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A B S T R A C T

We introduce an innovative approach to automatically generate and explore immersive
stereoscopic indoor environments derived from a single monoscopic panoramic image
in an equirectangular format. Once per 360◦ shot, we estimate the per-pixel depth
using a gated deep network architecture. Subsequently, we synthesize a collection of
panoramic slices through reprojection and view-synthesis employing deep learning.
These slices are distributed around the central viewpoint, with each slice’s projection
center placed on the circular path covered by the eyes during a head rotation. Furthermore,
each slice encompasses an angular extent sufficient to accommodate the potential gaze
directions of both the left and right eye and to provide context for reconstruction. For
fast display, a stereoscopic multiple-center-of-projection stereo pair in equirectangular
format is composed by suitably blending the precomputed slices. At run-time, the pair
is loaded in a lightweight WebXR viewer that responds to head rotations, offering both
motion and stereo cues. The approach combines and extends state-of-the-art data-driven
techniques, incorporating several innovations. Notably, a gated architecture is introduced
for panoramic monocular depth estimation. Leveraging the predicted depth, the same
gated architecture is then applied to the re-projection of visible pixels, facilitating the
inpainting of occluded and disoccluded regions by incorporating a mixed Generative
Adversarial Network (GAN). The resulting system works on a variety of available VR
headsets and can serve as a base component for immersive applications. We demonstrate
our technology on several indoor scenes from publicly available data.
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1. Introduction

Spherical cameras, also known as 360◦, panoramic, or omnidi-
rectional, or surround-view cameras, provide cost-effective and
efficient solutions for rapidly capturing in a single shot the full
context around the viewer of an entire environment [1]. A single
panoramic image encompasses the complete scene visible from
a specific viewpoint within a 360◦ field of view at a given instant.
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http://www.elsevier.com/locate/cag


2 Preprint copy /Computers & Graphics (2024)

Fig. 1: Overview. Taking as input a single panoramic image, a data-driven architecture synthesizes a comprehensive coverage of the scene’s portion visible to both
eyes during head rotation, encoding the views in the form of panoramic slices. The slices are then combined into an omnidirectional stereo representation composed
of two multiple-center-of-projection (MCOP) images, tuned for the left and right eye. A lightweight WebXR viewer presents the suitable portions of these images on
an HMD, responding to rotational head motions and delivering both stereo and motion parallax.

When experienced through a Head-Mounted Display (HMD),
users dynamically explore this image by directing their atten-
tion to the desired content through head movements, leading to
Virtual/Augmented/Extended Reality (VR/AR/XR) experiences
with a natural interface and good degree of immersion [2].

For these reasons, omnidirectional imagery is increasingly
recognized as a foundational element for generating immersive
content from real-world scenes and for supporting a variety
of VR/AR/XR applications [3]. Notably, 360◦ virtual tours
have gained widespread popularity in the real estate sector [4].
Furthermore, omnidirectional images are easily shareable across
various devices and platforms, making them highly versatile
and accessible. Since they can be seamlessly integrated into
websites, VR/AR/XR applications, or mobile platforms, they
enable a broad audience to engage with indoor environments
irrespective of their location or their available equipment [1].
Serving as representations of the user’s surroundings, panoramic
images also promise to be one of the essential building blocks
for the construction of the shared physical and digital realities
envisioned by the Metaverse concept [5].

Even though capturing a single shot panorama is a very ap-
pealing way to create a virtual clone of a real environment, the
limitation of presented content to what was visible around the
fixed location from which the panorama was taken leads to the
loss of binocular stereo, which is very important to provide a
sense of presence [6]. The fact that panoramas appear flat is
a particularly strong limitation in indoor environments, given
the relatively short distance from the viewer to the architec-
tural surfaces and the objects. To provide stereo cues for full
360-degree rotations, views from a continuous set of shifted
viewpoints must be available to the renderer. Omnidirectional
stereo techniques [7, 8] are employed for that purpose but require
the creation of stereo panoramas using cameras moving on a
circular path [9, 8, 7] or multiple synchronized 360 cameras [3].
These acquisition approaches, however, reduce the possibility
of quickly capturing, experiencing, and sharing a 360◦ scene
using consumer hardware. In particular, while several low-cost
cameras are widely available for monocular 360◦ capture (e.g.,
GoPro, Ricoh Theta, LadyBug, or Insta360), also due to the
booming ”action-camera” market, stereo 360◦ solutions (e.g.,

Vuze+) are more costly and limited, and also typically offer only
a low number (i.e., six to eight) of different point of views, lead-
ing to stereo and stitching artifacts. Moreover, while rotating
camera solutions provide more viewpoints, they do not share
the same simplicity and flexibility of single-shot instantaneous
capture. For this reason, research has concentrated on view syn-
thesis methods that generate stereo contents from a single 360◦

panorama. However, current methods either require complicated
representations or are too heavy to run directly on HMDs and
interactive rates (Sec. 2).

To overcome these limitations, we propose in this paper a
novel approach for quickly and automatically generating and
experiencing an omnidirectional stereo representation of an in-
door environment starting from a single monoscopic panoramic
image in an equirectangular format. In our approach, summa-
rized in Fig. 1 and Sec. 3, we start by estimating full-frame
per-pixel depth using a gated deep network designed to exploit
interior environment constraints and trained on large sets of
synthetic examples (Sec. 4). Then, we synthesize panoramic
slices through reprojection and view-synthesis using a deep net-
work that shares the same design features and training set of the
depth estimation one (Sec. 5). These slices are placed around
the central viewpoint, on the circle formed by the two eyes dur-
ing head rotations, and cover an angular portion sufficient to
accommodate the potential gaze directions of both the left and
right eye. A stereoscopic multiple-center-of-projection stereo
pair in equirectangular format is then composed by suitably
blending the precomputed slices. The resulting pair is loaded
into a WebXR viewer for a lightweight, responsive experience
with both motion and stereo cues during runtime (Sec. 6). In
this approach, based on approximating a full stereo experience
through an omnidirectional stereo pair (see Sec. 2), the run-time
costs are minimized, both in terms of storage and bandwidth
and in terms of rendering performance, at the cost of a slight
degradation of stereo reconstruction in the peripheral vision (see
Sec. 6).

Our main contributions are the following:

• we introduce a novel end-to-end deep network architecture
that generates shifted views of an indoor panoramic image
in equirectangular format; a first network module estimates
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a depth map from a single panoramic input; then, these
views are reprojected to the desired position, and a full
image is synthesized through a second network capable
to generate plausible content in disoccluded areas. Unlike
other state-of-the-art approaches in the literature [10, 11],
the network is based on a lightweight gated architecture
and a dilated bottleneck; as a result, we ensure scalability to
larger image sizes and/or embedded hardware, while main-
taining maximum visual detail when re-projecting onto new
views;

• we introduce a unified network architecture with custom
training strategies for both depth estimation and view syn-
thesis. The same lightweight network is exploited for both
tasks, just adapting the final activation function and chang-
ing the training mode. To this end, we introduce a specific
photometric loss for novel view synthesis, combined with
a GAN approach. As a result, photorealistic novel views
are generated with a low computational cost. We moreover
use super-resolution GAN-based architectures to increase
further the resolution between the stereo images [12].

• we exploit our depth estimation, reprojection, and synthesis
approach to generate a set of panoramic slices and use them
to compute an omnidirectional stereo image pair that can
be directly experienced on WebXR viewers that sample
them to generate stereo couples that respond to head mo-
tion with low-latency and high frequency. The limitation to
panoramic slices greatly simplifies off-line computational
costs in comparison with previous solutions [13], and the
direct exploitation of standard omnidirectional stereo for-
mats fosters the applicability of the method to a variety of
hardware and software platforms.

This article is an invited extended version of our ACM Web3D
2023 contribution [13]. In addition to providing a much more
thorough exposition, we introduce very significant new material,
in particular concerning a full redesign of the view sampling
aspects, the exploitation of panoramic slices for the construction
of a much more effective view synthesis network, and the off-
line computation of omnidirectional stereo panorama in place of
the run-time blending of few stereo couples.

Our evaluation (Sec. 7) illustrates how depth inference and
inpainting networks achieve state-of-the-art performance and
how they can be exploited to produce seamless omnidirectional
stereo images at a high angular sampling rate. Since the proposed
framework is easy to integrate into current panoramic viewers,
just replacing the current monoscopic renderers, it promises to
be a practical building block for delivering engaging and realistic
experiences that captivate audiences and enable them to virtually
explore and interact with indoor spaces in current and future
Metaverse applications.

2. Related work

Our research focuses on creating immersive content using
as sole input a single monoscopic panoramic image captured
within an interior setting. The presentation of an image with

stereo-parallax effects requires synthesizing different views for
the left and the right eye. These views should respond to user
motion by taking into account that the visibility of scene el-
ements may change even for small shifts of the eye position.
This requires not only implicit or explicit geometry estimation
to take into account depth-dependent stereo parallax but also
the handling of occlusions and disocclusions. In the subsequent
discussion, we provide a concise overview of only the most
closely-related works. We direct the reader to recent surveys on
indoor reconstruction [14], scene understanding from panoramic
imaging [15], as well as extraction of 3D geometry from 360◦

imagery [16] for a more comprehensive coverage of the subject
matter.

Depth estimation from a single panorama. State-of-the-art
monocular depth estimation solutions involve the adoption of
data-driven approaches that extrapolate implicit relationships
from extensive labeled datasets, incorporating priors tailored
to specific applications, particularly within interior environ-
ments [14]. Prior studies have demonstrated that the direct
application of perspective methods to 360◦ depth estimation
in indoor settings yields suboptimal outcomes [17]. For this
reason, ongoing research directly exploits the wide geometric
context inherent in omnidirectional images while addressing
wraparounds and distortions characteristic of equirectangular
projections [18, 19, 20, 17, 21, 11, 22, 23]. Following this trend,
our work introduces a streamlined and lightweight pipeline di-
rectly working on an equirectangular image, introducing an
architecture that we also exploit for the view synthesis network.

Novel view synthesis. A panoramic image with an accompa-
nying depth map can be utilized for view synthesis using di-
verse approaches, such as directly rendering point clouds [24],
generating and rendering view-independent meshes from depth
maps [25, 26], or integrating and blending depth maps or gener-
ated meshes with multiple images or signals [9, 27]. Recently,
end-to-end view synthesis networks have been proposed to gen-
erate shifted panoramic views at run time [28, 29]. While these
networks excel at inferring immersive views within a limited
volume around the viewer (e.g., 50cm), their computational de-
mands preclude direct execution on embedded platforms. Con-
sequently, Head-Mounted Displays (HMDs) are exclusively sup-
ported via remote rendering [29]. For stereo generation, Pintore
et al. [13], proposed, instead, to generate a set of stereo pairs off-
line and to perform rendering on the HMD starting from these
inferred views through a simple interpolation method. Since
per-frame generation is confined to stereo pairs, the complexity
of view synthesis networks is significantly reduced compared
to more general previous solutions for free-viewpoint synthe-
sis [28, 29]. In this work, we further streamline the method
by generating off-line a set of panoramic slices optimized for
subsequent blending into an omnidirectional stereo panorama.
As a result, we further reduce both the off-line computation and
the on-line rendering costs.

View interpolation. The generation of novel views by inter-
polating images taken at nearby viewpoints has been widely
researched, with effective solutions being proposed, even in the
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Fig. 2: Viewing geometry. (a): we consider that the two eyes are positioned along a circle whose center is at the center of rotation of the head and their central gaze
direction is aligned with the head rotation; their position is uniquely determined by the head radius r, the inter-pupillary distance IPD, and by the angular position of
the head θ. (b): during head rotation, at a given position, there is an angular slice of size ω that contains both the right and the left gaze direction; the slice’s angular
size can be solely determined by r and the IPD. (c): to cover all potential gaze positions and directions, we compute all angular slices placed at closely spaced
positions on the circle.

absence of a prior depth estimation step [30, 31]. However,
end-to-end networks tackling this task face similar computa-
tional constraints as depth estimation, limiting their applica-
bility to interactive-rate frame generation on Head-Mounted
Displays (HMDs). An emerging approach for rapid novel view-
point synthesis involves employing layered depth representa-
tions, associating each pixel with multiple depth values [32].
This methodology has been effectively expanded to operate with
single panoramic images [33, 34], as well as to create light
field videos through layered mesh representations [35]. For per-
spective views, multi-plane panoramas (MPI) have also been
proposed as an output representation produced with convolu-
tional neural networks [36, 37]. However, MPIs are limited to
viewpoints that are close to the origin and degrade when the
viewpoint moves further. To address this limitation, adaptive
sampling schemes have been proposed [38]. The concept of cap-
turing the scene at multiple fixed depths has been extended for
panoramic imaging by considering different capturing proxies
like multi-spherical images (MSI) [39] or multi-cylinder images
(MCI) [6]. In contrast, our proposed framework synthesizes a
discrete set of panoramic slices that cover the circular trajectory
made by both eyes during head rotations and are oriented to-
wards the main view directions. These images are subsequently
blended to form an omnidirectional stereo pair comprised of
two multiple-center-of-projection (MCOP) equirectangular im-
ages. Compared to the current state-of-the-art, our approach
offers the advantage of being lightweight, both in terms of cost
of inferring novel views, since they are constrained to small
angular portions of the sphere, and for immersive exploration
through WebXR viewers, since rendering has about the same
cost of monoscopic viewing. Moreover, the solution is compati-
ble with methods employed for conventional stereo panoramas
captured with moving rigs [40]. It should be noted that our view
synthesis machinery would also be compatible with a run-time
presentation of slices sampled by taking into account per-frame
precise per-pixel view directions across the entire field of view.
For general head displacements, Pintore et al. [29], for instance,

proposed to generate novel panoramas on demand on a server in
response to head motion changes. The solution, however, can
only update panoramas at around 10Hz and with a latency of
about 0.1s. Despite our faster networks, the expected speed-up is
less than a factor of two, and, in any case, we would still require
a high-speed connection to a fast rendering server. Since we only
need to respond to rotation, an alternative solution would be to
upload the entire set of slices to cover all possible eye directions.
Using the same sampling rate employed in this paper would
require, however, the uploading of 360 images, increasing band-
width and storage requirements by over two orders of magnitude.
However, using a lower sampling rate would increase ghosting
artifacts [13] when employing simple blending or would require
more complex precomputations and blending operations [41].

Omnidirectional stereo display. While 360◦ surround-view
panoramas are limited to only the three rotational degrees of
freedom, with the location being fixed, stereo presentation on
HMDs requires different images for the left and right eyes to
provide the stereo depth cue. Omnidirectional stereo projection,
used in this work, is a multiperspective technique [42] based
on circular projection stereo [7] that aims to combine in a sin-
gle representation all the information required for stereo. For
viewing, each vertical column of an equirectangular image has
a different center of projection, corresponding to the position
of the eye viewing it. By generating an image for the left eye
and another one for the right eye, stereo is achieved. However,
when viewing such an image in VR, stereo is only correct at the
center of the image and degrades for peripheral vision. For this
reason, recent work has concentrated on generating images that
dynamically adapt to the user’s gaze, in particular through the
view-dependent rendering of depth images [43]. Our solution
could also be adapted to those methods, given our capability to
infer good depth maps. However, using plain omnidirectional
stereo-pairs remains an appealing approach for indoor environ-
ments viewed on HMDs, since degradation mostly appears at
the poles of the equirectangular image, which generally do not
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contain suitable content due to typical indoor environment shape
and capture constraints, and in the peripheral vision, that also
incurs in degradation due to foveation [44].

3. Method overview

Our method automatically and rapidly converts a single mono-
scopic panoramic image in equirectangular format into an omni-
directional stereo panorama, also in equirectangular format, that
can be rapidly explored with stereo and motion parallax on an
HMD.

As depicted in Fig. 2a, we consider that during exploration,
the two eyes will be on a circular trajectory centered at the
head’s rotation center. Thus, their specific positions are defined
by the head radius (r), the inter-pupillary distance (IPD), and
the angular position of the head (θ). Without loss of generality,
the central gaze direction of both eyes is considered in this paper
aligned with the head rotation, even though the method can be
easily adapted to other gaze directions (see Sec. 6).

Given this geometric configuration, during head rotation, any
given position on the circle may thus become the center of
projection for the left or the right eye. Thus, see Fig. 2b, from
this point of view, there is a constant angular slice of size ω that
is guaranteed to contain both the right and the left gaze direction.
The angular size of such a slice can be solely determined by r
and the IPD (see Sec. 6). As shown in Fig. 2c, it is thus sufficient
to compute all angular slices placed at closely spaced positions
on the circle.

We exploit this geometric configuration to define an efficient
approach to synthesize all these views and combine them into
an omnidirectional stereo panorama.

The first step of our method is to estimate the per-pixel depth
of the input panoramic image that we assume is placed at the
head center. This depth is computed in a single step by a
gated deep network designed to exploit interior environment
constraints and trained on large sets of synthetic examples, as
detailed in Sec. 4.

Given this depth and the original color, we synthesize each of
the required shifted panoramic slices. For each of these slices,
we start by reprojecting the original image into the required
slice, defining a bounded vertical section of a panoramic image
in an equirectangular format, using as a center of projection the
relevant eye position. View-synthesis is performed using a deep
network that shares the same design features and training set of
the depth estimation one, as detailed in Sec. 5.

Finally, an omnidirectional stereoscopic image pair in
equirectangular format is composed by suitably blending the
precomputed slices and used for display in a lightweight We-
bXR viewer, producing images suitable for HMD consumption.
(Sec. 6).

In the following, details are provided for each of the individual
components.

4. Single panorama depth estimation

Augmenting a single image with depth is essential to establish
the 3D position of visible points in space to compute their novel
position when the viewpoint changes.

Fig. 3: Panoramic depth estimation. Legend: in,out channels; k convolution
kernel; s stride; u upsample; d dilation. A gated architecture is used to predict
depth from a single panoramic image. The network exploits gated-dilated
convolutions for encoding and gated convolutions for decoding. It should be
noted how this approach preserves details on the closest objects.

Many techniques have been documented in the literature to es-
timate depth from a single panoramic image (Sec. 2). Given the
inherent ambiguity in depth estimation from single images, all
approaches necessitate leveraging prior information to steer the
reconstruction towards plausible architectural forms that align
with the input. Notably, there has been a remarkable advance-
ment in data-driven methods within this context, wherein these
methods acquire knowledge of such priors from large collec-
tions of labeled exemplar data [11, 22]. Following this research
trend, we designed a network for depth prediction that was an
efficient compromise between accuracy and computational cost,
and with an architecture that can be reused for the view synthe-
sis part (Sec. 5). Using a lean and scalable network design is
also important to support, in the future, larger and larger image
sizesand to provide a low latency from the acquisition time to
the presentation time, especially when using low-end machines.
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To predict depth Ds from the source image Is, we designed
a gated architecture, illustrated in Fig. 3. The encoder-decoder
scheme follows the same design adopted for view-synthesis (see
Sec. 5), but with several differences to adapt it to the specific
task of spherical depth estimation.

In particular, here, gating acts as a self-attention weight mask,
differently from inpainting, where, instead, the mask is given as
input to indicate the pixels to be inpainted (Sec. 5). Moreover,
given the spherical nature of the input, we adopt circular padding
along the horizon for convolutions, thus removing longitudinal
boundary discontinuity and reflection padding to alleviate the
singularities at the poles [45]. Furthermore, considering that our
output will be a single channel, we use 32 internal channels in-
stead of the default 64 channels in standard inpainting networks.
Finally, since we produce depth, the last layer activation function
is an ELU, instead of tanh.

The input equirectangular image, which is encoded through
a sequence of light-weight gated convolutions having different
strides (i.e., gated blocks in Fig. 3), so that the original size
is reduced by a factor of four in each direction. Each encod-
ing convolution is followed by instance normalization [46] and
ReLU activation. Generally, compared to view-synthesis base-
lines [47, 48], our design has fewer parameters, with a lighter
single branch, and it includes several solutions, described below,
to improve accuracy for the depth estimation task and reduce
computational complexity.

The adopted gated convolution (GC) approach [49] is ex-
pressed as:

G = conv(Wg, I)
F = conv(W f , I)
O = σ(G)

⊙
ψ(F)

(1)

where σ is the Sigmoid function, which outputs values in the
range [0, 1], ψ is an activation function (ReLU in our case),
and Wg and W f are two different sets of convolutional filters,
which are used to compute the gates and features respectively.
GC enables the network to learn a dynamic feature selection
mechanism. In order to simplify training and guarantee low
latency at inference time, our network uses a modified version
of GC called Light Weight Gated Convolutions (LWGC), which
reduces the number of parameters and processing time while
maintaining the effectiveness [50]. Specifically, we decompose
G from Equation 1 into a depth-wise convolution [50] (i.e.,
3 × 3) followed by a 1 × 1 convolution, having, as a result,
the same gating step but with only kh × kw ×Cin +Cin ×Cout

parameters. Repeated dilations [51] are used for the bottleneck
(see d = 2, 4, 8, 16 in Fig. 3), thus increasing the area that each
layer can use as input. It should be noted that this is done
without increasing the number of learnable weights but obtained
by spreading the convolution kernel across the input map. The
dilated convolution operator is then implemented as a gated
convolution (i.e., Equation 1), but with some differences. It is
expressed as:

Dy,x = σ(b +
k′h∑

i=−k′h

k′w∑
j=−k′w

Wk′h+i,k′w+ j · Iy+ηi,x+η j) (2)

where η is a dilation factor, σ()̇ is a component-wise non-linear

transfer function and b ∈ RCout is the layer bias vector. With
η = 1, the equation becomes the standard convolution operation.
In our model, we adopt, respectively, η = 2, 4, 8, 16 for the four
bottleneck layers. Using this strategy, we aggregate multi-scale
contextual information without losing resolution, thus capturing
the global context efficiently by expanding the receptive field,
avoiding additional parameters, and preventing information loss.
This is important for both depth estimation and the image com-
pletion task (Sec. 5), as capturing sufficient context is critical for
realism. By using dilated convolutions at lower resolutions, the
model can effectively cover a larger area of the input image when
computing each output pixel than with standard convolutional
layers [47].

The network decoder (the four blue layers in Fig. 3), based
on gated convolutions without dilation, restores the resolution
of the output to the original input resolution.

The effectiveness of such a versatile baseline also depends
on its training. In our approach, we adopt as a loss function
for the depth prediction task the robust Adaptive Reverse Huber
Loss (BerHu) [52], combined with a Structural Similarity Index
Measure (SSIM), which measures the preservation of highly
structured signals with strong neighborhood dependencies. As
a result, such a panoramic depth prediction approach returns
accurate depth maps for the input pose, as demonstrated by our
results (Sec. 7).

Fig. 4: Panoramic slice One of the slices produced by the network, placed at its
position within the equirectangular image. The red line shows the area sampled
by the right eye, while the green line shows the area sampled by the left eye
(see Fig. 2b). In the background, we see the original panorama from the central
viewpoint (note the large shift due to parallax effects).

5. Synthesis of novel views

Taking as input the original panoramic image and the regis-
tered panoramic depth map estimated by our deep network, this
task aims to synthesize a collection of panoramic slices through
re-projection and view synthesis. These slices are distributed
around the central viewpoint, with each slice’s projection center
placed on the circular path covered by each eye during a head
rotation. Furthermore, each slice encompasses an angular extent
sufficient to accommodate the potential gaze directions of both
the left and right eye (Sec. 6).

To this end, given a full angular extent of 180 degrees along
the vertical direction and a limited viewpointω along the horizon,
we generate novel spherical images in viewports S θ,ω (i.e., slices)
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Fig. 5: Novel view synthesis. Given the source image Is and its predicted depth Ds, a new, sliced viewport Ĩt,θ is rendered from a new viewpoint translated by Tθ,r ,
according to a given direction θ and an offset r. The field-of-view ω, designed to cover both eyes’ viewport (Sec. 6), is assumed constant. To generate an It,θ slice, we
exploit the gated architecture already exploited for depth but adapted to have greater accuracy on the 3 RGB channels of the spherical section S . Legend: in,out
channels; k convolution kernel; s stride; u upsample; d dilation.

along the circular path, by translating the original, central view
Is by an offset Tθ,r for each direction θ and distance r from
the input view. For a typical human-size configuration, with
a head radius of 100mm and an IPD of 65mm, we can safely
assume 45 degrees as a portion of the image covering both
eyes, which would correspond to 128 pixels for a 1024 × 512
equirectangular image. We further expand this region by ±5
degrees to provide context for reconstructing missing areas and
to support eye convergence at a finite distance. For a 1024× 512
image (corresponding to a 512 × 1024 tensor), each slice in our
experiments is assumed to be 160 pixels wide, while the overall
angle ω is about 56 degrees. An example of a slice produced by
the network is depicted in Fig. 4.

The View-synthesis pipeline is depicted in Fig. 5 and includes
two steps. The first is a view-dependent rendering step, which
exploits the predicted depth Ds and translation Tθ,r to move
pixel information to the new position. Tθ is given by polar
coordinates, which depend on the head radius r (i.e., assuming
in our experiment an average radius of 100mm) and by the angle
θ, while Ĩt,θ is the portion of translated pixels viewed from the
viewport S θ,ω. The second step consists in a view-synthesis deep
network, which takes as input the translated pixels Ĩt,θ and their
disocclusion mask Bt (i.e, black pixels in Fig. 5), returning as
output the novel viewport It,θ. Fig. 6 shows, for two different
scenes, a detail of a reprojected slice, with missing pixels in
black, and the corresponding area of the output of the view-
synthesis network.

In our case, by design, pixel rendering is not part of the
learnable layers, and we assume we can directly project visible
points according to Ds depth and Tθ translation using regular
z-buffering to obtain the starting view to be optimized. This
solution is better suited to our case than more elaborate splat-
ting methods [53], since for stereo rendering, the limited dis-
placement of the eyes from the center generates much narrower
disocclusion zones than in the case of free viewpoint motion.

In an equirectangular image, columns correspond to con-
stant longitude/azimuth θ angles, while rows to constant lati-
tude/elevation ϕ angles. Each pixel can be mapped to angular
spherical coordinates and vice-versa. This mapping between
image domain pixels and spherical domain angular coordinates
allows for direct transitions between image-based and spherical-
based operations [54]. Omitting the straightforward relationship

between Cartesian and spherical coordinates, the following equa-
tion relates spatial (i.e, Tθ,r) with angular displacements (i.e., Ĩt,θ

pixels):∂d
∂ϕ
∂θ

 =

sin(ϕ) sin(θ) cos(θ) cos(ϕ) sin(θ)

cos(ϕ)
d sin(θ) 0 − sin(ϕ)

d sin(θ)
sin(ϕ) cos(θ)

d
− sin(θ)

d
cos(ϕ) cos(θ)

d


∂x
∂y
∂z

 (3)

where d is the depth of the given pixel.
For the view-synthesis task, we assume Ĩt,θ

3×h×w
as input. As

in typical inpainting approaches, we define a binary inpainting
mask Bt

1×h×w, identifying missing parts in the rendered image.
This mask is computed directly in the reprojection step. Bt is
then concatenated to Ĩt (i.e., along the batch dimension - 4 layers
input (Fig. 5).

To predict the output It,θ slice, we adopt the lightweight gated
architecture exploited for depth estimation (Sec. 4) but adapted
for having greater accuracy on the RGB channels of the current
spherical viewport S θ,ω. Here, spherical padding is replaced by
replicate padding in all layers. Similarly to other works (e.g.,
DeepFillV2 [49]), we use f (x) = max(0, tanh(x)) as activation
function for the output layer. Limited to the [0..1] range, this
function behaves similarly to ReLU near the lower bound while
smoothly saturating at the upper bound.

As shown in Fig. 5, this network has a higher density at the
inner channel level, whose starting value is 64 (first encoder layer
in Fig. 5). This increase in layers, compared to the configuration
used for depth, is compensated, from the computational point
of view, by the fact that the network processes a smaller portion
of the image than the full equirectangular image, leading to a
contained computational cost, as demonstrated in Sec. 7. This
is particularly important since, for each input panorama, the
generation of omnidirectional stereo representation requires the
generation of hundreds of slices.

We train the inpainting network by including losses that mea-
sure the photorealistic quality of the output slice. It should be
noted that, in contrast to full image prediction, here the loss is
calculated by comparing the predicted slice It,θ with the corre-
sponding crop Igt,θ of the ground truth equirectangular image.
Our loss function is expressed as:

Lvis = λpxLpx+λpercLperc+λstyleLstyle+λadvLadv−λlpipsLlpips.
(4)
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Fig. 6: Reprojected vs. synthesized image Two examples from different scenes.
On the left, we see a detail of a reprojected image slice, where disoccluded areas
are apparent. On the right, we see the output of the view synthesis network.

where the first term is a pixel-based L1 loss between the pre-
dicted RGB slice It,θ and the ground truth target crop Igt,θ, Lperc

and Lstyle are the data-driven perceptual and style losses [55],
enforcing Iout and Igt to have a similar representation in the fea-
ture space as computed by a pre-trained VGG − 19 [56], while
Ladv is a discriminator-based loss (i.e., PatchGAN [57]). Fur-
thermore, in addition to conventional inpainting losses, we intro-
duce a loss based on Learned Perceptual Image Patch Similarity
(LPIPS) [58] to enforce similarity due to the restricted field-of-
view of the slice. λ weights are common for many single-pose
inpainting problems [48]: λpx = 1.0, λstyle = 100.0, λperc =

1.0, λadv = 0.2, λlpips = 1.0.

6. Omnidirectional stereo generation and rendering

Starting from the slices synthesized by the network, we have
all the information to provide stereoscopic viewing during head
rotations, as these slices contain a plausible scene reconstruction
for all the possible points of view of both the left and the right
eye. While previous works used a small set of these synthe-
sized images and combined them at rendering time [13], here
we densely sample the position space and construct off line a

compact omnidirectional stereoscopic representation by appro-
priately fusing these slices. The issue of constructing stereo-
scopic panoramic image pairs has already been addressed in
the literature (Sec. 2). In this work, we selected to achieve the
stereoscopic effect by generating two aligned multiple-center-of-
projection (MCOP) images encoded in equirectangular format.
As longitude varies in these images, the corresponding pixel
column is generated from a different camera position, which
corresponds to the position of the eye when it is looking straight
in this direction.

The calculation for each eye starts, thus, from the generation
of n vertical slices radially uniformly distributed around the head,
as shown in Fig. 2c. Since our networks are computationally
efficient, and all the computation is performed offline, we can
generate very dense angular samplings in a short time (ideally,
even with n equal to the output image width). In practice, we
have seen that an angular sampling of one degree (i.e., 360 slices)
is sufficient to obtain a very high-quality reconstruction.

The single MCOP image for each eye is constructed from the
union of vertical slices associated with each θ angle of longitude.
The stereo effect is ensured by the fact that, for a given rotation θ
of the head, the eyes will point in the same front-facing direction,
but each with a slightly different perspective due to the offset
caused by the inter-pupillary distance IPD. As seen in Fig. 2a,
when we rotate the head around its vertical axis, for a given θ,
the eyes will be positioned on the circle of radius r at angles
θ − ϕ (left eye) and θ + ϕ (right eye), where the value of ϕ is
given by ϕ = asin( IPD

2r ).
When computing the omnidirectional stereo representation

for the left eye, we thus loop over all the output columns. For
each vertical column at an angle θ, we identify the eye position
as θ − ϕ and find the two synthesized panoramic slices with
the closest centers of projection (i.e., one to the left and one
to the right). The pixels of these slices are then blended with
a Gaussian weight based on the angular distance to the output
column. The same process is done for the right eye, with the
only difference being that the eye position is θ + ϕ. Since we are
using a very high angular sampling rate in this paper to place
slices, i.e., 360 slices per image, the blending area is extremely
small – pixel-sized for our typical network outputs, and using
such a simple blending does not lead to any noticeable ghosting
artifacts, as illustrated in Sec. 7.

Note that while we have assumed here a view with both eyes
looking in the same direction (zero parallax at infinity), we can
apply the same approach for calculating MCOP images with
eyes that have zero parallax at a finite distance for improved
simulated stereoscopic vision in confined environments. The
only variation would be in the extraction of the column, which
would not be in the θ direction but towards the focal point.

As a final pre-processing step, we also perform upsampling of
the images to match the quality of the display. This is because,
currently, our synthesis is performed at a resolution smaller than
the display size (i.e., a vertical slice resolution of 512 pixels vs
2048 for a typical headset). This limitation is not due to our
easily scalable network architectures (see Sec. 4 and Sec. 5), but,
rather, to limitations in available ground-truth training sets. In
the current work, good quality results are obtained by applying
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available super-resolution generative adversarial networks ca-
pable of zooming images by creating plausible geometric and
texture detail. To apply these methods to equirectangular images
without boundary effects, we extend, before zooming, the origi-
nal image to the left by incorporating portions from the right side
and vice versa. This extension makes available to the network a
sufficient context to define all important areas. After zooming,
the image is then cropped only to contain the relevant portion of
the equirectangular representation.

The two MCOP images resulting from this process can then
be presented to the viewer using the same approach used for
regular panoramas, presenting the left panorama to the left eye
and the right panorama to the right eye, and using the same
viewing transformation for both panoramas to adjust for head
orientation. When looking in a specific viewing direction, the
correct perspective for the left and right eyes will be projected
in the headset, with the correct horizontal parallax for the front-
facing pixels and a small degradation towards the periphery.
The stereoscopic effect of the two images calculated in this
way is guaranteed by the fact that human stereoscopic vision is
concentrated mostly in the central portion of the field of view
and does not exist in the outer peripheral zones.

The rendering on the headset is accomplished using a stan-
dard viewer for omnidirectional stereo images through a WebXR
API browser. In practice, the high-resolution stereo panoramic
images serve as textures for two spheres positioned in the scene
— one centered around the left eye and the other around the
right eye. The result is a kind of distinct environment map for
each eye. As per the WebXR specifications, when XR rendering
is enabled, the system retrieves parameters defining the head’s
position from the headset’s sensors during each frame of the
animation loop. These parameters are then used to create the
correct perspective projections for each eye. For a given longi-
tude θ, the left and right eyes will centrally align with images
with the correct horizontal parallax disparity, thereby providing
the effect of stereoscopic perception.

7. Results

The processing components to obtain stereo panoramic im-
ages for loading onto the headset have been developed in
Python, using Pytorch to implement our custom networks, com-
bined with standard image processing and computation libraries
(NumPy, Pillow, OpenCV). The generative adversarial network
used for zoom operations is Real-ESRGAN (with model realesr-
animevideov3) [59], that has been directly integrated as a post-
processing step in our system. The immersive rendering compo-
nents, instead, have been realized in WebGL and WebXR.

7.1. Dataset and training

For training our solutions, we harness the availability of pub-
lic panoramic scene datasets where ground truth is available. To
train and test depth estimation, we exploit Structured3D [60]), a
large-scale (21K photorealistic scenes) synthetic database of in-
door scenes providing the ground truth depth for each panoramic
image.

To train and test view synthesis, instead, we exploit
PNVS [28], a subset of Structured3D scenes providing several
translated views for each source panoramic image. Since the
baseline for stereo view generation is very small, we opt for the
PNVS subset known as easy, characterized by a maximum range
of 300mm. This range comfortably exceeds our default radius
of r = 100mm.

Train and test splits are maintained as in the original papers.
The depth estimation network is trained and tested directly on
the original images, while the view synthesis network is trained
and tested on randomly oriented slices of the provided examples.
The generation of randomly oriented slices is implemented as a
data augmentation step.

Given that the available training and testing data sets are
provided at a resolution of 1024 × 512 pixels, all our processing
is done at that size. In the future, we plan to generate synthetic
training and testing sets at higher resolution (2K-4K), exploiting
the scalability of our networks to directly process images at
typical native 360◦ camera resolution, removing the need for the
downscaling and upscaling steps.

We trained both networks with the Adam optimizer [61], with
β1 = 0.9, β2 = 0.999 and an adaptive learning rate from 0.0001,
on an NVIDIA RTX A5000 (24GB VRAM) with a batch size
of 8 for depth estimation and 4 for view synthesis. The average
training time for the depth estimation network is 150ms/image,
while for view synthesis is 160ms/image.

7.2. Computational performance

Our depth estimation and view synthesis baselines are ex-
tremely lightweight. Tab. 1 shows learnable parameters, GFlops,
and milliseconds for different tasks and outputs. The bench-
marks have been made on the same A5000 machine used for
training.

In all presented tasks, we assume 512 × 1024 as the source
image tensor resolution. Indeed, the output resolution is the
same for depth estimation, where the network configuration
uses 32 internal channels (Sec. 4). For the view synthesis task,
instead, we compare computational stats to generate a full 360◦

image (i.e., 512 × 1024 tensor size) and to generate a slice (i.e.,
512 × 160) that is the final utilization of the network. For this
task, we adopt a network configuration with 64 internal channels,
as well as other task-designed modifications (Sec. 5). The results
clearly show the computational advantage in terms of GFlops
and inference time. Subsequent results (Sec. 7.3) show that the

Table 1: Computational performance. We show the computational perfor-
mance and latency time of our gated architecture for different tasks. In bold
modes are the current architecture choices.

Mode Output Res Params GFLOPS ms/frame
Depth 512 × 1024 6.06 M 164.11 41
Synth 512 × 1024 6.93 M 326.71 95

Synth sliced 512 × 160 6.93 M 51.05 58

choice of generating a slice maintains a performance advantage
not only in computational terms. With the current approach,
a full-quality omnidirectional stereo image, computed with an
angular spacing of 1◦ between slice projection centers, can be
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(a) Input (PNVS [28]) (b) Prediction (c) Ground Truth (PNVS [28])

(d) Input (PNVS [28]) (e) Prediction (f) Ground Truth (PNVS [28])

(g) Input (real capture) (h) Prediction

Fig. 7: Depth estimation. Two examples of depth prediction on PNVS [28] dataset scenes and an example of depth prediction from a user-acquired panoramic scene
taken with a Ricoh Theta 360◦ camera.

generated and experienced in stereo with a latency of only about
21s from the time of the shot.

7.3. View-synthesis performance

As depth estimation is a fundamental task to achieve novel
view synthesis, Tab. 2 presents the quantitative performance of
our gated architecture compared to state-of-the-art panoramic
depth solutions. We included in the evaluation the same error
metrics used in many prior depth estimation works (e.g., [11,
10]): mean absolute error (MAE), mean relative error (MRE),
root mean square error of linear measures (RMSE), and three
relative accuracy measures δ1, δ2 and δ3, defined, for an accuracy
δn, as the fraction of pixels where the relative error is within a
threshold of 1.25n. The latter measures are useful to illustrate
the error distribution.

We compare our performance with SliceNet [11] and Ho-
HoNet [10], which are state-of-the-art methods commonly used
as benchmarks in the latest panoramic works [22, 62], and, par-
ticularly for the domain of this paper, can provide performance
with low latency. In this case, we show the reconstruction perfor-

Table 2: Quantitative performance comparison on depth reconstruction.
Our results are compared to other state-of-the-art works.

Method MAE↓ MSE↓ RMSE↑ δ1 ↑ δ2 ↑ δ3 ↑

HoHoNet [10] 0.081 0.065 0.206 0.958 0.987 0.993
SliceNet [11] 0.082 0.054 0.198 0.961 0.988 0.993
Our 0.061 0.008 0.038 0.962 0.989 0.994

mance on the main Structured3D [60] test set, for which results
from those baselines are available. We show some qualitative

results in Fig. 7 (top two rows) on the PNVS scenes adopted
instead for view-synthesis benchmarking. The deformation in
the views is present in the original images and is due to the
equirectangular projection, which preserves horizontal lines and
curves vertical ones. The same deformation is visible in all other
images in equirectangular format included in this article. As an
illustration of how the same model can be applied to casually
captured images, the bottom row of Fig. 7 shows how our net-
work successfully predicts the depth of a user-acquired scene
captured with a hand-held Ricoh Theta 360◦ camera.

As shown in the qualitative results of Fig. 7, the overall shape
of the room is well preserved, and, similarly to other works [10,
11] the main prediction errors appear on very thin structure (e.g.,
the lamp in the second row). These thin structures are not very
well resolved and, at run time, can cause visual artifacts during
exploration. This problem is common to virtually all depth
estimators from single images, and we expect to reduce them by
increasing the resolution of images in the training set.

Tab. 3 summarizes our performance in terms of view synthesis
accuracy, benchmarked on the PNVS [28] test dataset. . Despite
presenting much more challenging translations than stereo par-
allax, this set provides a ground truth on which it is possible to
compare with other state-of-the-art methods [63, 64] and among
different versions of our architecture.

The results show that our method outperforms other baselines
in generating a full equirectangular view (i.e., row 3). Further-
more, we show how reconstructing the single slice still achieves
state-of-the-art performance even though the reconstruction is
done by having a smaller context (i.e., 56 degrees vs. 360 de-
grees). The standard deviation of the error measures on the sliced
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(a) Central panorama (PNVS [28]) (b) Central panorama (PNVS [28]) (c) Central panorama (PNVS [28])

(d) Left/right MCOP panoramas (e) Left/right MCOP panoramas (f) Left/right MCOP panoramas

Fig. 8: Ominidirectional stereo panoramas. Three representative scenes from the PNVS [28] dataset (testing split). Top row: source panorama. Middle row:
automatically generated MCOP panorama for the left eye; Bottom row: automatically generated MCOP panorama for the right eye. The vertical alignment clearly
shows the parallax effects.

Table 3: View synthesis performance. We show the quantitative performance of
view synthesis compared to other state-of-the-art methods, all of which operate
at a minimum resolution of 1024 × 512 image size (i.e., 512 × 1024 tensor size).
The last line shows our sliced solution compared with our baseline trained to
reconstruct the whole image.

Method Output Res PSNR↑ SSIM↑ LPIPS↓
SynSin [64] 512 × 1024 17.28 0.721 0.226
MPI [63] 512 × 1024 17.59 0.725 0.223
Our full 512 × 1024 21.55 0.731 0.202
Our full crop 512 × 160 22.77 0.738 0.196
Our sliced 512 × 160 23.00 0.744 0.186
Our-sliced-no-LPIPS 512 × 160 22.38 0.748 0.205

version amounts to 0.075 for LPIPS, 0.098 for SSIM, and 4.53
for PSNR, and is in very similar ranges for the other versions of
the network. We noticed that the main errors found on the set of
scenes are due to the imprecise depth reconstruction (see above),
especially on thin structures. We thus identify depth estimation
as one of the main avenues for improvement.

The last row shows the results obtained with an instantiation
of our network trained without the Llpips loss term. It should
be noted how adding this term not only improves the LIPS
metric but also has a beneficial effect on the PSNR. Since LPIPS
strongly correlates with perceptual quality [58], its addition in
the loss improves the final quality of presented images.

To compare the accuracy of the reconstruction, we measured
performance by comparing random 512 × 160 crops on the
full generated overview (i.e., training with 512 × 1024 tensor
output), with slices generated with the dedicated network (i.e.,
training with 512 × 160). The experiments show that despite the

significantly lower computational complexity, performance is on
par, if not better, than generating a full equirectangular image
for each angle.

Fig. 9: The WebXR viewer. The user on the left wears a Pico4 HMD. The
images to the right present the left and right images, as rendered by our WebXR
viewer running on the PicoBrowser. The source image is a single-shot mono-
scopic 360◦ capture of a real environment, transformed to omnidirectional stereo
by our framework.

7.4. Stereoscopic exploration on HMD
We tested the immersive viewer on various devices, including

a Meta Quest 2 and an Android mobile device Samsung Galaxy
S 22 with a Google Cardboard. Here we report on experiments
made on a Pico4, a headset with two 2.56-inch Fast-LCD dis-
plays, a global resolution of 4320x2160 pixels (equivalent to
2160x2160 pixels per screen), a pixel density (PPI) of 1200,
a variable refresh rate ranging between 72 and 90 Hz, and a
diagonal Field of View (FOV) of 105 degrees (diagonal).

The web application for rendering is served by a web server
that only has to transmit the two panoramic images to the HMD,
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(a) Central panorama

(b) Left/right MCOP panoramas

Fig. 10: Ominidirectional stereo panoramas. Example from real-world
capture. Top: source panorama, captured with a Ricoh Theta. Middle/Bottom:
automatically generated MCOP panorama for the left and right eyes.

since the embedded client performs all the rest of the computa-
tion and rendering work. The client application is built on the
ThreeJS framework, enabling the development of WebGL graph-
ics components, and incorporates mechanisms for interaction
with WebXR APIs. On the client side, the application, written in
JavaScript ECMAScript 6 following a modular approach, is run
on the native PicoBrowser when using Pico4, but the viewer can
naturally be run on any headset compatible with WebXR specifi-
cations, as demonstrated by our tests on Android Phones with
Google Cardboard and on the Meta Quest 2 (see accompanying
video). Fig. 9 shows an image of the viewer. Other standard
viewers supporting the omnidirectional stereo format can also be
employed. Using a custom viewer allows us to implement spe-
cific operations (i.e., switching among scenes or from mono to
stereo, or constraining/freeing the up vector during navigation).

When displayed on the HMD, the images provide immer-
sive stereo cues, as also confirmed by an informal test with ten
subjects who were requested to explore the stereoscopic environ-
ment on Oculus Quest and provide their opinion on immersion
and stereoscopic perception of the generated scenes. The test

Fig. 11: Comparison of omnidirectional stereo approximation with ground
truth. The top portion of the two images shows the perspective generated
using the multiple-center-of-projection image for the left and the right eye,
while the bottom portion shows the ground truth image generated with a center
of projection placed at the eye position. As we can see, the perspective is
indistinguishable at the center but slowly degrades in the periphery.

was simply carried out by loading either the original 360◦ ver-
sion or the omnidirectional stereo one. In all cases, users always
differentiated the mono and stereo versions and confirmed that
the stereo one was providing a more immersive experience.

Fig. 8 shows the results of omnidirectional stereo generation
for three representative scenes from the PNVS [28] dataset (test-
ing split), while Fig. 10 shows the results of omnidirectional
stereo generation for a real-world captured-scene. In both fig-
ures, the top row shows the source panorama, positioned at the
center of the head, while the middle and bottom rows show the
generated MCOP panoramas for the left and right eye, which
incorporate stereo parallax effects.

Fig. 11 shows a comparison between the real-time rendering
obtained from the omnidirectional stereo representation and a
ground truth image. The top portion of the two images shows
the perspective generated using the multiple-center-of-projection
image for the left and the right eye, while the bottom portion
shows the ground truth view, obtained by placing the center of
projection placed at the eye position. As we can see, the two
perspectives are indistinguishable at the center but slowly diverge
when moving towards the periphery. We noticed that, while this
effect is not perceived by the users for most of the scenes, in cases
where a strong parallax exists (very nearby objects with details),
the users perceive an effect of slight object motion when rotating
the head while still being capable to perceive the parallax. This
motion effect is due to the motion of the center of projection
across the image. This is, however, an effect perceivable in all
multiple-center-of-projection methods and is not introduced by
our approach, which aims to present ways for the automated
generation of those representations.

Representative frames recorded during navigation of the syn-
thetic and real-world scenes are presented in Fig. 12. The dif-
ferences in the views presented to the two eyes are noticeable,
and the stereo parallax correctly responds to the geometry of the
visible scene. To better illustrate the quality of displayed images,
Fig. 13 shows representative details of Fig. 12 top left. Please
refer to the accompanying video for additional examples.



Preprint copy /Computers & Graphics (2024) 13

(a) Left (scene of Fig. 8 left) (b) Right (scene of Fig. 8 left)

(c) Left (scene of Fig. 8 center) (d) Right(scene of Fig. 8 center)

(e) Left (scene of Fig. 8 right) (f) Right (scene of Fig. 8 right)

(g) Left (scene of Fig. 10) (h) Right (scene of Fig. 10)

Fig. 12: Real-time navigation with omnidirectional stereo. Representative
stereo views for the scenes in Fig. 8 and Fig. 10.

8. Conclusions and future work

We presented a framework for the automatic generation of
omnidirectional stereoscopic indoor environments to be used
in immersive applications, especially consumed through head-
mounted displays. Our method starts from a single panoramic
image of an interior environment and uses data-driven architec-
tures for depth estimation and novel view synthesis to quickly
generate the images seen by both eyes during head rotation. For
this work, these images are combined into an omnidirectional
stereo representation, which is consumed on a lightweight We-
bXR viewer supporting stereoscopic exploration during head
rotations.

The preliminary results show that the automatic generation
components achieve state-of-the-art accuracy, and the visualiza-
tion component can provide an immersive experience to casual

users on a variety of devices. As a result, we can provide a quick
method to enhance the exploration of environments acquired
with the increasingly ubiquitous and affordable monoscopic
panoramic cameras.

One of the limitations of the current approach stems from the
mismatch between the resolution of the synthesized images and
the achievable resolution with nowadays cameras and displays.
This mismatch is currently handled by downsampling images
before construction and a deep-learning-assisted upsampling
before display presentation. The limitation is not due to the
lightweight network architecture, which promises to be scalable
to much larger image sizes, but instead to the availability of train-
ing sets for the depth estimation and view synthesis networks.
We plan to tackle this problem by generating higher-resolution
training data.

In terms of display, we have taken the approach of generating
omnidirectional stereo images, which have the major advantage
of requiring very limited rendering resources but also introduce a
little degradation in the peripheral areas and when the view direc-
tion converges towards the poles. Since we have depth available,
we can easily improve the method by incorporating state-of-the-
art depth-dependent adaptations that have been designed for real
captures [43]. In this context, it will be interesting to explore
how our deep-learning-based solutions could be further adapted
to directly produce the data required for depth-dependent adap-
tation. We will also evaluate the possibility of exploiting this
approach to support a limited amount of horizontal and vertical
head motion in addition to rotation, exploiting the fact that our
networks can synthesize arbitrarily displaced images. Finally,
we plan to use our panoramic capture and immersive rendering
system as a building block for constructing applications that
perform actions in shared physical and digital realities. One
important direction of work will be to exploit these explorable
panoramic environments to serve as interfaces for digital twins
of buildings constructed from casually captured real data, that
can provide location awareness and be easily annotated in a VR
interface.
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