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Abstract

Multi-Light Image Collections (MLICs) are often transformed into geometric normals and BRDF normals for visual exploration

under novel illumination. However, discrepancies between the chosen BRDF space and the complete optical behavior of objects,

along with the possible presence of non-local lighting effects in measurements, often lead to sub-optimal visual outcomes even

with the most accurate geometric normal recovery. In this paper, we introduce a modular component designed to convert the

geometric normals into well-behaved shading normals, under the common and general assumption that the reflectance must be a

monotonic function of the angle between the shading normal and the bisector of lighting and viewing directions. Since it does

not require the coupling of shape and material estimation, the module allows seamless integration into existing reconstruction

pipelines, supporting the mixing and matching of Photometric Stereo methods, BRDF models, and BRDF fitters. The performance

and versatility of the approach are demonstrated through experiments.

CCS Concepts

• Computing methodologies → Shape modeling; Computer graphics; • Applied computing → Arts and humanities;

1. Introduction

Multi-Light Image Collections (MLICs), i.e., stacks of photos ac-
quired with a fixed viewpoint and varying surface illumination, are
one of the most widely used solutions for capturing information
on the shape and appearance of objects in many fields, cultural
heritage being the prevalent one [PDC∗19]. In the most common
configuration, data is acquired using a different point or directional
light per image (using a dome or a moving light), leading to a pixel
representation with a different color for each sampled light direction.

While classic virtual inspection solutions for such data were
restricted to exploiting low-frequency analytical relighting repre-
sentations fitting the acquired light-direction-dependent colors, re-
cent work started targeting physically-based rendering using recov-
ered normals and Bidirectional Reflectance Distribution Functions
(BRDF) maps, since this representation can be easily distributed at
low bitrate, produces a physically-reasonable result, and supports
natural integration with standard high-quality and real-time render-
ing solutions (Sec. 2). However, despite the considerable advances
in normal computation through Photometric Stereo and BRDF pa-
rameter fitting, typical renderings with such a model may sometimes
fail to match the original measurements well. This issue arises not
only when geometric normals are inaccurately recovered but also
in cases of a "perfect" geometric reconstruction that is fully suit-
able for geometric inspection purposes. Several practical factors
contribute to this problem. In addition to the consideration that in-
put data may include non-local lighting effects that the employed

BRDF fitter may not account for, there often is an inherent discrep-
ancy between the simplified normal+BRDF model and the complex
optical behaviors of many real-world objects, including layering,
where different materials are stacked and interact in complex ways
or subsurface scattering, where light penetrates the surface, inter-
acts with the material beneath, and then exits at a different location.
These phenomena are challenging to model accurately with standard
single normal+BRDF representations. In particular, the shape space
of the reflectance function defined by the chosen BRDF model may
not be capable of closely matching the input data given the local
geometric normal. For this reason, several approaches try to expand
the solution by jointly minimizing shape and appearance together
in a single framework (e.g., through alternating minimization tech-
niques) [GCHS05, AZK08, HS16]. Unfortunately, they increase the
system’s computational complexity, are less controllable than sepa-
rate Photometric Stereo and BRDF fitting solutions, are more diffi-
cult to upgrade, and often do not ensure proper convergence [HS16].

This paper proposes an approach that does not break the modu-
larity of classical shape and material characterization steps. This is
done by decoupling the normals used for shading from the geometric
normals, as done in many rendering frameworks. In our approach,
the geometric normal coming from Photometric Stereo is slightly
tweaked (i.e., moved by a few degrees), to ensure a better consis-
tency of the behavior of the measured data with the output that can
be generated with local shading using a generic BRDF model. Based
on the common and general assumption that the recovered BRDF

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0000-0003-1786-7068
https://orcid.org/0000-0001-7318-6377
https://orcid.org/0000-0003-0831-2458


2 of 6 R. Pintus, A. Zorcolo, and E. Gobbetti / Applying BRDF Monotonicity for Shading Normals Refinement from MLICs

should be a monotonic function of the angle between the shading
normal and the bisector of lighting and viewing directions, we intro-
duce a novel monotonicity metric and search in the neighborhood
of the photometric stereo normal, for the normal that maximizes
our metric. After that, we use this refined shading normal to fit the
dense analytic pixel BRDF. Unlike methods that require coupled
shape and material solvers, this approach integrates seamlessly into
existing reconstruction pipelines, allowing flexible combinations
of Photometric Stereo methods, BRDF models, and BRDF fitters.
Users can choose to utilize our corrected normals as improved ge-
ometric normals, particularly when using simple normal recovery
techniques, or, in the most general case, to use separate normal maps
for geometric analysis and relighting using local shading.

2. Related work

Computing reflectance transformation or shape and material models
from MLICs are well-researched subjects. We discuss here the most
closely related approaches, referring the reader to established sur-
veys [GGG∗16, PDC∗19, LBFS21, WRG∗23] for broader coverage.

Relightable images directly encode, per-pixel, a continuous map
from lighting parameters to rendered color, eliminating the need for
explicitly determining a separation between shape, material, and
lighting [PDC∗19]. Polynomial Texture Mapping (PTM) [MGW01]
and Hemi-Spherical Harmonics (HSH) [GKPB04] are formulations
of widespread use. The compactness and low complexity of re-
lightable images make them highly suitable for fast interactive re-
lighting in both local and remote visualization, making them de-
facto standard formats for relighting in Cultural Heritage application
scenarios. However, these methods do not provide a physics-based
characterization of the surface independent of the measurement
illumination. The lack of separation between shape and material
components makes integrating such representations into common
rendering pipelines difficult. This makes it difficult to insert them
into scenes or to simulate shape-dependent effects such as shadows
or global illumination. For these reasons, practical solutions to re-
construct a separate surface geometry and optical response are the
focus of much research [PDC∗19]. Photometric Stereo and BRDF
fitting are standard approaches to address those issues.

After the first photometric stereo methods tuned for Lamber-
tian surfaces [Woo80], a large variety of solutions have been
proposed to tackle complex models using conventional fitting
(e.g., [Geo03,RK09,STMI13,HLHZ08]), exampled-based solutions
(e.g., [HS05, HS16]) or deep-learning approaches (e.g., [CHS∗19,
SSS∗17, JLX∗24]). Our module is independent from the method
used to estimate the geometric normal, but acts as a post-process to
tweak it towards the direction that better explains the measured data
using a monotonic BRDF function. In prior work, monotonicity has
already been used for normal reconstruction from highlights or for
specular lobes characterization, by considering monotonicity with
respect to the cosine of the bisector between the view and light direc-
tions, and the surface normal [OKT∗19, STMI12, AZK08, HMI10].
In these works the monotonicity metrics are simply computed by us-
ing the signum-based method [Gri06, Mat24], which locally checks
the sign of the derivatives, and computes its normalized sum. We
also employ monotonicity constraints but in the context of a refine-
ment step that improves SV-BRDF fitting starting from geometric

normals rather than as a means to compute normals from measure-
ments. In this work, we introduce a novel monotonicity metric and
exploit it to compute a shading normal from a previously computed
geometric normal.

A sub-class of methods that extract optical surface behavior in
terms of SV-BRDF can accept MLIC data as input signal [GGG∗16,
PAZ∗23]. This is a specific condition since MLIC represents only a
slice of the bigger multi-dimensional BRDF space. While several
solutions find the BRDF parameters that best match the measured
data using a fixed photometric normals, others cope with normal
refinement using an alternating minimization approach for normal
and BRDF fitting [CNK16]. Although powerful, the downside of
alternating minimization approaches lies in their computational
expense and their significant reliance on obtaining a favorable initial
solution, which is typically the starting normal. This challenge arises
due to the non-convex nature of the underlying problem, which is
fraught with local minima [HS16]. Moreover, it should be noted that,
in real conditions, local color may often be affected by non-local
illumination effects (e.g., inter-reflections), making this optimization
even harder. Most solutions use local minimizers, and there is no
guarantee that the starting solution is in the basin of convergence,
especially when there is only very sparse sampling, as in MLIC
conditions.

3. Method

We consider a generic pipeline that takes as input a MLIC of an
object, accompanied by geometric and radiometric calibration meta-
data, and produces, as output, a normal and a BRDF map. In the clas-
sic approach, such a generic pipeline processes the MLIC through
a photometric stereo module to estimate per-pixel normals, storing
them into a normal map. These normals are then fed to an SV-BRDF
fitting module to estimate per-pixel BRDF parameters. This work
introduces a new module that modifies the photometric stereo nor-
mals into shading normals better suited for BRDF estimation using
local illumination approaches.

(a) ∆θ,φ =
{

0◦ ,0◦
}

, µ = 1.0 (b) ∆θ,φ =
{

30◦ ,0◦
}

, µ = 2e-4

Figure 1: Sampled BRDF dependency on normal estimation on a synthetic

dataset of a sphere. The leftmost column shows an image obtained with the

correct sphere normal, while the rightmost column is tilted by ∆θ = 30◦

degrees. The first row shows the dependency of ρ̃ to θh, highlighting how the

monotonicity is strongly violated with a wrong normal.

Our input data consists of the MLIC reflectance measurements
(the point/pixel appearance profile), the corresponding series of
light directions Li and intensities Ii, the point normal N, and a single
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viewing direction V . For a MLIC acquisition, the camera has a fixed
position and viewing direction, so, for a general camera matrix,
each pixel has its viewing vector which remains fixed within its
entire appearance profile. We choose Rusinkiewicz’s representa-
tion [Rus98] to define a 2D domain to organize the BRDF values
spatially. Based on the triplet (N,V,Li) those values are projected on
a domain that is defined by two axes. The horizontal axis represents
the values of the angle θh between the surface normal and the half
vector H = V+L

∥V+L∥
, while the vertical axis is the angle θd between

the half vector H and the viewing V (or the light L) vector. Given
a general BRDF model f (N,V,L, . . .) and a measured reflectance
R, we choose the standard cosine-based formulation for the BRDF
value normalization, where R = f (N,V,L, . . .)(N ·L)I. Each BRDF
value associated with a measured reflectance Ri in the appearance
profile will be ρi =

Ri

Ii cos(θi)
, where θi being the angle between the

light direction Li and the normal N. For a standard (and practical)
MLIC, the BRDF representation results in a sparse image. Note
that both the spatial organization of the sparse samples and their
radiometric values will change with a variation of the surface point
normal N. Fig. 1 shows an example of the same appearance profile
of a specific pixel seen under different surface normal vectors, in-
cluding a “correct” normal and a normal in the neighborhood (here,
tilted by ∆θ = 30◦ degrees to better highlight the behavior change).
Observe that monotonicity is preserved in the first image of Fig. 1,
while it is strongly violated in the other. In this example, the normal
is tilted by ∆θ = 30◦ degrees to better highlight the behavior change,
but the deformation follows the same rules for smaller angles.

We devised an operator to compute the monotonicity-based met-
ric, focusing on the relationship between the angle θh and the nor-
malized BRDF value. Initially, it eliminates the dependency on θd by
projecting all BRDF samples onto the horizontal axis. Then, it fur-
ther projects the multi-spectral BRDF value onto the hyper-diagonal
of the multi-spectral hyper-cube by computing ρ̃= |ρ̄(θh)|, where
ρ̄ represents the projected BRDF value and ρ̃ denotes its amplitude.
The functions are plotted above the corresponding BRDF images in
Fig. 1. Monotonicity of these functions is evaluated using a metric
inspired by the standard Signum Formula, yet with several refine-
ments: (1) consideration of the duality of diffuse and non-diffuse
signal composition of the BRDF; (2) asymmetric normalization
weighted by the gradient magnitude; (3) incorporation of a quick
estimation of the albedo value to enhance metric robustness to tiny
variations and oscillations in the BRDF value due to measurement
noise; (4) definition within the interval {0,1}, where 1 indicates
decreasing monotonicity (typical BRDF behavior), 0.5 represents
a constant function (e.g., perfectly Lambertian diffuse case), and 0
signifies perfectly increasing monotonicity.

For each pixel, we begin by setting the initial value of the mono-
tonicity as µ = 1. We analyze a curve represented by a series of data
points, specifically the values of ρ̃. We then examine each pair of
adjacent data points along this curve. When comparing each pair, we
calculate the difference between the ρ̃ value of the current point i and
that of the next point i+1, referred to as δ. When δ is bigger than a
tolerance value ϵ, there is an upward trend between the two points
and thus a violation of the BRDF’s decreasing monotonicity. We
thus update the monotonicity by reducing it according to the mag-
nitude of δ. This update is computed as µnew = µold/(1+δ). Upon
examining all data points in the curve, the last updated (current)

value of µ becomes the final monotonicity metric. The tolerance
ϵ = max (ϵabs,ϵrel) takes into account both the minimum absolute
numerical error ϵabs in the BRDF values, and a relative tolerance η

with respect to the diffuse signal albedo, i.e., ϵrel = (1+η)×albedo.
Setting η = 0.1 and ϵabs = 10−4 is sufficient to mitigate the effects
of noise. The shading normal Ñ is then obtained by launching an
optimization procedure that maximizes the monotonicity as

Ñ = argminN [1− (µ(N)+R(N))] (1)

where R(N) denotes a regularization term aiming to minimize the
deviation between the initial normal and the final one, thereby pre-
venting excessive divergence. The solution is not computed for every
possible normal, but only for those in a small cone around the pho-
tometric normal N. In this paper, the search cone angle is π/6. We
perform all computations in a canonical search space where the
photometric normal is aligned with the z-axis. Thus, the regulariza-
tion term simplifies to R(N) = λNz. We found that a small value of
λ = 10−4 works well in all our tests. Since the function may have
local minima due to the nature of the response of the monotonicity
field to changes in the normal orientation and the sampling of the
BRDF, where it is common to have most values in the diffuse area,
traditional gradient-based minimizers are not appropriate. For this
reason, we adopted a bounded global search, calculating all mono-
tonicity values for a dense set of normals sampled in the search cone
and choosing the one with the smallest cost.

4. Results

The newly proposed normal map refinement module has been in-
tegrated into an existing MLIC pipeline [PAZ∗23], without any
modification to the photometric stereo and BRDF reconstruction
components. In this paper, we first present results on a synthetic
dataset for which ground truth is available (Sec. 4.1). We then illus-
trate the results obtained on a free-form acquisition of a painting
(Sec. 4.2). This work briefly presents illustrative results that will be
expanded in a future journal publication.

4.1. Synthetic evaluation and modularity test

We have evaluated our method using a variety of configurations.
Here, we summarize the results obtained with two different pho-
tometric stereo solutions to estimate geometric normals and two
different BRDF formulations. The first photometric stereo method
is the classic Trimmed PS [WGT∗05], which performs a Lamber-
tian fitting after removing the darkest (shadow) and lightest (hilight)
observations, and CNN-PS [Ike18], a Convolutional Neural Network-
based Photometric Stereo that has demonstrated strong performance
on the standard DiLiGenT benchmark [SWM∗16]. The BRDF mod-
els we employ are the dichromatic isotropic Ward model [Wal05]
characterized by a diffuse color, a specular color, and a monochro-
matic glossiness, and the stretched Blinn-Phong model [NNSK99],
a compact empirical model with a physically-realistic behavior for
dielectric and metallic materials.

Synthetic tests conducted on rendered models from manually
defined maps allow for evaluating the methods in a fully controlled
environment where ground truth is available. We selected a syn-
thetic model from the EveryTexture database [Eve24], as it closely
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(a) Trimmed PS + Ward (b) CNN-PS + Ward (c) CNN-PS + Blinn-Phong

Figure 2: The performance of all relit images for the Paint-Texture-01
dataset is assessed. We present the percentage relative improvement for

both the PSNR in the first row and the SSIM in the second row. We present

the results for two pipelines that utilize combinations of Trimmed PS or

CNN-PS as the Photometric Stereo method, and either Ward or Blinn-Phong
formulation for the BRDF fitting step.

Synthetic Dataset Method
FLIP Statistics

Weighted 1st 3rd
Mean Median Quartile Quartile

Trimmed PS + Ward 0.09 0.16 0.08 0.24
Trimmed PS + Ours + Ward 0.08 0.11 0.06 0.20

CNN-PS + Ward 0.11 0.15 0.09 0.28
CNN-PS + Ours + Ward 0.05 0.09 0.05 0.16

CNN-PS + Blinn-Phong 0.15 0.19 0.13 0.31
CNN-PS + Ours + Blinn-Phong 0.11 0.16 0.10 0.21

Table 1: FLIP statistics for one image of the Paint-Texture-01 dataset for

two pipelines that utilize CNN-PS as the Photometric Stereo method, and

either Ward or Blinn-Phong formulation for the BRDF fitting step.

resembles the detailed shape and appearance of real objects that are
typically measured with MLICs, such as paintings. Utilizing the pro-
vided Diffuse, Bump, and Normal maps, we retained the Diffuse map
as is, generated the Gloss component by converting the Bump map
to monochrome and rescaling it, and assigned a constant highlight
color. These maps were then cropped to generate synthetic MLICs
using a fixed camera and 52 directional lights by applying the Ward
model. The data presented here is for the Paint-Texture-01 dataset
(see the first column of Tab. 1 for an example image).

We applied the different combinations of methods and measured
the change in accuracy obtained when using or not using our nor-
mal refinement module. To synthetically present results, we use
percentage relative improvement, defined as by Γ = 100 |m1−m0|

m0
,

where m0 denotes the metric value (PSNR or SSIM) representing the
error between the original and the relighted image obtained with the
non-refined normal, and m0 the metric computed with the refined
normal. Fig. 2 summarizes the PSNR and SSIM for this dataset. It
can be noted that all figures are positive, showing that our method
improves over standard solutions for every tested light direction.
Additionally, Tab. 1 reports the improvements in FLIP [ANA∗20]
statistics for a sample relighted image in this dataset. This test pro-
vides insight into how our method consistently delivers positive
performance when seamlessly integrated into general shape and
appearance characterization frameworks.

4.2. Evaluation on a real painting

To assess the results obtained by our method in a typical cultural
heritage setting, we have analyzed its behavior on the common hand-
held moving light source setup, also known as free-form MLIC

(a) A panel of the Retable of S. Bernardino

(b) Retablo Crop #0 (c) Retablo Crop #1 (d) Retablo Crop #2

Figure 3: A panel from the Retable of Saint Bernardino captured using a

free-form RTI acquisition setup. Three image excerpts showcasing various

material and geometric properties are employed to evaluate the effectiveness

of the proposed normal refinement technique.

(a) Retablo Crop #0 (b) Retablo Crop #1 (c) Retablo Crop #2

Figure 4: The performance of all relit images for the three Retablo crops is

assessed. We present the percentage relative improvement for both the PSNR
in the first row and the SSIM in the second row. Noticeably better results

are observed in images with frontal illumination (higher image numbers)

compared to those with raking light conditions (lower image numbers), which

primarily display the surface’s diffuse signal.

acquisition. In this work, we present the outcomes achieved in the
capture, reconstruction, and relighting processes of a panel belong-
ing to the retable of St. Bernardino (1455). This polyptych, origi-
nally housed in the chapel of St. Bernardino within the St. Francesco
church in Cagliari, Italy, is currently held and exhibited at the Pina-
coteca Nazionale in Cagliari. The panel (Fig. 3) measures 34x25cm
and is executed in oil on a wooden support, portraying the prophet
Daniel. The painting was acquired in its pre-restoration state using
a free-form setup that comprises a 36.3 Megapixel DSLR FX Nikon
D810 Camera equipped with a 50 AF Nikkor Lens and a handheld
white LED (5500K) covering the entire visible spectrum. Sixty im-
ages were captured for the MLIC. The acquired data underwent
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Figure 5: We juxtapose selected original images of the three Retablo’s crops with their digitally relit versions generated from the SV-BRDF calculated using a

normal map from a standard Trimmed PS and our refined normal map. The final two rows showcase the respective FLIP maps and associated statistics. The

leftmost plot in the third row of each group of images overlays the two sets of statistics to highlight the improvement more effectively.

calibration using four glossy spheres (for light direction) and a gray
frame positioned around the object, employing the camera and light
calibration method introduced by Pintus et al. [PJZ∗21].

Here, our attention is directed towards three specific image sub-
regions/crops of the first panel (Fig. 3), chosen for their distinct
characteristics. Crop #0 encompasses a gold-colored relief featuring
several cracks and a flat area with black writing. Typically, dark
signals induce distortions in both the normal map and the final re-
lighted image. Crop #1 depicts a decorative detail situated within
a predominantly flat area with cracks, while Crop #2 focuses on a
facial detail within a highly glossy region. In most original images,
the highlights are so pronounced that the painted face is obscured
and overshadowed by the glossy signal, with evident paint mixing
and various visible damages.

Synthetic Dataset Method
FLIP Statistics

Weighted 1st 3rd
Mean Median Quartile Quartile

Retablo Crop #0
Trimmed PS + Ward 0.53 0.61 0.46 0.76

Trimmed PS + Ours + Ward 0.39 0.47 0.32 0.63

Retablo Crop #1
Trimmed PS + Ward 0.75 0.82 0.68 0.94

Trimmes PS + Ours + Ward 0.45 0.54 0.37 0.71

Retablo Crop #2
Trimmed PS + Ward 0.64 0.69 0.58 0.79

Trimmes PS + Ours + Ward 0.35 0.38 0.29 0.50

Table 2: FLIP statistics for the three retablo images in Fig. 5.

All evaluation metrics applied to these examples consistently
demonstrate performance that exceeds previous results (Fig. 4).
Some images exhibit a relative improvement in PSNR of over 20%,
while SSIM performance shows even greater enhancements, reach-
ing up to an 80% improvement. As observed in prior tests, the
improvement is particularly noticeable in front-illuminated images,
where highlights or other glossy effects are prevalent. Fig. 5 de-
picts the rendered images alongside the FLIP maps and associated
statistics. Additionally, Tab. 2 is provided containing the numerical
values of the mean, weighted median, 1st, and 3rd quartile of the er-
ror. In Crop #0, the improvement is evident as the gloss gold region
is restored with greater accuracy, while the perceptual error in the
flat region, particularly in the darker parts of the writing, is notably
reduced. Similar results are observed in Crop #1 and Crop #2, where
both the error images and the plots illustrate how the normal refine-
ment significantly enhances the quality of surface characterization
and the corresponding virtual relighting.

5. Conclusions

Recovering normal maps and BRDF maps from MLICs permits
both object characterization and flexible re-illumination. However,
fitting an analytical BRDF to recovered geometric normals may
often lead to sub-optimal outcomes for visual inspection in typical
relighting applications.

Building on the common and general assumption that the re-
flectance in a typical normal+BRDF model is a monotonic function
of the angle between the normal and the bisector of lighting and
viewing directions, we have proposed a solution that corrects the
orientation of the geometric normals into shading normals where
this assumption is not met. Differently from solutions that force
using a coupled shape and material solver, our method integrates
seamlessly into existing reconstruction pipelines, supporting a free
mixing and matching of Photometric Stereo methods, BRDF mod-
els, and BRDF fitters. Users can decide whether to use shading
normals also as improved geometric normals, especially when us-
ing the most common normal recovery techniques (e.g., based on
trimming), or, more commonly, separate the normal maps used for
geometric analysis and visualization.

In this paper, we have provided a description of the method and
the initial tests. A more comprehensive description and evaluation
will be included in a forthcoming journal publication. We are also
currently working on further enhancing the approach, in particu-
lar by reducing its computation time by exploiting the similarity
of nearby pixels, improving the global optimization solver, and
streamlining the computation of the cost function.
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