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Abstract

We introduce a novel deep neural network for rapid and structurally consistent monocular 360◦ depth estimation in indoor

environments. The network infers a depth map from a single gravity-aligned or gravity-rectified equirectangular image of the

environment, ensuring that the predicted depth aligns with the typical depth distribution and features of cluttered interior

spaces, which are usually enclosed by walls, ceilings, and floors. By leveraging the distinct characteristics of vertical and

horizontal features in man-made indoor environments, we introduce a lean network architecture that employs gravity-aligned

feature flattening and specialized vision transformers that utilize the input’s omnidirectional nature, without segmentation into

patches and positional encoding. To enhance the structural consistency of the predicted depth, we introduce a new loss function

that evaluates the consistency of density maps by projecting points derived from the inferred depth map onto horizontal and

vertical planes. This lightweight architecture has very small computational demands, provides greater structural consistency

than competing methods, and does not require the explicit imposition of strong structural priors.

CCS Concepts

• Computing methodologies → Computer vision; Shape inference; Neural networks;

1. Introduction

The automatic 3D modeling of indoor scenes has gained signifi-

cant research attention in recent years, emerging as a well-defined

sub-field within 3D reconstruction [PMG∗20]. One of the main fo-

cuses concerns specialized techniques for common, highly struc-

tured environments such as residential, office, and public build-

ings, that constitute the majority of the built environment and re-

quire the availability of 3D reality-based models for many pur-

poses [IYF15, PGGS16].

Fast depth estimation from images is a fundamental sub-problem

in this context since associating metric information to visual data

is necessary for 3D reconstruction and scene understanding, and

rapid (real-time) and accurate solutions open the door to many

applications, including mobile extended reality, indoor mapping,

and autonomous navigation. Although traditional methods have

utilized the correlation among multiple views captured simultane-

ously (e.g., stereo) or sequentially over time (e.g., video), the inter-

est in monocular 360◦ depth estimation is growing. A 360◦ image,

that can be quickly captured with widely available and affordable

consumer-level and professional cameras, encompasses the com-

plete scene visible from a specific viewpoint within a 360◦ field

of view at a given instant, offering ample context for monocu-

lar depth inference and scene understanding [YJL∗18]. Moreover,

as a presentation medium, a single panoramic image is not con-

sumed at once, and its exploration is inherently more dynamic

than traditional 2D imagery. Especially when presented through

a Head-Mounted Display (HMD), 360◦ images have become a

key component for creating immersive content directly from real

scenes and for supporting a range of Virtual Reality (VR) appli-

cations [PAAG22], where an associated depth is used to enhance

immersion (e.g, through stereo and motion parallax) [MCE∗17].

Despite the full context provided by 360◦ images, monocu-

lar depth estimation remains very challenging in indoor environ-

ments, even more than in typical outdoor depth-estimation settings,

e.g., as found in autonomous driving contexts [WWH∗22]. Indoor

scenes are typically characterized by narrow spaces filled with ob-

jects, including but not limited to furniture, and bound by archi-

tectural structures, such as walls, floors, and ceilings. As a result,

indoor depth is unevenly distributed between near and far ranges,

e.g., zoom-in views of close-by furniture vs. ceilings, making it

very challenging to predict accurate metric depths. Even though

structure priors characterize the architectural shape that bounds the

scene, it is hard to recognize them, since objects can be cluttered

and arranged arbitrarily in the near field, masking large portions

of a room’s walls and floors. Moreover, the fact that the bounding

structures, such as walls, are often composed of large untextured

regions makes the commonly used photometric losses ambiguous.

To this end, specific 360◦ solutions targeting indoor environ-

ments have been introduced, reaching impressive results, especially

in conjunction with deep-learning approaches capable of learning
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Figure 1: Overview. The network maps a gravity-aligned 360◦ image to its depth. The input image is first transformed by a ResNet block

(light green) into feature maps with different depths and spatial sizes. Through a Gravity-Aligned Features (GAF) encoding block (light

purple), we perform a gravity-aligned anisotropic contractive encoding to obtain latent features, that, once assembled in a single sequence,

are processed by a single-layer multi-head self-attention scheme (light pink) to produce the final set of features whose decoding, through

convolution and upsampling, produces the desired depth map. At training time, we produce density maps that are used for our structural

loss computation (red rectangle) through differentiable rendering. This network’s section is only used for training, and its memory and

computational costs do not count at inference time. Note that the image depth and density maps have been visually enhanced for illustration

purposes.

hidden relations from large sets of curated examples. However,

although such state-of-the-art approaches can predict high-detail

depth maps with good accuracy at the pixel level, the salient fea-

tures of an indoor environment, such as wall planarity and edge

sharpness [PAAG21], as well as the regularity and consistency of

the architectural man-made structures [SRFL21, PAA∗21] are less

well preserved (see Sec. 2). Such consistency becomes of critical

importance when depth is used for room layout reconstruction, ex-

ploited for immersive exploration [WGSJ20, PBAG23, PJVH∗24],

or with other single-view reconstruction for structural segmentation

of complex multi-room environments [CQF22, YKSE23]. More-

over, it is not uncommon, see Sec. 5 to require in the order hundreds

of millions of tunable parameters and over hundreds of GFLOPs to

infer depth from a 512×1024 image. Such high memory and com-

putational costs, make it difficult to use them for large images or

low-latency depth generation [PBAG23].

This paper proposes a lightweight end-to-end deep learning ap-

proach, dubbed DDD, for depth estimation from a single 360◦ im-

age in an equirectangular format. Its design considers the observed

scene’s indoor features to improve depth estimation and facilitate

the recognition of the indoor architectural structure in reconstruc-

tion tasks while ensuring a low computational cost at inference

time, i.e., about half of current state-of-the-art solutions. To de-

sign our network, see Sec. 3 and Fig. 1, we start from the assump-

tion that gravity is a key factor in shaping interior environments.

Thus, world-space vertical and horizontal features have different

characteristics in most, if not all, man-made environments. These
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characteristics are preserved in gravity-aligned or gravity-rectified

images [PAA∗21, SSC21]. To this end, we perform a contractive

encoding to reduce the input equirectangular tensor only along the

vertical direction to obtain a compact and flattened sequence of

slices made of a set of Gravity-Aligned Features (GAFs). To pre-

serve global information, we perform slicing over different resolu-

tion levels, concatenating the result at the end. In addition to op-

timizing the flow of information contained in features, as done in

previous works [PAA∗21,SSC21], this representation allows in our

design subsequent processing directly through a vision transformer,

which takes into account the spherical nature of the input and re-

covers long- and short-term spatial relationships among features.

To optimize the depth map in terms of its consistency when

interpreted as a sampling of a 3D architectural environment, the

network is trained through a novel indoor-specific metric and loss

function on the point cloud resulting from the depth (see Sec. 4).

We do that by computing density maps along preferential horizon-

tal and vertical directions and comparing them with ground truth

ones. These maps, which accumulate the occurrence of 3D points

derived from depths and projected onto the floorplan and on two

planes orthogonal to it, provide good summaries of the character-

istics of indoor environments characterized by vertical walls, and

are currently used for layout reconstruction and segmentation tasks,

and not for depth prediction [CQF22, YKSE23].

Our contributions are summarized as follows:

• We introduce a novel metric and loss function which, starting

from a spherical depth and its point cloud, supervises the train-

ing by minimizing the error on selected density maps of the 3D

points, improving the overall quality of the depth prediction and

simplifying the integration into pipelines for geometric recon-

struction, especially for permanent indoor structures;

• We propose a very lightweight network architecture that moves

most of the computational load related to geometric priors to

the training phase, leading to a particularly fast inference and a

low number of learnable weights. The network design combines

gravity-aligned features obtained by asymmetric convolution of

the input with multi-head self-attention. Our peculiar feature flat-

tening enables the direct use of a vision transformer, without the

need to sequence the input map by arbitrary patches and posi-

tional encoding [SLL∗22].

As a result, the method’s lightweight architecture has a low com-

putational impact and provides greater structural consistency than

other current approaches (see Sec. 5). Such a lean network can be

integrated as a component in multi-stage pipelines, for instance for

multi-room reconstruction (e.g., [YKSE23]) or view translation and

synthesis for immersive applications [PBAG23, PJVH∗24]. Its fast

inference time makes it also ideal for real-time usage.

2. Related work

Depth estimation from monocular input and 3D reconstruction of

indoor environments are fundamental computer vision problems,

which have recently attracted renewed interest with the emergence

of deep learning techniques. A full review is beyond the scope of

this paper, and we refer the reader to established surveys for wider

coverage [PMG∗20, dSPMLJ22]. Here, we focus on the solutions

most closely related to our work.

Depth from perspective images. Data-driven monocular

depth estimation was introduced over a decade ago (e.g.,

Make3D [SSN09]). The emergence of deep learning and the

availability of large-scale 3D datasets have led to significant

performance improvements. After the introduction of CNNs for

regressing dense depth maps from a single image [EPF14, EF15],

Laina et al. [LRB∗16] introduced the now standard FCRN

encoder-decoder architecture, combining ResNet [HZRS16] for

the encoding and an up-projection module for decoding and

the reverse Huber loss [LLZ16] to improve depth estimation.

Following these trends, many solutions have been further intro-

duced, including predicting depth from several cropped images

combined in the Fourier domain [LHKK18], using an ordinal

regression loss to preserve the spatial relation among neighboring

classes [FGW∗18], exploiting Conditional random fields (CRF)

to refine predictions [LCG15, PXZ∗15, CWS18, XWT∗18], and

many more follow-ups. However, directly applying perspective

methods to 360◦ images, does not permit the full exploitation of

their characteristics, and in particular, their global context, leading

to sub-optimal results [ZSTX14, ZKZD18]. As a result, much of

the research on reconstruction of indoors from sparse imagery is

now focused on 360◦-specific solutions.

Depth from a single omnidirectional image. Several solutions

adapted perspective established methods to 360◦ depth prediction

by using projections into a cube map [CCD∗18] or by replacing

regular convolutions with spherical convolutions to cope with dis-

tortions [SG17, TNT18, PdLGAAB18, ZKZD18, SG19]. Wang et

al. [WYS∗20] combined the approaches through a two-branch net-

work, respectively for the equirectangular and the cube map pro-

jection, based on a distortion-aware encoder [ZKZD18] and the

FCRN decoder [LRB∗16]. Several recent methods leverage per-

spective views sampled on panoramic images [LGY∗22,RAYR22]

before combining depth maps using patch-based vision transform-

ers [SZL∗23, ACC∗23]. Another breed of solutions for panoramic

depth estimation in indoor spaces [SSC21, PAA∗21] proposes, in-

stead, to work directly on the equirectangular images produced by

spherical cameras and to leverage the concept of gravity-aligned

features to reduce network size while supporting the exploitation

of short- and long-range relations. In this work, we incorporate

the concept of density maps, as used in reconstruction and seg-

mentation tasks [CQF22, YKSE23], into 360◦ depth prediction

to define a structural loss that enhances the accuracy and con-

sistency of depth predictions with architectural structures in in-

door models. Moreover, we show how to directly use gravity-

aligned features [PAA∗21] to feed a self-attention vision trans-

former, without the need to arbitrarily partition the image into

patches [SZL∗23, ACC∗23]. As a result, we achieve state-of-the-

art performance at a lower inference cost than previous solutions.

3. Network architecture

Our network takes as input a 360◦ gravity-aligned image in

equirectangular format and produces as output its per-pixel depth.

Assuming gravity-alignment allows us to design a particularly ef-

ficient solution, while not limiting the domain of application of
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the method. Gravity-aligned capture is very common, and nearly

all public 3D indoor datasets commonly used for training and

testing reconstruction solutions exhibit minimal orientation devi-

ations. [PAA∗21, SSC21]. This is because maintaining the upright

position for capturing, besides being natural for free-form single-

shot images, is usually enforced by exploiting data from the IMUs

present in most modern capture devices or by mechanical setups

such as tripods. Moreover, even in the few cases where these as-

sumptions are not verified at capture time, many orthogonal and

fast solutions can be applied to gravity-rectify images in a prepro-

cessing step to connect the direct output from the capture device to

our depth estimation network (e.g., [XLF∗19, JLAB19, DAH20]).

Our lightweight network architecture for depth estimation in in-

door environments combines gravity-aligned features obtained by

asymmetric convolution of the input with multi-head self-attention.

The structure of our network is depicted in Fig. 1.

From the input image, a cascade of five residual lay-

ers [HZRS16] returns four feature maps having different depths and

spatial sizes. Given the spherical nature of the image, we also adopt

circular padding along the horizon for convolutions, to overcome

the longitudinal boundary discontinuity, and reflection padding to

alleviate the singularities at the poles [GSZ∗21].

To support an efficient gathering of information from the ex-

tracted features, we perform a specifically indoor-designed fea-

ture compression exploiting our knowledge of preferential direc-

tions, based on the fact that gravity-aligned images preserve the

fact that world-space vertical and horizontal features have different

characteristics in most, if not all, man-made environments [SSC21,

SHSC19, PAA∗21, PAAG21]. For instance, it is fairly natural, if

only for physical reasons, to have horizontal planes both in archi-

tectural (e.g., floors) and impermanent (e.g., tabletops) structures,

as well as vertical ones (e.g., walls and supporting parts of furni-

ture). Exploiting this assumption, we perform an anisotropic con-

tractive encoding that reduces the vertical direction while keep-

ing the horizontal direction unchanged, so that separated vertical

features can be better preserved. Specifically, we reduce the verti-

cal dimension by a factor of 8 through an asymmetric convolution

module with stride (2,1), applied three times, that contains a 2D

convolution and an ELU module. We apply such compression for

each encoded feature map (i.e., four maps), obtaining a set of latent

features Ls = (l1 . . . l4). Compressed features Ls are reshaped to the

same size and joined in a flattened latent feature, as a single se-

quence of s feature vectors of dimension l (i.e., s horizontal size of

the less deep feature map - s = 1024 and l = 256 for a 512×1024

input). Such a compressed representation contains a wealth of in-

formation about the scene’s local and global geometry, which can

be exploited to recover depth and layout and provide a latent repre-

sentation of the scene.

Note that our flattening of gravity-aligned features constructs a

linear sequence that can be used to directly feed a self-attention

vision transformer, without the need to arbitrarily partition the im-

age into patches and use positional encoding [SZL∗23, ACC∗23].

In particular, we adopt a single-layer multi-head self-attention

(MHSA) scheme [VSP∗17] to leverage complementary features

in distant portions of the image rather than only local regions, to

maximize the wide contextual information provided by omnidirec-

tional images while keeping the computational cost low. Our self-

attention module takes the latent features L ∈ R
s×l as input, and

outputs a self-attention weight matrix A ∈ R
s×s:

A = so f tmax

(

(LWq)(LWk)
T

√
l

)

(1)

where Wq,Wk ∈ R
l×l are learnable weights. The MHSA module

has a particularly lightweight design with four heads and only one

inner layer. We have verified experimentally that increasing the

number of layers and heads heavily increases the number of pa-

rameters and computational load without significantly improving

reconstruction accuracy. Once passed to the MHSA module, the

decoding of the latent feature (1×1×s) is very fast, through convo-

lutions, upsampling modules, and ELU activations, until we reach

the target output resolution (1×h×w).

The described network path completes the mapping from input

colors to output depths. While the depths are the desired outcome

of the network at inference time, in our architecture we also pro-

duce density maps along preferential horizontal and vertical di-

rections by differentiable rendering of the depth map (see Fig. 1).

Since these maps are used only at training time, they are described

in Sec. 4. Here, it is important to note that this section of the net-

work is removed at inference time and, thus, the memory and com-

putational costs of density map computation are only relevant for

training.

4. Indoor-specific loss function and training strategy

To train our network, we designed a loss function that is a combina-

tion of a conventional equirectangular loss term (Leq) with a novel,

structure-driven component (Lds), i.e., L= Leq +Lds

The equirectangular loss term Leq penalizes per-pixel deviations

of the inferred depth from the ground truth value. As common for

depth estimation frameworks, we build it on top of the robust Adap-

tive Reverse Huber Loss (BerHu) [LLZ16]:

H(e) =

{

|e| |e| ≤ c
e2+c2

2c |e|> c
(2)

where e is the error term and the parameter c determines where

to switch from L1 to L2. To set the c value adaptively, we follow

the approach originally introduced by Laina et al. [LRB∗16], so

that c is set, in every gradient step, to 20% of the maximal error of

the current batch. When applied to the depth maps, we have e =
Di j −D∗

i j at each pixel (i, j), where D and D∗ are, respectively, the

predicted and the ground-truth depth maps, and, thus:

Leq(D,D
∗) = ∑

i j

H(Di j −D
∗

i j) (3)

Using only this term, however, that measures, per-pixel, dis-

tances from training data, would not take into account the peculiar

features of indoor environments, and especially of the architectural

structures, that we expect made of large fairly regular surfaces with

preferential orientations. For instance, we expect to find mostly hor-

izontal floors and mostly vertical walls, rather than curved/wobbly

surfaces, that can, instead, more commonly be found on objects.

To drive the solutions toward plausible depth reconstructions, we
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Figure 2: Density maps example. We show an example of a view of a scene not aligned with canonical Manhattan axes. In this case, the

projection on the floorplan (bottom right image) represents the shape of the walls, while the horizontal projections (bottom left and center

images) highlight the surfaces perpendicular to the walls, and in particular floor and ceiling. Note, also, how standard heights of several kinds

of furniture are also highlighted.

introduce in this work a structural term, rather than using a regu-

larization term. Using such an approach allows us to learn these

regularities from data, rather than imposing them upfront through

specific penalty functions.

To compute the Lds structural term, we transform D and D∗ into

the equivalent point clouds PD and P∗

D in Cartesian coordinates us-

ing the spherical transformation associated to the equirectangular

projection. We then scale 3D points to the same absolute scale, by

setting a maximum distance from the observer (20 meters in the

examples presented in this work). Assuming the gravity-vertical

direction as the Z axis of our reference system, we produce pre-

dicted and ground truth density maps along preferential horizontal

and vertical directions by differentiable rendering into fixed-size

buffers (512×512 in our experiments). To do that, we render three

density maps, Ox, Oy (i.e., horizontal projections) and Oz (i.e., ver-

tical projection) from depth prediction D and three density maps

Ox∗, Oy∗, Oz∗ from the ground truth depth-point cloud. Since O

represents a map of the occurrences of 3D points falling on the

same pixel, the structural parts of the scenes become more evident.

For instance, the vertical projection Oz highlights the floor plan,

since the many vertically aligned points on walls in ground truth

data identify room boundary locations. For this reason, such a pro-

jection is often used to automatically derive the floor plan of one or

more rooms from a point cloud [CLWF19], but, to the best of our

knowledge, has not been used to define indoor-specific cost func-

tions for depth recovery. At the same time, the horizontal projec-

tions Ox and Oy, independently from the horizontal orientation of

the projection, emphasize the shapes of ceilings and floors aligned

with the projection axes are evident. Fig. 2 shows an example of

a scene aligned only relative to the gravity axis, but with an ar-

bitrary orientation around the axis. In this case, the projection on

the floorplan represents the shape of the walls, while the horizontal

projections highlight the surfaces perpendicular to the walls.

To exploit the information available in our projected density

maps, therefore, we calculate the structural loss term as the sum

of the adaptive Reverse Huber loss of the individual predicted den-

sity map value relative to ground truth for each pixel (k, l) in the

projections:

Lds(Ox,Oy,Oz,Ox
∗
,Oy

∗
,Oz

∗) =∑
kl

H(Oxkl −Ox
∗

kl) +

∑
kl

H(Oykl −Oy
∗

kl) +

∑
kl

H(Ozkl −Oz
∗

kl) (4)

The same parameters used for tuning Equation 2 for depth values

are used for the density maps. In Sec. 5, we show how we achieve
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good performance using only these data terms even without adding

other regularization terms.

Our approach does not require strict alignment of the panorama

and layout to the Manhattan World axes but only needs the more

common gravity alignment (see Sec. 2). This allows us to limit ge-

ometric data augmentation to flips and random rotations around the

Z axis during training.

It is important to note that our geometric augmentation accounts

for the fact that our density maps are mutually orthogonal and

gravity-aligned, but arbitrarily rotated around the gravity vector.

The augmentation through random rotations helps uncover hid-

den relationships that are independent of the view’s alignment with

world-space axes, as done for cubemap representations. In future

work, we plan to explore the use of cylindrical density maps to de-

termine whether their increased continuity relative to angular ori-

entation can enhance robustness and reduce the need for extensive

augmentation.

5. Results

Our approach was implemented using PyTorch and has been tested

on several kinds of indoor scenes. In the following, we first discuss

the specific training dataset used in this work (Sec. 5.1). We then

briefly illustrate the training setup and the computational perfor-

mance, also comparing inference times and costs to other state-of-

the-art solutions (Sec. 5.2). Finally, we discuss the quantitative and

qualitative results on depth reconstruction (Sec. 5.3).

5.1. Training data

In this paper, we exploit the publicly available Shanghaitech-

Kujiale Indoor 360◦ (SKI360) dataset [SK20] for both training and

testing, as it has been generated to develop and evaluate solutions

exploiting geometric cues as priors and regularizers to improve

depth inference [JXZ∗20]. The dataset contains 1,775 panoramic

RGB images of scenes of furnished rooms accompanied by ground

truth depth maps. The images are synthesized from 3D models

with a photorealistic renderer based on path tracing to achieve re-

alistic rendering [JXZ∗20]. This work does not use the additional

data included in the dataset (e.g., unfurnished versions and precise

3D layout). As for most currently available datasets (e.g., Struc-

tured3D [ZZL∗20]), RGB images and depth maps are provided at

the resolution of 512×1024.

5.2. Training setup and computational performance

We trained our network with the Adam optimizer, with β1 = 0.9,

β2 = 0.999 and an adaptive learning rate from 0.0001, on an

NVIDIA RTX A5000 (24GB VRAM) with a batch size of 8. At

the native resolution of 512 × 1024, the average training time is

76 ms/image, while the inference time on the same NVIDIA RTX

A5000 is 18 ms/image.

Tab. 1 presents the computational performance of inference with

our network compared to major state-of-the-art depth estimation

solutions for 360◦ indoor imagery for which performance is re-

ported in the original publication or the code is available for testing.

Method Parameters↓ FLOPs↓
Bifuse [WYS∗20] 253 M 682 G

SliceNet [PAA∗21] 79 M 101 G

Panoformer [SLL∗22] 20 M 78 G

EGFormer [YSL∗23] 15 M 74 G

DDD (our) 23 M 38 G

Table 1: Computational performance of inference. We show

our computational performance compared to other state-of-the-art

works for a 512×1024 image.

As we can see, our approach has, by far, the lowest computational

complexity (FLOPs) of the compared methods (see Sec. 5.3). Its

computational cost, is, in particular, less than half of the currently

fastest method (EGFormer [YSL∗23]). The number of parameters

is also in the ballpark of recent solutions based on vision transforms

(Panoformer [SLL∗22] and EGFormer [YSL∗23]) and much less

than prior solutions (SliceNet [PAA∗21] and Bifuse [WYS∗20]).

Our method’s reduced cost and footprint make it possible to scale

our solution to much larger image sizes than competitors when suit-

able higher-resolution training data will be available.

5.3. Quantitative and qualitative evaluation of results

This work provides a preliminary evaluation of the method, focus-

ing on the benefits of taking into consideration geometric consis-

tency. For this purpose, we compare our results with those obtained

by two representative state-of-the-art solutions. SliceNet [PAA∗21]

introduced the concept of gravity-aligned features for indoor depth

estimation but, similarly to most other depth estimation networks,

does not use specific structural consistency terms. The framework

introduced by Jin et al. [JXZ∗20], instead, is a representative state-

of-the-art pipeline that jointly predicts per-pixel depth and layout,

i.e., the structural shape of the room represented by a collection

of corners, boundaries, and planes. The correlation between depth

and layout provides a strong form of structural consistency that

is exploited for geometric structure-based and regularized depth

extraction. For SliceNet, we have retrained the network and run

the benchmarks using the same settings as our solution, using the

publicly available source code [PAA∗21]. Both SliceNet and our

method use the original split, with 1500 scenes selected for train-

ing and 275 for testing. For Jin et al. [JXZ∗20], we compare instead

with the reported official results on depth estimation performance

for the same dataset. Note that, due to the high cost of their network,

their results are reported for downscaled 256×512 resolution, and,

thus, their performance may be slightly overestimated due to the

reduced amount of details present in the half-resolution images.

Tab. 2 summarizes the depth estimation performance. The first

two rows report the results obtained with the network of Jin et

al. [JXZ∗20] without ("no SC") and with ("with SC") the inclusion

of structural consistency through geometric priors and regularizers.

The third row reports the results obtained by SliceNet [PAA∗21],

which uses GAFs but no structural consistency terms. Finally, the

last two rows report the results obtained with our method (DDD)

without ("no DL") and with ("DL") the loss term exploiting density

maps. For this quantitative evaluation, we adopt the most common

© 2024 The Authors.

Proceedings published by Eurographics - The European Association for Computer Graphics.



G. Pintore, M. Agus, A. Signoroni, and E. Gobbetti / DDD 7 of 10

(a) RGB input (b) Ground truth depth (c) Our predicted depth (d) Ground truth point

cloud

(e) Our predicted point

cloud

Figure 3: Qualitative results. Selected examples of our predictions compared to ground truth. We show reconstructions and ground-truth

models as depth maps and as canonical views of the associated point clouds. Performance measures for the entire test dataset are summarized

in Tab. 2.

metrics used for indoor depth estimation [EPF14], i.e., mean rel-

ative error (MRE) and root mean square error of linear measures

(RMSE) and three relative accuracy measures δ1, δ2 and δ3, de-

fined, for an accuracy δn, as the fraction of pixels where the relative

error is within a threshold of 1.25n.

The results demonstrate how including structural consistency

terms strongly benefits depth estimation since both Jin et

al. [JXZ∗20] and DDD improve the most important metrics when

including structural consistency, independently from the differ-

ent paths taken. Moreover, our method, when including the struc-

tural consistency terms, achieves state-of-the-art performance de-

spite the much lower computational burden compared to the other

baselines. Fig. 3 shows our reconstruction results compared to the

ground truth depth map and point cloud.

Notably, the data-driven structural consistency provided by our

loss term on density maps can enhance depth accuracy, even in

comparison with solutions like SliceNet [PAA∗21], which fo-

cuses on optimizing per-pixel accuracy in depth maps. We believe

this improvement arises because optimizing errors on our gravity-

aligned density maps allows our method to leverage the medium-

and large-scale regularities found in typical indoor structures more

effectively. It is interesting to note that SliceNet is very competitive

in terms of average error measures (MRE and MSE), surpassing the

performance of the other solutions without the structural consis-

tency term included. Moreover, it even surpasses the performance

of Jin et al. [JXZ∗20]’s solution with structural consistency en-

abled. However, δ1 remains lower; thus, the number of pixels with

a relative error larger than 25% is higher. This shows that SliceNet

mostly improves because of the better preservation of details. Our

method with the density-map-based loss, instead, achieves maxi-

mum performance on all measures.

Fig. 4 provides a qualitative comparison of the reconstructions

obtained by our method to both ground truth and the SliceNet ap-

proach [PAA∗21]. We specifically illustrate a few scenes where

structural parts are more evident. The benefit of our method appears

not only in the enhanced accuracy of depth prediction but also in

its improved ability to delineate a room’s bounding structure. We

© 2024 The Authors.
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(a) RGB input (b) Ground truth depth (c) Our predicted depth (d) SliceNet predicted

depth

(e) Ground truth

point cloud

(f) Our point

cloud

(g) SliceNet

point cloud

Figure 4: Qualitative comparison with a pure indoor depth estimation method. We illustrate our qualitative performance compared to a

state-of-the-art solution for indoor depth estimation that only optimizes per-pixel depth measures (SliceNet [PAA∗21]). We show reconstruc-

tions and ground-truth models as depth maps and as canonical views of the associated point clouds. Performance measures for the entire test

dataset are summarized in Tab. 2.

Method MRE↓ RMSE↓ δ1 ↑ δ2 ↑ δ3 ↑
Jin [JXZ∗20] no SC 0.114 0.721 0.894 0.973 0.989

Jin [JXZ∗20] with SC 0.103 0.666 0.910 0.978 0.990

SliceNet [PAA∗21] 0.102 0.273 0.904 0.977 0.989

DDD - no DL 0.075 0.278 0.907 0.977 0.989

DDD - with DL 0.063 0.254 0.919 0.979 0.991

Table 2: Depth estimation performance and comparisons. We

show our quantitative performance compared to other representa-

tive state-of-the-art works. The first two rows report the results ob-

tained with the network of Jin et al. [JXZ∗20] without (no SC) and

with (with SC) the inclusion of geometric priors and regularizers.

The third row reports the results obtained by SliceNet [PAA∗21],

which uses GAFs but no structural consistency terms. Finally, the

last two rows report the results obtained with our method (DDD)

without (no DL) and with (DL) the loss term exploiting density

maps.

expect that this feature will make it suitable for integration into

pipelines that aim to extract the 3D layout.

The results in Tab. 2 show also that our method also provides in-

creased performance when compared to a reference method that

enforces a stronger architectural layout structure, such as Jin et

al. [JXZ∗20], which focuses on polyhedral rooms and was specif-

ically designed using the dataset employed in this paper. Although

further analysis is required to draw definitive conclusions, we hy-

pothesize that for pure depth estimation, relying solely on density

map similarities – rather than using corners, boundaries, and planes

as priors and regularizers – makes our approach more robust to vari-

ations in the actual layout compared to the imposed prior model.

Moreover, our depth inference solution is much leaner, since the

complexity of generating and evaluating density maps is relevant

only to the training phase.

6. Conclusions

Our work has introduced a novel deep neural network designed

for fast and structurally consistent monocular 360◦ depth estima-

tion in indoor environments. This network infers a depth map from

a single gravity-aligned or gravity-rectified equirectangular image,

ensuring that the predicted depth matches the typical depth distri-

bution and features of cluttered interior spaces. This is achieved by

a network architecture that leverages the unique characteristics of

vertical and horizontal features present in man-made interior en-

vironments through gravity-aligned feature flattening feeding spe-

cialized vision transformers. To improve structural consistency, we

introduced a novel purely data-driven loss function that measures

the difference between the density maps constructed by projecting

predicted depth values onto horizontal and vertical planes and those

built from training data.

Our initial experiments show that this approach achieves very

good depth estimation results while maintaining a lightweight ar-

chitecture with the low computational demands required by real-

time usage in applications such as extended reality exploration

© 2024 The Authors.
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and autonomous navigation. The solution offers greater structural

consistency compared to existing methods that focus on optimiz-

ing pixel-wise depth estimation accuracy. Moreover, consistency

is achieved by learning hidden relations from example sets, rather

than implicitly or explicitly forcing the alignment with strict planar

layouts.

For this study, we limited our loss function to the simplest possi-

ble form (i.e., using only one term for depth difference evaluation

in addition to our novel loss terms). To further improve the depth

estimation performance, particularly concerning fine-scale detail

and non-structural objects, we plan to include other standard terms

working at the small scale (e.g., ob gradients, normals, curvatures).

We plan to evaluate the method against state-of-the-art methods on

a larger variety of datasets.

We also plan to improve our approach further. First of all, we

are experimenting with replacing the projection on two orthogonal

planes for the horizontal density map computation with a cylin-

drical projection, with the expectation that this will reduce aug-

mentation costs and increase robustness in the presence of arbi-

trarily aligned (i.e., non-Manhattan) layouts. We will, in addition,

also exploit our method as a building block inside a full processing

pipeline. The two use cases that we are targeting are the extrac-

tion of multi-room 3D models from very sparse sampling (e.g., one

image per room) and the generation of depth to support the syn-

thesis and exploration of stereoscopic environments from a single

surround-view panoramic image in extended reality settings.
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