoupling. To measure fps, we computed a series of
relighting operations in sequence, collecting a set of fps values and
calculating its average. The evaluation has been done on a commer-
cially available MacBook Pro laptop of 2019. Its specifications are
processor 1,4 GHz Intel Core i5 quad-core, graphic card Intel Iris
Plus Graphics 645 1536 MB, RAM 8 GB 2133 MHz LPDDR3, op-
erative system macOS Sonoma version 14.3.1 (23D60). The web
browser used is Google Chrome (version 128.0.6613.138).

Tab. 5 shows the average fps measured with this setting on the
three RTI datasets of the novel high-resolution benchmark: Lamina
(4328×2436), Retablo small (3811×2851), Retablo big (4117×
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NeuralRTI
(50)

NeuralRTI
(20)

Disk-NRTI
(20)

PTM HSH 2 ord HSH 3 ord PCA/RBF

Lamina 37,29/0,92 33,00/0,83 36,47/0,94 32,35/0,86 34,36/0,89 34,53/0,88 31,50/0,84
Retablo_small 31,68/0,84 26,84/0,72 31,04/0,82 23,06/0,76 23,83/0,77 24,92/0,77 24,34/0,76
Retablo_big 37,57/0,95 33,37/0,92 38,33/0,95 27,99/0,92 28,65/0,92 29,54/0,92 29,14/0,92
Average 35,52/0,90 31,07/0,82 35,28/0,90 27,8/0,85 28,94/0,86 29,66/0,86 28,32/0,84

Table 4: Average PSNR/SSIM of the methods on the different high-resolution datasets. The quality of the neural relight is far better with the neural model with

respect to classical techniques, and the compression with DisK-NRTI does not affect the quality.

(a) HSH 3rd order (b) Disk-NeuralRTI (20) (c) Ground truth

Figure 8: Relighting of the Retablo big surface with a test light direction not included in the training set. Third order HSH, the best classical method, fails in

representing the correct reflectance behavior (a). The compressed Disk-NRTI result (b) is, instead, quite close to the reference image (c).

(a) NeuralRTI-50 (b) Disk-NeuralRTI (20)

Figure 9: Using the adaptive multiresolution rendering of OpenLime, the

system dynamically adapts the rendered images’ resolution to guarantee

interactivity. (a) Snapshot captured in a zooming interaction with the non-

compressed NeuralRTI visualization of the Lamina surface. The image is

heavily blurred. (b) Snapshot captured in a similar zooming interaction with

the compressed version. Images are always sharp.

Lamina Retablo small Retablo big
(4328×2436) (3811×2851) (4117×3427)

Disk-NRTI (20) 29.68 28.09 22.16
NeuralRTI (50) 1.60 1.42 1.10

Table 5: Average fps values calculated during relighting of the three high-

resolution datasets.

3427). The models are rendered at full resolution on a screen on a
8K screen (no cropping).

To understand how the fps value changes with the image size
in this setting, we performed another test cropping the relightable
image parameters’ arrays in different ways to vary the total number
of pixels to be relighted of one order of magnitude every step, from
a 100×100 image (10 thousand pixels) to a 5000×2000 image (10
million pixels). In this way, we can visualize when the performance
of the two models worsens. Results are summarized in Fig. 10.

Video recordings captured during the interactive relighting of
the three items on the laptop with NeuralRTI(50) and DisKNeu-
ralRTI(20) encoding with and without the adaptive resolution can
be watched on the web page https://tgdulecha.github.
io/Disk-NeuralRTI/.

5. Discussion

NeuralRTI is currently the RTI relighting method that best repro-
duces the real reflectance properties of surfaces, especially high-
frequency ones. However, the relatively complex custom decoder
used by the technique to perform the relighted image rendering may
create an annoying latency for high-resolution images on low-end
devices. Previous work integrating the method in an online viewer
solved the issue by adapting the resolution of the rendered window
to the desired frame rate during the interaction [RKG∗24], at the
cost of an evident detail loss. Using the proposed network compres-
sion approach based on Knowledge Distillation, we strongly re-
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Figure 10: Average fps calculation for varying number of pixels simultane-

ously relighted. On the x-axis is the number of pixels in order of magnitude,

i.e., from 10 thousand to 10 million. On the y-axis, the average fps during

relighting.

duced the decoding time, making it possible to render large images
in real time with interactive performances on standard PCs without
lowering the resolution. Our tests show that the Disk-NeuralRTI
(20) encoding can guarantee smooth interactive relighting with a
higher resolution than the one displayed on 8K UHD screens using
low-end hardware. This makes it practical for professional cultural
heritage and engineering applications.

Our work is the first attempt to apply network compression ap-
proaches to NeuralRTI, and it has given promising results. How-
ever, it is certainly possible to improve it. Our experiments used
the original NeuralRTI model as a teacher network. This archi-
tecture was initially designed with a light decoder architecture to
achieve acceptable interactive relighting. By applying knowledge
distillation from a deeper teacher architecture, it should be possible
to improve the quality of the results further or make the decoding
even more efficient.

Moreover, NeuralRTI, similarly to all other learning-based solu-
tions, requires more time to generate a representation than standard
fitting-based solutions such as PTM or HSH, as it needs to learn an
optimized representation from the presented set of examples. The
addition of student network training and the potential adoption of
more complex teacher networks further increases the cost of gener-
ating the representation for relightable image generation. While this
is not critical for the end-user applications, as training is not per-
formed under time-critical constraints and is generally much faster
than the cost of acquiring, often on-site, a complex model, there is
space for speeding up the solution. In particular, we plan to develop
strategies to speed up the networks’ training by using a smartly se-
lected subset of the original MLIC pixels for the encoding instead
of the complete set.

6. Conclusion

We have shown the potential of using knowledge distillation to
create more efficient Neural Reflectance Transformation Imaging
(RTI) decoders for interactive object exploration in cultural her-
itage applications. While neural representations have shown supe-
rior image quality at comparable storage costs to traditional models
like PTM or HSH, their decoding costs have often hindered their
practical usage for real-time high-resolution exploration of large
models on high-pixel-count displays. In contrast to previous man-

ual attempts to tune network size, our approach leverages a knowl-
edge distillation framework, where a smaller student network is
trained to mimic the output of a larger, more complex teacher net-
work, resulting in a compressed model that retains high-quality re-
lighting capabilities.

The performance of this network compression strategy was
evaluated across various RTI relighting benchmarks, including
both synthetic and real datasets, as well as newly acquired high-
resolution images. Our preliminary experimental results reveal that
the student network achieves predictions that remain close to the
teacher network’s output while significantly reducing the num-
ber of parameters—up to 80%, and, most importantly, achieving
a substantial improvement in computation time. Combined with
previous works on adaptive multiresolution rendering, this reduc-
tion in computational overhead makes high-resolution image ex-
ploration more feasible without compromising the quality of inter-
active relighting. This advancement represents a step forward in
making neural-based relightable image models more practical for
widespread use in cultural heritage applications.
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