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Resumo

Nos últimos anos, houbo un interese significativo na investigación da reconstrución

3D automática e o modelado de escenas de interior, o que resulta nun campo

emerxente ben definido[1]. Neste contexto, a adquisición de panorámicas 360 graos

xurdiu como unha solución eficaz para as contornas de interior. Ofrece unha cobertura

rápida e completa, mesmo desde un único punto de vista, e é compatible cunha

ampla gama de dispositivos de adquisición profesionais e de consumo, o que fai que

a captura de interiores sexa eficiente e rendible[2]. As imaxes panorámicas tamén se

converteron en parte integrante da creación de contidos inmersivos directamente a

partir de escenas do mundo real e en soporte de diversas aplicacións de Realidade

Virtual (RV)[3]. En particular, as visitas virtuais baseadas en imaxes esféricas gañaron

popularidade no sector inmobiliario, especialmente durante o período de pandemia.

Para lograr unha inmersión total, o sistema debe responder tamén á translación do

punto de vista. Aínda que se propuxeron moitas solucións para as configuracións

de captura multivista (por exemplo, [4, 5]), realizar a síntese da vista a partir de

panoramas dunha soa toma é de gran importancia, debido á conveniencia e difusión

da captura dispersa a través de cámaras monoculares de 360◦[6]. Con todo, a síntese

de vistas arbitrarias depende da estimación do modelo xeométrico da contorna da

imaxe, de forma explícita ou implícita, para realizar unha reproyección consciente

da oclusión e sintetizar o contido non obstruído. Este aspecto é aínda máis crucial

se o propósito é tamén derivar outra información non obvia da vista orixinal, como,

por exemplo, derivar un modelo da estrutura permanente sen desorde[7]. Para

lograr unha visualización inmersiva e unha edición eficaz na reconstrución 3D en

interiores, é necesario abordar varias cuestións de investigación fundamentais, que

están relacionadas coas tarefas de estimación da profundidade e a disposición e a

síntese do renderizado de novos puntos de vista.

Neste proxecto de investigación, propuxémonos ampliar a estado da arte nestas

tarefas fundamentais e, en particular, na súa combinación orientada á exploración
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e edición inmersiva en interiores, partindo dunha única imaxe de 360 graos. Con

este fin, investigamos novos enfoques para explotar as características arquitectónicas

previas en interiores, que teñen en conta as características moi específicas da contorna

creada polo home, e solucións eficaces baseadas en datos, que aprenden relacións

ocultas a partir de exemplos de big data.

As nosas contribucións dan lugar a varias solucións innovadoras de tipo end-to-end,

como unha nova metodoloxía para a síntese de escenas 3D de interiores de tipo

Atlanta-world a partir dunha única imaxe omnidireccional, un enfoque novo para

a síntese e exploración en profundidade de contornas estereoscópicos omnidirec-

cionales a partir dunha imaxe panorámica monoscópica, así como unha técnica

innovadora para o baleirado automático e instantáneo de escenas de interiores

panorámicas, que permite limpar de mobles e outras oclusiones a imaxe e mostrar a

arquitectura basee das habitacións. Este tese presenta as meteodologías e resultados

obtidos durante a devandita investigación.

Palabras chave: Informática Visual, Visión por Computador, Gráficos por Computa-

dor, Captura Esférica, Captura Omnidireccional, Captura Panorámica, Proxección

Equirectangular, Reconstrución 3D, Contorna Interior, Visión Monocular, Estimación

da Profundidade, Estimación do Trazado 3D, Síntese da Vista, Exploración Inmersiva,

Realidade Virtual, Realidade Diminuída.
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Resumen

En los últimos años, ha habido un interés significativo en la investigación de la

reconstrucción 3D automática y el modelado de escenas de interior, lo que resulta en

un campo emergente bien definido [1]. En este contexto, la adquisición de panorámi-

cas 360 grados ha surgido como una solución eficaz para los entornos de interior.

Ofrece una cobertura rápida y completa, incluso desde un único punto de vista, y es

compatible con una amplia gama de dispositivos de adquisición profesionales y de

consumo, lo que hace que la captura de interiores sea eficiente y rentable [2]. Las

imágenes panorámicas también se han convertido en parte integrante de la creación

de contenidos inmersivos directamente a partir de escenas del mundo real y en so-

porte de diversas aplicaciones de Realidad Virtual (RV) [3]. En particular, las visitas

virtuales basadas en imágenes esféricas han ganado popularidad en el sector inmo-

biliario, especialmente durante el periodo de pandemia. Para lograr una inmersión

total, el sistema debe responder también a la traslación del punto de vista. Aunque

se han propuesto muchas soluciones para las configuraciones de captura multivista

(por ejemplo, [4, 5]), realizar la síntesis de la vista a partir de panoramas de una

sola toma es de gran importancia, debido a la conveniencia y difusión de la captura

dispersa a través de cámaras monoculares de 360◦ [6]. Sin embargo, la síntesis de

vistas arbitrarias depende de la estimación del modelo geométrico del entorno de la

imagen, de forma explícita o implícita, para realizar una reproyección consciente de

la oclusión y sintetizar el contenido no obstruído. Este aspecto es aún más crucial si

el propósito es también derivar otra información no obvia de la vista original, como,

por ejemplo, derivar un modelo de la estructura permanente sin desorden [7]. Para

lograr una visualización inmersiva y una edición eficaz en la reconstrucción 3D en

interiores, es necesario abordar varias cuestiones de investigación fundamentales,

que están relacionadas con las tareas de estimación de la profundidad y la disposición

y la síntesis del renderizado de nuevos puntos de vista.
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En este proyecto de investigación, nos propusimos ampliar el estado del arte en estas

tareas fundamentales y, en particular, en su combinación orientada a la exploración y

edición inmersiva en interiores, partiendo de una única imagen de 360 grados. Con

este fin, investigamos nuevos enfoques para explotar las características arquitectóni-

cas previas en interiores, que tienen en cuenta las características muy específicas del

entorno creado por el hombre, y soluciones eficaces basadas en datos, que aprenden

relaciones ocultas a partir de ejemplos de big data.

Nuestras contribuciones dan lugar a varias soluciones innovadoras de tipo end-

to-end, como una nueva metodología para la síntesis de escenas 3D de interiores

de tipo Atlanta-world a partir de una única imagen omnidireccional, un enfoque

novedoso para la síntesis y exploración en profundidad de entornos estereoscópicos

omnidireccionales a partir de una imagen panorámica monoscópica, así como una

técnica innovadora para el vaciado automático e instantáneo de escenas de interiores

panorámicas, que permite limpiar de muebles y otras oclusiones la imagen y mostrar

la arquitectura base de las habitaciones. Este tesis presenta las meteodologías y

resultados obtenidos durante dicha investigación.

Palabras clave: Informática Visual, Visión por Computador, Gráficos por Computa-

dor, Captura Esférica, Captura Omnidireccional, Captura Panorámica, Proyección

Equirectangular, Reconstrucción 3D, Entorno Interior, Visión Monocular, Estimación

de la Profundidad, Estimación del Trazado 3D, Síntesis de la Vista, Exploración

Inmersiva, Realidad Virtual, Realidad Disminuida.
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Abstract

Over the past few years, there has been significant research interest in the automatic

3D reconstruction and modeling of indoor scenes, resulting in a well-defined emerging

fieldc [1]. Within this context, 360-degree panoramic acquisition has emerged as

an effective solution for indoor environments. It offers rapid and comprehensive

coverage, even from a single viewpoint, and is compatible with a wide range of

professional and consumer acquisition devices, making indoor data capture efficient

and cost-effective [2]. Panoramic images have also become integral to creating

immersive content directly from real-world scenes and supporting various Virtual

Reality (VR) applications [3]. Notably, virtual tours based on spherical images have

gained popularity in the real estate industry, especially during the pandemic period.

To fully support immersion, a system must thus also respond to viewpoint translation.

While many solutions have been proposed for multiview capture setups (e.g., [4,

5]), performing view synthesis from single-shot panoramas is of primary importance,

due to the convenience and diffusion of sparse capturing through monocular 360◦

cameras [6]. However, view synthesis relies on estimating the geometric model of the

imaged environment, explicitly or implicitly, to perform occlusion-aware reprojection

and synthesize disoccluded content. This aspect is even more crucial if the purpose

is also to derive other non-obvious information from the original view, such as,

for example, deriving a model of the permanent structure without clutter [7]. To

achieve immersive visualization and effective editing in indoor 3D reconstruction, it

is necessary to address several fundamental research questions related to depth and

layout estimation and novel view synthesis.

In our research project, we proposed to extend the state of the art in these fundamen-

tal tasks and particularly in their combination aimed at indoor immersive exploration

and editing, just starting from a single 360-degree image. To this end, we researched

novel approaches to exploit indoor architectural priors, that take in account the very

specific man-made environment features, and effective data-driven solutions, that
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learn hidden relations from big-data examples. Our contributions result in several,

innovative, end-to-end solutions, such as a novel methodology for 3D scene synthesis

of Atlanta-world interiors from a single omnidirectional image, a novel approach

for deep synthesis and exploration of omnidirectional stereoscopic environments

from a monoscopic panoramic image, an innovative end-to-end technique for instant

automatic emptying of panoramic indoor scenes. This thesis presents the results

obtained during such a research.

Keywords: Visual Computing, Computer Vision, Computer Graphics, Spherical Cap-

ture, Omnidirectional Capture, Panoramic Capture, Equirectangular Projection, 3D

Reconstruction, Indoor Environment, Monocular Vision, Depth Estimation, 3D Lay-

out Estimation, View Synthesis, Immersive Exploration, Virtual Reality, Diminished

Reality.
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1Introduction

In recent years, significant research attention has been directed toward the automatic

3D reconstruction and modeling of indoor scenes, establishing it as an emerging and

well-defined sub-field within 3D reconstruction [1]. The primary goal is to convert

input data from real-world interior environments into compact structured models

that encapsulate geometric, structural, and visual abstractions [8]. Our focus in this

study lies in extracting information from panoramic images. These images offer rapid

and comprehensive coverage from a single shot and are compatible with a wide range

of professional and consumer capture devices, ensuring efficient and cost-effective

data acquisition. Furthermore, panoramic images have become a key component for

creating immersive content directly from real scenes and for supporting a range of

Virtual Reality (VR) applications [3].

In our work, we explored such modern trends, focusing in several assumed chal-

lenging for research: deriving 3D models from a single spherical image of an indoor

scene and exploring such models in a photorealistic and immersive way. This chapter

outlines the scientific motivation behind this work, provides a brief summary of

research achievements, and presents the overall organization of this thesis.

1.1 Background and motivation

The automated reconstruction of 3D models from acquired data, such as images or ge-

ometric measurements, has been a central focus in computer graphics and computer

vision for several decades. The growth of this field can be attributed to the conver-

gence of scientific, technological, and market advancements. These developments

align with the increasing accessibility and affordability of high-quality visual and

3D sensors, which are now widely available. Within this context, automatic recon-

struction of indoor environments has garnered significant attention [1]. Data input

can be sourced from various sensors. Visual input, such as photographic images, has
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garnered significant interest due to its widespread availability, ease of capture, and

affordability [9]. However, a single perspective image offers a limited view, and cap-

turing multiple images introduces complexities related to registration. Consequently,

360-degree capture has become an attractive solution in recent years. It provides

rapid and comprehensive coverage from a single image and is well-supported by a

diverse range of professional and consumer capture devices, ensuring efficient and

cost-effective data acquisition. Spherical cameras, also known as 360◦, panoramic,

or omnidirectional, or surround-view cameras, provide cost-effective and efficient

solutions for rapidly capturing in a single shot the full context around the viewer of an

entire environment [10]. A single panoramic image encompasses the complete scene

visible from a specific viewpoint within a 360◦ field of view at a given instant. When

experienced through a Head-Mounted Display (HMD), users dynamically explore this

image by directing their attention to the desired content through head movements,

leading to Virtual/Augmented/Extended Reality (VR/AR/XR) experiences with a

natural interface and good degree of immersion [11]. For these reasons, omnidirec-

tional imagery is increasingly recognized as a foundational element for generating

immersive content from real-world scenes and for supporting a variety of VR/AR/XR

applications [3]. Notably, 360◦ virtual tours have gained widespread popularity in

the real estate sector [12]. Furthermore, omnidirectional images are easily shareable

across various devices and platforms, making them highly versatile and accessible.

Since they can be seamlessly integrated into websites, VR/AR/XR applications, or

mobile platforms, they enable a broad audience to engage with indoor environments

irrespective of their location or their available equipment [10]. Serving as repre-

sentations of the user’s surroundings, panoramic images also promise to be one of

the essential building blocks for the construction of the shared physical and digital

realities envisioned by the Metaverse concept [13]. Even though capturing a single

shot panorama is a very appealing way to create a virtual clone of a real environment,

the limitation of presented content to what was visible around the fixed location

from which the panorama was taken leads to the loss of 3D cues, which are very

important to provide a sense of presence [6]. The fact that panoramas appear flat

is a particularly strong limitation in indoor environments, given the relatively short

distance from the viewer to the architectural surfaces and the objects.

Indeed, to fully support immersion, a system must be able to generate, in real

time, images that respond not only to changes of orientations, but also to changes

of the viewpoint position. While many solutions have been proposed for multi-

view capture setups, performing view synthesis from single-shot panoramas is of

primary importance, due to the convenience and diffusion of sparse capturing through
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monocular 360 cameras [6]. To achieve view synthesis, it is necessary to either

explicitly or implicitly estimate the geometric model of the imaged environment.

This, at least, enables occlusion-aware reprojection and the synthesis of disoccluded

content, as well as avoid artifact and improve the sense of presence.

To this end, automatically modeling a 3D immersive indoor environment from real-

world capture involves several challenging research tasks, where depth and 3D layout

estimation from a single image are among the most important. Depth information

enhances the input visual representation with per-pixel data representing the distance

of each visible pixel from the viewer, however not only the geometric representation

of the scene as observed from the point of view is sufficient to model an indoor scene,

but a more abstract model of the permanent architectural structure, also known as

3D layout, is required, usually cleared of furniture and other objects [14]. Recovering

such information is, however, complex because of the inherent characteristics of

interior rooms, where furniture and other interior elements mask large areas of the

structures of interest, and concave room shapes generate a large amount of self-

occlusion. Therefore, reconstruction requires information from a very large context

and must exploit very specific geometric priors for structure reconstruction [1].

In recent years, solutions based on deep-learning have emerged as a very efficient

way to deal with these problems [15]. Because of the ability of these techniques

to discover hidden relationships from large collections of data, many priors usually

imposed by analytical and heuristic approaches based on geometric reasoning can be

relaxed. Building on the aspects mentioned above, our research aimed to advance

the state of the art in both automatic indoor modeling and novel view-synthesis

from a single panoramic image as input. To overcome the inevitable problems and

ambiguities due to such challenging input, we sought new approaches that exploit

priors typical of man-made structures and the potential of the latest data-driven

techniques.

1.2 Objectives

In our research project we studied the state-of-the-art, relative to topics mentioned

above, and we identified specific objectives:

1. Recovering a 3D indoor model for novel view-synthesis.

Current 360◦ cameras offering viable low-cost and energy-efficient solutions
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for full-context single-shot capture are increasingly popular in many application

fields [10]. Since the captured 360◦ content, also known as panoramic, spherical,

or omnidirectional imagery, covers the entire sphere around the viewer, even a

single shot cannot be statically experienced at once, making it fundamentally

different, more immersive and more dynamic, than traditional 2D imagery [16].

However, the reduction in degrees of freedom to just the rotation around the

center of the panorama, leads to constraints and artifacts [6], especially since

only one or two shots per room are available in a typical virtual tour [17].

Moreover, binocular stereo and motion parallax, which are important aspects

of immersion in VR, are totally missing. To fully support immersion, a sys-

tem must thus also respond to viewpoint translation. While many solutions

have been proposed for multiview capture setups (e.g., [4, 5]), performing

view synthesis from single-shot panoramas is of primary importance, due to

the convenience and diffusion of sparse capturing through monocular 360◦

cameras [6]. View synthesis requires the explicit or implicit estimation of the

geometric shape of the imaged environment (i.e., 3D indoor model), in order

to perform occlusion-aware reprojection and to synthesize the disoccluded

content. Current state-of-the-art approaches (e.g., [18, 6]) focus on extending

to single-shot panoramas the general data-driven view synthesis approaches

designed for perspective views of objects and environments, such as Multi-

planar images (MPI) [19] or Neural Radiance Fields (NeRF) [20]. The mixing

of large untextured surfaces, clutter, and non-cooperative materials in interior

environments poses, however, important challenges to generic solutions [1].

In this context, it has been demonstrated that the knowledge of additional

information, such as the position location of the room corners and edges, sig-

nificantly improves the realism of the synthesis [17]. However, recovering the

indoor layout directly from the input image is extremely challenging. Even the

latest dedicated methods [21, 22, 23] still heavily rely on approximations and

expensive heuristic post-processing [24], which significantly limit overall perfor-

mance. As a result, their use for VR applications necessitating interactive-rate

image generation is inhibited.

2. Immersive exploration of indoor stereoscopic environments.

Even though capturing a single shot panorama is a very appealing way to

create a virtual clone of a real environment, the limitation of presented content

to what was visible around the fixed location from which the panorama was

taken leads to the loss of binocular stereo, which is very important to provide

a sense of presence [6]. The fact that panoramas appear flat is a particularly
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strong limitation in indoor environments, given the relatively short distance

from the viewer to the architectural surfaces and the objects. In order to

provide stereo cues for full 360-degree rotations, views from a continuous set

of shifted viewpoints must be available to the renderer (stereoscopic 3D model).

Omnidirectional stereo techniques [25, 26] are employed for that purpose but

require the creation of stereo panoramas using cameras moving on a circular

path [27, 26, 25] or multiple synchronized 360 cameras [3]. These acquisition

approaches, however, reduce the possibility of quickly capturing, experiencing,

and sharing a 360◦ scene using consumer hardware. In particular, while a

number of low-cost cameras are widely available for monocular 360◦ capture

(e.g., GoPro, Ricoh Theta, LadyBug, or Insta360), also due to the booming

"action-camera" market, stereo 360◦ solutions (e.g., Vuze+) are more costly

and limited, and also typically offer only a low number (i.e., six to eight) of

different point of views, leading to stereo and stitching artifacts. Moreover,

while rotating camera solutions provide more viewpoints, they do not share

the same simplicity and flexibility of single-shot instantaneous capture. For this

reason, research has concentrated on view synthesis methods that generate

stereo contents from a single 360◦ panorama. However, current methods either

require complicated representations or are too heavy to run directly on HMDs

and interactive rates.

3. Automatic-assisted editing of immersive indoor models.

A pure exploration of existing environments through the original spherical

photos, is, however very limiting. Prominent examples of additional needs in-

clude the emptying of rooms before their presentation to virtual visitors (if only

for privacy reasons), or the refurnishing or redecorating of interior spaces [28].

In this context, fast and effective Diminished Reality (DR) techniques, which

conceal real-life parts from the view field, are paramount to remove the fur-

niture and other clutter that masks the architectural structure. In particular,

DR features are essential to allow users to immediately compare the furnished

and unfurnished scene, and to support Augmented Reality (AR) applications in

placing objects in the empty scene [29, 30]. Making these features available

on novel environments with minimum latency, ideally in real-time, would, in

addition, enable their usage in remote collaboration contexts, without the need

for prior modeling [31]. While a variety of object erasing and image inpainting

solutions have been presented in the literature (see section 5.3), DR for interior

environments must generate images of empty indoor spaces that not only have

a realistic appearance, but respect the context in stricter ways, in particular
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by inferring a plausible organization of the permanent architectural structure

that bounds the room’s interior [32]. Data-driven solutions, that learn hidden

relations from examples, are emerging as viable approaches for this class of

problems. However, state-of-the-art methods for image inpainting are mostly

focused on photorealism [33, 34], and additional information about the scene is

exploited only from the semantic point-of-view [35, 36, 32]. Current pipelines

make limited use of the structure of the observed scene, and reconstruction

accuracy is achieved at the price of high computational complexity or increased

user intervention, using, for example, recursive networks [37], multi-branch

architectures [34], and manual definition of specific parts of the original image

to be removed [35].

1.3 Achievements

Starting from the targeted objectives, we researched novel techniques, network

structure, loss functions, and training methods. Our research produced a series of

scientific results (listed at section 6.3), which advanced the state of the art in many

aspect. We select among them the main achievements (see section 1.2):

• A novel methodology for 3D scene synthesis of Atlanta-world interiors

from a single omnidirectional image (section 3). A new data-driven approach,

targeting the objective 1, for extracting geometric and structural information

from a single spherical panorama of an interior scene, and for using this infor-

mation to render the scene from novel points of view, enhancing 3D immersion

in VR applications. The approach copes with the inherent ambiguities of single-

image geometry estimation and novel view synthesis by focusing on the very

common case of Atlanta-world interiors, bounded by horizontal floors and

ceilings and vertical walls. Based on this prior, we introduce a novel end-to-end

deep learning approach to jointly estimate the depth and the underlying room

structure of the scene. The prior guides the design of the network and of

novel domain-specific loss functions, shifting the major computational load on

a training phase that exploits available large-scale synthetic panoramic imagery.

An extremely lightweight network uses geometric and structural information

to infer novel panoramic views from translated positions at interactive rates,

from which perspective views matching head rotations are produced and up-

sampled to the display size. As a result, our method automatically produces

new poses around the original camera at interactive rates, within a working
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area suitable for producing depth cues for VR applications, especially when

using head-mounted displays connected to graphics servers. The extracted

floor plan and 3D wall structure can also be used to support room exploration.

The experimental results demonstrate that our method provides low-latency

performance and improves over current state-of-the-art solutions in prediction

accuracy on available commonly used indoor panoramic benchmarks. This

work has been published as a TVCG journal paper [38] and presented at the

IEEE ISMAR conference 2023. The candidate was responsible for all the aspects

of the work, from conceptualization, methodology, software, to validation,

writing and review of the related papers.

• A novel approach for deep synthesis and exploration of omnidirectional

stereoscopic environments from a monoscopic panoramic image (section 4).

An innovative approach, targeting the objective 2, to automatically generate

and explore immersive stereoscopic indoor environments derived from a single

monoscopic panoramic image in an equirectangular format. Once per 360◦

shot, we estimate the per-pixel depth using a gated deep network architecture.

Subsequently, we synthesize a collection of panoramic slices through reprojec-

tion and view-synthesis employing deep learning. These slices are distributed

around the central viewpoint, with each slice’s projection center placed on

the circular path covered by the eyes during a head rotation. Furthermore,

each slice encompasses an angular extent sufficient to accommodate the po-

tential gaze directions of both the left and right eye and to provide context for

reconstruction. For fast display, a stereoscopic multiple-center-of-projection

stereo pair in equirectangular format is composed by suitably blending the

precomputed slices. At run-time, the pair is loaded in a lightweight WebXR

viewer that responds to head rotations, offering both motion and stereo cues.

The approach combines and extends state-of-the-art data-driven techniques,

incorporating several innovations. Notably, a gated architecture is introduced

for panoramic monocular depth estimation. Leveraging the predicted depth,

the same gated architecture is then applied to the re-projection of visible pixels,

facilitating the inpainting of occluded and disoccluded regions by incorporating

a mixed Generative Adversarial Network (GAN). The resulting system works

on a variety of available VR headsets and can serve as a base component for a

variety of immersive applications. We demonstrate our technology on several

indoor scenes from publicly available data. This work has been accepted for

publishing as a Computers & Graphics journal paper [39] and awarded with

honorable mention at the ACM WEB3D conference 2023. The candidate The
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candidate was responsible for all the aspects of the work, from conceptualiza-

tion, methodology, software, to validation, writing and review of the related

papers.

• An innovative end-to-end technique for instant automatic emptying of

panoramic indoor scenes (section 5). A new data-driven approach, targeting

the objective 3, that from an input 360◦ image of a furnished indoor space,

automatically returns an omnidirectional photorealistic view and architecturally

plausible depth of the same scene emptied of all clutter. Contrary to previous

data-driven inpainting methods that remove single user-defined objects based

on their semantics, our approach is holistically applied to the entire scene, and

is capable to separate the clutter from the architectural structure in a single

step. By exploiting peculiar geometric features of the indoor environment,

we shift the major computational load on the training phase and having an

extremely lightweight network at prediction time. This work has been published

as a TVCG journal paper [40] and presented at the IEEE ISMAR conference

2022. The candidate was responsible for all the aspects of the work, from

conceptualization, methodology, software, to validation, writing and review of

the related papers.

1.4 Organization

We organize this thesis as following:

• Chapter 1 (this chapter) introduces the topic and motivation for this disserta-

tion, with a summary of objectives and achievements.

• Chapter 2 presents general requirements, work hypotheses and means of

verification.

• Chapter 3 describes a novel deep learning approach that extracts geometric and

structural information from a single panorama in order to quickly synthesize

plausible panoramic images from close-by viewpoints within a workspace

suitable for VR applications.
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• Chapter 4 describes an innovative approach to automatically generate and

explore immersive stereoscopic indoor environments derived from a single

monoscopic panoramic image in an equirectangular format.

• Chapter 5 describes novel techniques to exploit a photorealistic and geometric

consistent indoor model recovered from a single panoramic image for immersive

virtual staging applications.

• Chapter 6 provides a conclusion and short summary of the achievements, a

critical discussion of the results obtained and of how they advance the state-of-

the-art, as well as discussion on future lines of work.
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2General requirements, work

hypotheses, and means of

verification

In this chapter we provide a summary of general definitions related to the
research works, the hypothesis leading the thesis and the means adopted for the
verification.

2.1 Basic definitions

The following is a list of important definitions related to the main concepts that

appear in the thesis:

• Omnidirectional images. An image with a 360◦ horizontal viewing angle and

180◦ vertical viewing angle. Also called in many works (with a little abuse of

the term) panoramic image, can be obtained by many means, including stitching

of a sequence of photos captured with a mobile phone or by a professional

device [41], or, in one-shot, by modern commodity spherical cameras, which

have become very widespread and increasingly popular in many application

fields [10]. Since the sphere is not isomorphic to a plane, representing the

capture as an image typically involves a mapping transformation. While some

cameras provide access to the original unstitched images, that provide the

highest resolution capture, the most common approach, that has become a

de-facto standard in indoor capture and processing, is to extract from the device

an equirectangular projection sampled into a regular rectangular 2D grid [42],

obtaining what is often called a full panoramic image.

• Structured indoor model. It is an abstract structure defined by a graph of

rooms bounded by walls, floor, and ceiling, as well as connected by doors/passages

and containing objects, such as furniture and wall-mounted items. The struc-

tured model thus combines a topological part (the connection graph), a ge-

ometric part (the shape of the various components) and a visual part (the
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appearance model of the different nodes). In our work, since, we are interested

in modeling the environment surrounding an observer, the structured indoor

model is related to one hypothetical environment or room, the topological and

geometrical part of which is the indoor layout (described below).

• Indoor layout. An abstract representation of a 3D indoor space (usually a

room), as a joining of walls, ceilings and floors planes, representing the perma-

nent architectural structure, usually cleared of furniture and other objects [14].

Fig. 2.1.: Architectural priors. A list of architectural priors used in 3D reconstruction, in
order of complexity (Pintore et al., CVPR 2023 [43]).

• Indoor priors. Architectural indoor priors makes it possible to reduce the

solution space, making reconstruction more tractable. Figure 2.1 summarizes,

in order of complexity, the most commonly geometric priors used in indoor

for surface reconstruction. They include Floor-Wall (FW) [44], composed by

a single flat floor and straight vertical walls; cuboid (CB) [45], being a single

room of cuboid shape; Indoor World Model (IWM) [46], with a single horizontal

floor, a single horizontal ceiling, and vertical walls that meet at right angles;

Manhattan World (MW) [47], an IWM without the restriction of a single floor

and celing; Atlanta World (AW) [48], similar to MW, without the restriction of

walls connecting at right angles; Vertical Walls, and Atlanta-World model with

possibly sloped ceilings and floors [48], and piecewise planarity, that simply

bounds the interior with large planar surfaces [49].

• Pixel-wise information. Given a map of pixels, (e.g., an equirectangular

image), information is pixel-wise is that assigned to each pixel, in addition

to color, such as a depth value. in the case of equirectangular images, each

position in the image represents a view direction (i.e., longitude and latitude),

as well as the associated depth is the euclidean distance of the point form the

camera origin. Other pixel-wise information, if associated to the image, can be

normals or semantic segmentation.
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• Novel view-synthesis. It is a specific task in computer graphics and computer

vision. It involves generating images of a specific subject or scene from a

particular viewpoint, even when the only available information consists of

pictures taken from different viewpoints. Essentially, it allows you to create

new views of an object or scene that were not originally captured, based on

existing images and their associated camera poses.

• Structural consistency. It refers to the coherent and regular arrangement

of elements within an indoor environments. In our studies we expect that

the generated novel views keep such consistency according to indoor priors.

This is crucial to avoid artifact and unpleasant experiences during immersive

exploration or interaction.

• Immersive exploration. Immersive exploration in the context of virtual re-

ality (VR) refers to the captivating experience of fully engaging with a three-

dimensional (3D) digital environment. Immersive exploration involves creating

a simulated environment that completely surrounds and engulfs the user’s

senses and it typically requires specialized hardware, such as a head-mounted

display (HMD).

• Diminished reality. Diminished Reality (DR) is a set of methodologies that

allow users to visually remove, hide, or see through real-life objects in a

perceived environment. Unlike augmented reality (AR) and mixed reality

(MR), which superimpose virtual objects onto the real world to enhance reality,

DR focuses on diminishing the perception of reality. In our work, removing

clutter from one indoor environment means generating another realistic indoor

environment for, for example, virtual staging applications. In that sense any

subsequent augmented or extended reality applications, where new synthetic

objects are placed in the environment, is outside the scope of our modeling.

2.2 Research questions

Building on the objectives mentioned in section 1.2, our research aimed to advance

the state of the art in both automatic indoor modeling and immersive exploration

from a single panoramic image as input. Below we summarize the main specific

research questions to address such objectives:

1. How to associate a pixel-wise depth to the input RGB image? Generating new

views at positions other than the original, necessarily requires knowledge
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of the spatial position of the points seen by the observer, in order to apply

the proper translation (see section 3.4). In other words, each RGB pixel in

the equirectangular image must be associated with a depth, such that the

2D pixel can be transformed, by spherical coordinates to a 3D colored point,

and the entire point cloud can be rendered from a new equirectangular view.

Estimating the depth an indoor panoramic image is a very trendy research topic

(see section 3), and for its nature, an open research problem.

2. How to recover an occlusion-free 3D layout of the room from a single pose? The

mere translation of the point cloud derived with depth not contain all the

information necessary to define a full translated viewport. In fact, some parts

of the scene will be occluded or disoccluded. It has been demonstrated that the

knowledge of additional information, such as the position location of the room

corners and edges (i.e., room layout), especially those hidden in the original

point-of-view, significantly improves the realism of the synthesis [17]. However,

recovering the indoor layout directly from a single input image is extremely

challenging [14]. To this end, specific techniques to recover the 3D layout from

a single equirectangular image need to be researched.

3. How to generate both photorealistic and structural consistent novel views? In order

to generate new views required for immersive experience, scene generation

and impainting techniques are employed (see section 4). Such photorealistic

inpainting techniques work very well in cases of small disocclusions due to the

natural movements of the observer in the scene (see section 4.3), but may

break down in the case of large disocclusions. This is a typical case during

scene editing if, for example, clutter has to be removed from the scene for

virtual staging applications (see section 5.3). In this situation the problem of

how to complete the missing parts emerges, not only from the photorealistic

point of view, but also in terms of geometric-structural consistency.

2.3 Hypotheses supporting the prospected
solutions

The answers to the research questions, which are explained and detailed in the

following chapters, are based on the following hypotheses:

1. How to associate a pixel-wise depth to the input RGB image? Starting from the fact

that gravity plays an important role in the design and construction of man-made
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indoor scenes [15], we research novel depth estimation techniques that exploit

gravity-aligned features (GAFs) to take into account the fact that world-space

vertical and horizontal features have different characteristics in man-made

environments (see section 2.1). Such design starts from the assumption that

capture of the scene through an equirectangular image is aligned to the gravity

vector (i.e., camera is placed on an horizontal-ground plane).

2. How to recover an occlusion-free 3D layout of the room from a single pose?

Deriving a scene layout has a different complexity than estimating single depth,

since it does not simply assign a geometric value to each visible pixel, but must

extrapolate large portions of the invisible structure, which may be occluded not

only by objects but by the structure itself. In our work, we assumed that an

indoor facility can be reasonably represented as an Atlanta World model, that

is, we assume that our rooms have flat floors and ceilings. This assumption is

less restrictive than the classic Manhattan World, as it admits free wall shapes

and corners (see section 2.1).

3. How to generate both photorealistic and structural consistent novel views? While

some structural information, such as the location of corners and edges disoc-

cluded by translation, can be provided as input to an eventual neural network

for the synthesis of a new view, conditioning the generation of the final scene

so that it is structurally consistent is not straightforward (see section 2.1). In

our work we have confronted this problem by assuming that different indoor

priors can be represented as specific losses, in the same way that a perceptual

style is imposed [50].

2.4 Means of verification

The hypotheses above have been researched and verified, and have become the

basis for the technical contributions of peer-reviewed publications published by the

author during the research project (see section 1.3). Furthermore, full pipelines

have been implemented of top of the publications, the performance of which exceeds

the relative state of the art in many aspects. Operationally, the validation adopts the

following approaches:

1. We implement our deep learning algorithms on PyTorch [51], a flexible and

powerful framework for creating and deploying deep learning models, widely

used by the works related to ours. The use of this framework provides a baseline

that facilitates comparison with other work, and enables the use of large-scale
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datasets for training, validation and testing by leveraging multi-GPU distributed

computing.

2. We adopt commonly used datasets for benchmarking the current state of the

art, providing ground truth for depth, layout, and alternative views from

different locations of common indoor environments. Specifically, we exploit

Structured3D[52], a large-scale synthetic database of indoor scenes comprising

21,000 photorealistic scenes, which provides ground truth depth and layout in-

formation for each panoramic image, and PNVS [17], a subset of Structured3D

scenes providing, for each source panoramic image, three views translated by

0.2-0.3m along random directions, and three views translated by 1.0-2.0m.
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3Recovering a 3D indoor model for

novel view-synthesis

In this chapter, we present a new data-driven approach which addresses the specific

problems of item 1. Such an approach aims to extract geometric and structural

information from a single spherical panorama of an interior scene, and to use this

information to render the scene from novel points of view, enhancing 3D immersion

in VR applications. The approach copes with the inherent ambiguities of single-image

geometry estimation and novel view synthesis by focusing on the very common case

of Atlanta-world interiors, bounded by horizontal floors and ceilings and vertical

walls. Based on this prior, we introduce a novel end-to-end deep learning approach to

jointly estimate the depth and the underlying room structure of the scene. The prior

guides the design of the network and of novel domain-specific loss functions, shifting

the major computational load on a training phase that exploits available large-scale

synthetic panoramic imagery. An extremely lightweight network uses geometric and

structural information to infer novel panoramic views from translated positions at

interactive rates, from which perspective views matching head rotations are produced

and upsampled to the display size. As a result, our method automatically produces

new poses around the original camera at interactive rates, within a working area

suitable for producing depth cues for VR applications, especially when using head-

mounted displays connected to graphics servers. The extracted floor plan and 3D

wall structure can also be used to support room exploration. The experimental results

demonstrate that our method provides low-latency performance and improves over

current state-of-the-art solutions in prediction accuracy on available commonly used

indoor panoramic benchmarks.

3.1 Introduction

A single-shot 360◦ image, containing the entire scene around the viewer, is not

consumed at once, but inherently requires a more dynamic exploration with respect
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Fig. 3.1.: Given a single 360◦ panorama of an indoor scene, we compute an enriched
geometric and structural representation, from which novel panoramas from other
close-by viewpoints can be synthesized at interactive rates in response to user
motion.

to traditional 2D imagery. When it is presented through a Head-Mounted Display

(HMD), the viewer is encouraged to actively focus on the desired content via natural

head movements, leading to an intuitive VR interface [11]. For this reason, 360◦

image viewing is becoming one of the main exploration modes of real-world scenes

in VR [3] and has widespread use in indoor navigation [53].

The reduction in degrees of freedom to just the rotation around the center of the

panorama, leads, however, to constraints and artifacts [6], especially since only

one or two shots per room are available in a typical virtual tour [17]. Moreover,

binocular stereo and motion parallax, which are important aspects of immersion in

VR, are totally missing. To fully support immersion, a system must thus also respond

to viewpoint translation. While many solutions have been proposed for multiview

capture setups (e.g., [4, 5]), performing view synthesis from single-shot panoramas

is of primary importance, due to the convenience and diffusion of sparse capturing

through monocular 360◦ cameras [6].

View synthesis requires the explicit or implicit estimation of the geometric shape

of the imaged environment, in order to perform occlusion-aware reprojection and

to synthesize the disoccluded content. Current state-of-the-art approaches (e.g.,

[18, 6]) focus on extending to single-shot panoramas the general data-driven view

synthesis approaches designed for perspective views of objects and environments,

such as Multi-planar images (MPI) [19] or Neural Radiance Fields (NeRF) [20]

(section 3.3). The mixing of large untextured surfaces, clutter, and non-cooperative

materials in interior environments poses, however, important challenges to generic

solutions [1]. In this context, it has been demonstrated that the knowledge of

additional information, such as the position location of the room corners and edges,

significantly improves the realism of the synthesis [17]. However, recovering the

indoor layout directly from the input image is extremely challenging. Even the latest

dedicated methods [21, 22, 23] still heavily rely on approximations and expensive
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heuristic post-processing [24], which significantly limit overall performance. As a

result, their use for VR applications necessitating interactive-rate image generation is

inhibited.

In our work, we research a new end-to-end data-driven solution that, from a single

360◦ indoor panorama, assumed captured with approximate gravity alignment,

produces with low latency a newly translated pose from which new perspective

images can be extracted that respond to both position and orientation changes. While

some HMD solutions strive to fully run on the embedded platform, an alternative

design is to compute images on high-performance servers. This approach, extensively

employed for high-quality gaming, is made possible by the availability of low-latency

tethered or wireless connections with sufficient bandwidth to feed the displays [54].

In our approach, a thin WebXR client directly handles head rotation, while relying on

server-computed images to also respond to head translations. Our main novelty is

in the indoor-specific deep-learning techniques that synthesize the views. Once per

scene, we enrich the original panorama with geometric and structural information,

and once per frame, we exploit pre-computed information to quickly perform view

synthesis.

The approach copes with the inherent ambiguities of single-image geometry esti-

mation and novel view synthesis in indoor environments by focusing on the very

common case of interiors following the Atlanta world model (AWM) [1], in which the

environment is expected to have horizontal floor and ceiling and vertical walls. Based

on this prior, we introduce a novel end-to-end network to jointly estimate the depth

and the underlying room structure of the scene, thus efficiently handling occlusions

and disocclusions and enabling a plausible prediction even in the case of extensively

occluded structures. The prior drives the network structure, which also exploits

gravity-aligned features (GAFs) to take into account the fact that world-space vertical

and horizontal features have different characteristics in man-made environments.

In particular, AWM makes it possible to derive the 3D layout by extruding its 2D

floor projection, while GAFs perform vertical compression, exploiting the fact that

vertical lines, common in indoor scenes, are not deformed in equirectangular projec-

tions. Because of these characteristics, we expect scene GAFs to be inter-related by

both short-term and long-term spatial dependencies, improving the quality of depth

prediction and layout prediction [15], and, therefore, visual synthesis.

Starting from the enriched panoramic representation, a lightweight network infers

at interactive rates novel panoramic images from translated positions in a working
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area around the original point of view suitable for VR applications. From these views,

perspective images matching head rotations are produced and upsampled to display

size. Moreover, the geometric and structural information recovered can also be used

to support VR applications, e.g., to define walkable areas.

3.2 Contributions

Our main novel contributions are the following:

• We present a novel approach, dubbed Atlanta Depth Module - ADM, to jointly

estimate, starting from a single equirectangular image, the scene depth, a

scene latent representation, the 3D room shape and a floor occupancy map

(section 3.4.1). ADM achieves state-of-the-art results on both geometric and

structural reconstruction (section 3.5), and provides many advantages for VR

applications. First, it is much more lightweight than current solutions for

depth or layout estimation commonly adopted in this context [55, 24, 15].

Second, the recovered AWM structure is segmented into ceiling, walls, and

floor, and represented in metric units, including the prediction of ceiling-floor

heights. This, besides improving view synthesis, supports the creation of a

floor occupancy map, to generate consistent trajectories inside the room without

collisions.

• We introduce novel objective functions to take into account the indoor struc-

tural consistency (section 3.4.3) of the view synthesis. Such functions, based

on GAF encoding [15, 56], support direct (i.e., target predicted depth loss) and

latent-space losses. Latent-space losses guide a consistent structural reconstruc-

tion during training and are dual to visual losses, called geometric perceptual

and geometric style, Such losses, combined with standard perceptual style trans-

fer and adversarial losses, improve reconstructed scene quality (section 3.5),

shifting much of the computational load to the training phase, and making the

inference phase much lighter.

• We introduce a fully data-driven, versatile, and lightweight approach to gen-

erate novel panoramic views from a single indoor panorama. Such a deep

learning approach does not need dedicated processing for each scene [18, 6],

but generalizes over indoor scenes that just follow AWM (section 3.5). Once

latent deep features and structural priors are applied at training time, novel
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pose synthesis is obtained through a network (GVS) without deep layers or

complex pipelines. In fact, GVS consists of a limited number of layers, combin-

ing gated and dilated convolutions, focused on maximizing the level of detail

(section 3.4.2). As a result, we have a network with a limited and constant num-

ber of learnable parameters (section 3.5.2), even as generated image resolution

varies.

Our results (section 3.5) improve over state-of-the-art approaches on common bench-

marks with measurable ground truth, in terms of accuracy, quality and computational

complexity. Moreover, compelling predictions are produced even on images where

no ground truth is available for training, as well as on novel user-captured images.

(a) Forward pipeline

(b) Training scheme

Fig. 3.2.: Approach overview. At loading time, we process the input equirectangular image
to recover depth Ds, Atlanta structure As, occupancy map Om and latent scene
representation Ls (ADM section 3.4.1). When moving from the source position,
the generation of the new translated views is done by a soft z-buffer and a gated
neural network, dubbed Gated View Synth network - GVS (section 3.4.2). Free
viewpoint images can then be generated by extracting perspective views from the
translated panoramas taking into account rotations. Supervised training of the
GVS network combines visual and perceptual losses with novel indoor-specific
losses (section 3.4.3).

3.3 Related Work

Effective view synthesis requires comprehensively understanding the 3D structure

of a scene given an image [57]. Full coverage of this topic is outside the scope of
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this paper. In the following, we focus on the most closely related approaches, with a

particular focus on data-driven solutions for panoramic images.

3.3.1 Depth estimation from panoramic images

Monocular depth estimation is a classic task in computer vision. While early solutions

used various combinations of feature detection, matching, and geometric reasoning,

recent research is increasingly focusing on data-driven solutions that derive hidden

relations from large amounts of examples [15]. Since it has been shown that directly

applying perspective methods to 360◦ depth estimation in indoor environments pro-

duces suboptimal results [58], research has started to focus on explicitly exploiting

the characteristics and wide geometric context present in omnidirectional images.

A first breed of solutions concentrated on handling distortion through spherical

convolution [59, 60, 61, 62, 58]. Wang et al. [63] proposed instead a two-branch

network, respectively for the equirectangular and the cubemap projection, based on

a distortion-aware encoder [58] and the FCRN decoder [64]. Recent solutions for

panoramic depth estimation in indoor spaces [65, 15] have proposed to work directly

on equirectangular images, as well as to leverage the concept of gravity-aligned

features to reduce network size [24, 15]. A recent trend to mitigate panoramic distor-

tion is to leverage perspective views sampled on panoramic images [66, 67] prior to

combining depth maps using transformers. In this work, we leverage gravity-aligned

features [15] to flatten image features and then process them with a lightweight

network designed for interactive applications (section 3.4.1). Compared to previous

works, we achieve state-of-the-art performance at a much lower computational cost

(section 3.5).

3.3.2 Layout estimation from panoramic images

While depth estimation methods have shown impressive performances, they cannot

produce seamless 3D boundary surfaces in case of self-occlusions, since they can only

generate a single 3D position per view ray. For this reason, layout-specific approaches

are being actively researched. Since man-made interiors often follow very strict rules,

early pin-hole methods used geometric reasoning to match image features to simple

constrained 3D models [1]. The effectiveness of geometric reasoning methods is,

however, heavily dependent on the count and quality of extracted features (e.g.,

corners, edges, or flat patches). More and more research is thus now focusing

on data-driven approaches [68]. Prominent examples are LayoutNet [55], which
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predicts the corner probability map and boundary map directly from a panorama,

and HorizonNet [24], which simplifies the layout as three 1D vectors. The 2D

layout is then obtained by fitting Manhattan World Model (MWM) segments on

the estimated corner positions. To mitigate spherical distortion and maximize the

efficiency of modern deep learning techniques such as transformers, many recent

approaches project the equirectangular input image to planar surfaces [69, 48, 70,

23, 22]. These methods, however, require heavy pre-processing, such as detection

of main Manhattan-world directions from vanishing lines analysis [68, 2, 71] and

related image warping, or complex layout post-processing, such as Manhattan-world

regularization of detected features [55, 24, 69]. LayoutNet [55], for instance,

has been used to support view synthesis of individual panoramic images [17] by

providing the location of corners in the image, but cannot run at interactive rates.

Several methods have, thus, sought to relax the constraints of the Manhattan World

model, while decreasing the computational load required by exploiting more general

features of man-made structures [1, 56]. These methods, however, target the general

reconstruction of the overall room shape but are not usable for the completion of

photorealistic views, lacking well-defined parts and edges. In this work, we propose,

instead, a new approach for fast estimation of a structured layout, where, unlike the

mentioned methods, the estimation is done not from the RGB image but from its

depth, appropriately transformed (section 3.4.1). Moreover, we apply Atlanta World

projection to depth values, and projection is not done on an arbitrary plane as in

other transform-based approaches [69, 1].

3.3.3 Novel view synthesis

Our solution exploits recovered depth and layout for novel view synthesis from

monocular input. Most view synthesis approaches exploit, instead, multi-view input,

such as NeRF [20], the methods based on depth, proxy geometry, and flow [72, 27,

73, 74], or, for 360◦ views, those using a layered image representation [75, 76],

multi-depth panoramas [77], or layered mesh representations [5]. The method of

Serrano et al. [78] extended the layered image representation approach to work with

a single panoramic input image, but with only a few depth layers and extrapolation

and in-painting to fill holes. Layered solutions have been also extended to be used

as a target representation in an end-to-end learning pipeline. In multi-plane images

(MPI) [79], each layer is a flat plane placed at a fixed depth from the capture

point. The regularity of the representation makes it suitable to be the output of a

convolutional neural network. Tucker and Snavely [19] introduced a method to infer
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an MPI from a single perspective image. PanoSynthVR [6] extended this approach

by exploring the use of a multi-cylinder representation to approximate a 360 view.

However, the method does not exploit information specific to indoors, produces

blurry images at disocclusions and severely degrades quality when the viewpoint

moves too far from the origin (section 3.5). Xu et al. [17] recently extended to

panoramic images the approach of SynSin [57], which uses a neural network to

produce both a depth map and a feature map which can then be rendered to new

perspective viewpoints. Moreover, similarly to us, they incorporate prior knowledge,

in the form of screen corners, demonstrating the importance of using additional

information that does not depend on the input viewpoint. Such an approach is

capable of generating new, sparse views, but its performance depends on externally

computed information and requires a considerable computational cost. An alternative

solution is proposed by OmniNeRF [18], which proposes a self-supervised approach

to generate novel views given a single panoramic image and its depth, with the goal

to feed a NeRF [20] pipeline with multiple poses. Although it is one of the first works

to adapt the NeRF concept to a panoramic image, the synthesized images feeding the

training are a simple interpolated splatting of the original view, so that new views

obtained at run time suffer from significant artifacts. In contrast, by introducing and

exploiting important indoor priors at inference and training levels (section 3.4.3), we

generate new views with greater accuracy than the methods mentioned above and

with a particularly lightweight end-to-end network. Our reconstruction is also not

only visually but also spatially consistent, unlike other representations [19, 4, 6].

3.4 Methods

In our approach, a thin client explores an HMD synthesized panoramic images that

are adapted to position changes through server-side computation.

The extraction, server side, of structural information from a room and the generation

of a translated panorama are the most complex operations and are performed through

a novel deep learning architecture, whose structure is depicted in Figure 5.2.

Once per scene, we assign a viewer-independent geometry context to input source

pixels, to create a room structure that can be used for various purposes and to

propagate enriched input information to the new pose. Jointly with depth estimation,

we infer a structured model of the underlying architectural structure through a

deep network that exploits the Atlanta World prior. The network, dubbed Atlanta
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Depth Module (ADM) (orange module in Figure 3.9), feeds the second step of the

pipeline, that, every time the viewer position changes, generates the translated

panoramic image. While both modules could be trained as a whole, in our design,

for performance reasons, we pre-trained ADM separately from view synthesis.

The pre-trained ADM returns the scene depth, a latent scene representation, the

room 3D shape, and, additionally, a floor occupancy map (section 3.4.1). Gravity-

aligned features (GAFs) encode a panoramic image into a multi-resolution latent

scene representation. GAFs are basically used in two ways. On one hand, their

decoding produces a pixel-wise depth of the scene (Figure 3.9, orange); on the other

hand, the GAF encoding supports specific geometric loss functions in latent space that

guide the training of the view synthesis model (Figure 3.2b). Moreover, downstream

network layers process the recovered depth to predict a 3D model of the room. As this

3D model is viewer-independent, it is computed once at the time of image loading,

albeit with low computational cost, and does not need to be re-executed at each view

synthesis. Moreover, the 3D model can be used for a variety of purposes. For instance,

it makes it possible to define a walkability map, as well as to limit the legal area for

new viewpoints so that there are no walls crossed and we remain inside the room.

The panoramic view synthesis phase, depicted in the orange block of Figure 3.9,

is performed at each viewer position change through a very light network that

comprises a soft z-buffer block and a gated neural network, dubbed Gated View Synth

(GVS) (section 3.4.2). The GVS network is trained in a supervised way through a

combination of specific losses (section 3.4.3). In particular, in addition to standard

metrics in view synthesis, we introduce novel geometric and structural metrics, that

also exploit latent space GAFs.

The output of the view synthesis phase is the translated 360◦ view from which

free-viewpoint images that respond to translation and rotation can be extracted. In

our reference design, the view synthesis machinery is exploited in a client-server

application, where a thin WebXR client runs directly on the HMD’s embedded platform

and communicates with the server that handles the compute-intensive tasks. Both

client and server are initialized at each scene change with the initial view, which

is used by the client for display and by the server to compute from visual data the

augmented panoramic scene representation. The client is designed as a foveated

panoramic image viewer, that maintains, in two textures, a low-res and a hi-res

representation of portions of the scene’s panorama in an equirectangular format

centered approximately around the current lookat point. The low-res panorama
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typically comprises a 180x180 degree portion (full frontal view), while the high-res

panorama covers at double resolution a 90x90 degree area (HMD FOV). A fragment

shader combines the two textures at each frame to produce a seamless view. At each

head position change, the head transformation is sent to the server. The position is

communicated to the view synthesis network for producing the translated panorama.

The rotation is used to determine the current look-at point. Since view synthesis, as

for all current deep learning solutions, is performed at a resolution that is lower than

current HMD capabilities, we perform image upsampling of the viewing region around

the look-at point using state-of-the-art deep learning super-resolution methods [80].

The low-res image and hires image, together with the associated parameters are

then sent to the client for display. The supplementary material provides detailed

information on the structure of the client-server application.

The novel aspects of our work reside in the methods that are employed to generate

the translated panorama, which, in addition to supporting view extraction, also

generate auxiliary structural and geometric information that can be exploited for

other needs. In the following we will describe the main components of this block,

first focusing on depth and 3D layout prediction (section 3.4.1), and then on novel

view synthesis (section 3.4.2) and training methods (section 3.4.3).

3.4.1 Depth and 3D layout prediction

(a) depth estimation block (DEB)

(b) layout estimation block (LEB)

Fig. 3.3.: Atlanta depth module (ADM). ADM is an end-to-end network that returns
scene depth Ds, latent representation Ls, Atlanta-world 3D room shape, and
floor occupancy map. Here we illustrate the two main cascading blocks: the
depth estimation block (DEB) (a) and the layout estimation block (LEB) (b). DEB
recovers from the input image the depth and its latent representation, while LEB
recovers the layout from the predicted depth.
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The Atlanta Depth Module (ADM) can be subdivided into two cascading blocks: depth

estimation (Figure 3.3a) and layout estimation (Figure 3.3b). The first network block,

dubbed depth estimation block (DEB), receives as input a single panoramic image

Is
h×w and returns as output a depth Ds

h×w in metric units (i.e., meters), coupled

with a latent representation of the scene Ls, which is also used for the specific losses

described in section 3.4.3. The second block, dubbed layout estimation block (LEB),

receives as input Ds
h×w, and returns as output an Atlanta World representation As

(Figure 3.4.1). The rest of this section summarizes the main aspects of DEB and LEB.

We refer the reader to the supplementary material for more details.

Depth estimation block. From the input image, a cascade of five residual layers [81]

creates four feature maps having different depth and spatial size (Figure 3.3a). We

consider, then, both the spherical and indoor nature of the scene to further process this

representation. First, we adopt circular padding along the horizon for convolutions,

to overcome the longitudinal boundary discontinuity, and reflection padding to

alleviate the singularities at the poles [32]. Then, in order to support an efficient

gathering of information from the extracted features, we perform a specifically indoor-

designed feature compression exploiting our knowledge of preferential directions

(i.e., gravity direction), assuming that world-space vertical and horizontal features

(GAF, gravity aligned features) have different characteristics in most, if not all, man-

made environments [15, 56]. Compressed latent features Ls = (l1 . . . l4) contain

a wealth of information on the geometry of the scene, both local and non-local,

which can be exploited to recover depth and layout, as well as to provide a latent

representation on the scene for further processing (section 3.4.3).

For depth estimation, we aim to leverage complementary features in distant portions

of the image rather than only local regions, to maximize the wide contextual informa-

tion provided by omnidirectional images while keeping the computational cost low.

To do that, we adopt a single-layer multi-head self-attention (MHSA) scheme [82]

to process the latent feature (see Supplementary material). Once passed to the

MHSA module, the decoding of the latent feature is very fast, through convolutions,

upsampling modules, and ELU activations, until we reach the target output resolution

(1 × h× w in Figure 3.3a).

Layout estimation block. According to the Atlanta World model [1], the indoor

scene is expected to have a horizontal floor and ceiling and vertical walls, but without

the restriction of walls meeting at right angles (supporting, e.g., curved walls). The

indoor model can, thus, be fully represented as a 2D polygon around the observer,
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that defines the wall footprint, and two scalars dc and df that respectively represent

the distance of the observer from the ceiling and floor planes. Without loss of

generality, we assume the observer is placed at the origin of a reference frame (Y

front, Z up, and X right), and all measures are in metric units. In our network, we

represent the layout as a probability map Pw
wp×wp tensor, along with the two scalars

dc and df . The probability map P represents the probability that a point in the floor

plane is inside the room boundary. While the resolution of the depth map h× w only

depends on the input image resolution, the probability map, by design, has a fixed

size (i.e., wp = 512 in our experiments).

Since layout and depth are inter-related, as the layout must be consistent with the

depth assigned to pixels that are part of the architectural structure, we estimate layout

jointly with depth, with the added benefit for interactive applications of avoiding

the use of separate branches that would increase computational burden (Table 5.1).

Moreover, we assume that the prediction of the geometric layout can be extended to

non-visible part by exploiting geometric features derived from the depth map, such as

flatness, sharpness, and smoothness [56]. Since the recognition of planar and curved

structures is not immediate in spherical space, we transform the equirectangular map

Ds, representing the Euclidean distances of pixels from the camera center, according

to the Atlanta World model. To do this, we apply a planar transformation to Ds, such

that the distances are expressed not with respect to a point but with respect to the

horizontal plane containing the camera center (Figure 3.3b). This is accomplished by

scaling each value in Ds, which corresponds to an azimuth angle θ (along w) and

polar angle ϕ (along h), by ∥sinϕ∥ to obtain the map Dh. This specific transform

imposes that horizontal structures, such as ceilings, floors, or even large tables or

furniture, have a constant value so that structures identification is simpler, as shown

in the Figure 3.3b example.

This representation is in an equirectangular format that still has its natural spherical

distortion. In order to further simplify structure recognition, we then apply the

Atlanta World transform, which has been proven to be effective on equirectangular

image analysis [69, 1]. Specifically, we project the equirectangular depth map

Dh
h×w to two projective planes, Pc

wp×wp and Pf
wp×wp perpendicular to the Z-axis,

so that ceiling projection Pc represents depth information belonging to the upper

hemisphere of Dh, while the floor projection Pf to the bottom hemisphere. For every
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pixel in the perspective image at position (px, py), we recover a depth value from the

corresponding pixel in the equirectangular map by defining a focal length:

f = wp

2 cot
fovp

2 , (3.1)

with fovp = 165◦ in our experiments. Then, we sample the equirectangular panorama

at the coordinates

(us, vs) =
(arctan(sx/sz)

π
,
arcsin(sy)

π/2

)
, (3.2)

where (sx, sy, sz) is the direction vector from the origin to the point (px, py, f).
Since the whole process is differentiable, it can be used in conjunction with back-

propagation. Furthermore, both the depth transformation and perspective projection

Equation 3.2 are implemented with simple GPU operations (section 3.5) with negligi-

ble computational cost.

Since the top view Pc is clearly more clutter-free, as it represents the ceiling, we use

that view to derive the shape of the room, while we exploit the floor projection Pf to

recover an occupancy map. Furthermore, the respective distances of the ceiling and

floor planes from the center of the room are dc = max(Pc) and df = max(Pf ).

Simply extrapolating the layout of walls from Pc would return an incomplete re-

construction for eventually occluded parts (Figure 3.3b, first transform). This is

a common problem in almost all single view approaches (section 3.3), which is

commonly solved by a heuristic post-processing step [24]. However, such a solution,

in addition to adding computational cost, works only for very simple cases.

In order to have a more versatile reconstruction we decide to introduce a specific data-

driven solution. Starting from the projected depth Pc, we include in our ADM module

a further multi-layer perceptron, named layout estimation network (LEN), which

estimates a map Pw representing the probability of being inside the room footprint on

the floorplan. As the visible shape of the room is already highlighted in the input Pc,

the LEN exploits such contextual geometric information to efficiently complete the

missing parts, as shown in the example of Figure 3.3b. The LEN, integrated into the

same ADM network, is very simple and lightweight (section 3.5.2), as it is realized as

a lightweight encoder-decoder network based on the U-Net architecture, using just

256 channels as a bottleneck (4M parameters) and skip-connections [83]. We also

tried different configurations for this task, experiencing no performance increment

with deeper layers. Once a contour Cxy is obtained from Pw and scaled to metric
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units (see supplementary material for details), a full 3D layout As is obtained (i.e.,

dc and df , respectively, z-up and z-down components).

Exploiting structural information. The information in the floor projection Pf can be

used to recover a floor occupancy map, useful, for example, to define a collision-free

VR work area (e.g., Meta Quest room-scale), or to generate a reliable trajectory

for new poses, if only to ensure that new views do not cross wall boundaries and

remain in the room interior. To efficiently perform those operations, we enrich the

representation with a clutter binary mask Om
h×w in an equirectangular format. To

obtain that, many lightweight pre-trained networks are available [32, 40]. Using

Om on Dh, the floor projection will be automatically cleaned-up from clutter before

transforming (Equation 3.2), so that Pf will return the valid work area of the floor

(Figure 3.3b). Some examples of this feature are presented in the supplementary

material.

3.4.2 Novel view synthesis

While the previous operations are performed once per image, the gated view synthesis

network (GVS), illustrated in Figure 3.9 (cyan block), is activated whenever a

movement occurs. Its purpose is to compute a new plausible spherical image from

a translated position (i.e., applying a translation T to the camera). Such spherical

images can then be sampled with regular means by obtaining all possible rotated

views. The GVS network includes two cascading steps: a differential rendering step,

which exploits depth Ds and translation T to move pixels information to the new

position, and a panoramic view synthesis step, which transforms the reprojected

information into a full output image. Such a network takes as input the translated

pixels Ĩt, the disocclusion mask Bt and the layout edges Et, returning as output the

novel view It.

Differential rendering. Reprojecting source pixels to their target position requires

finding the mapping from the source-view pixels (us, vs) to the target-view pixels

(ut, vt), which is obtained by converting source pixels to a 3D point cloud PCs, trans-

lating it by T and converting back the resulting point cloud PCt to image space. As

pixel coordinates (u, v)h×w in an equirectangular image are associated to the view-

directions (θ, ϕ), we apply the pixel-wise depth Ds at the same location to recover

each point in PCt as (mx,my,mz) = (Ds cos θ cosϕ− Tx, Ds sin θ cosϕ− Ty, Ds sinϕ− Tz).
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Then, for each triplet (mx,my,mz) ∈ PCt
3×h×w we obtain coordinates in the source

image:

(us, vs) =

w arctan(mx/my)
2π + w

2 ,
h arctan(mz)√
mx

2 +my
2

+ h

2

 . (3.3)

Since many source points may contribute to the same target image pixel, we want the

closer ones to occlude the further ones. In traditional rendering, this can be achieved

using a z-buffer, with only the closest point contributing to the rendering of a pixel.

However, this process results in a discontinuous and non-differentiable rendering

function that is unsuitable for a learning framework [84]. To this end, we adopt a

soft z-buffer approach to assign a value to each pixel of Ĩt:

Ĩt(ut, vt) =
∑

(us,vs) Is(us, vs)(exp(−Ds(us, vs)/τ)∑
(us,vs) exp(−Ds(us, vs)/τ + ε

. (3.4)

The exponential factor, modulated by the temperature τ (i.e., τ = 20 in our experi-

ments), enforces higher precedence for points closer to the camera. A large value

of τ results in softer z-buffering, whereas a small value yields a rendering process

analogous to standard z-buffering [84]. ϵ is a small constant for numerical stability.

After forward splatting through soft z-buffering, as also shown in Figure 5.2, the

pixels visible in both the original and translated viewpoint get the expected content,

but all disoccluded areas (i.e., the areas visible from the new viewpoint but invisible

in the original one) remain empty.

Panoramic view synthesis. The goal of view synthesis is to produce a complete

image from the partial information obtained after reprojection, exploiting all the

auxiliary information we have generated in previous steps. To this end, several ap-

proaches splat source-view features, filling missing holes using feature interpolation

approaches [57, 17]. This approach aims to convey more semantic content, but at

the same time, it irretrievably loses details of the original image, thus requiring much

deeper networks to arrive at the synthesis of the image [85] and much computational

effort. To overcome these problems and better adapt novel view synthesis to the

VR interactive context, in our approach we address the problem as an image com-

pletion and inpainting task that leverages the recovered indoor structure to ensure

consistency at various levels.

We start from the rendered image Ĩt
3×h×w

. As in typical inpainting approaches, we

define a binary inpainting mask Bt
1×h×w, identifying missing parts in the rendered

image. In contrast to pure image-domain approaches [33, 36], we further enrich
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the input with the additional information provided by the indoor structure to guide

image completion. Since the recovered layout Ls is represented in 3D space, we first

project it to the target equirectangular pose. We experienced that the most effective

format is through an edgemap with occlusions Et
1×h×w, that is, a map storing the

visible edges of the room boundary layout (Figure 3.3b). Et is then concatenated

to Ĩt and with the mask Bt (i.e., along the batch dimension - 5 layers input). It

should be noted that such representation acts as edge guiding[85], but with the main

difference that Et provides information even of parts inside the mask Bt, which are

invisible in the source image Is.

To process such input, we adopt the architecture illustrated in Figure 3.9. The

overall encoder-decoder scheme follows a typical design for image inpainting [86],

exploiting gated convolutions for encoding/decoding [87] and dilated convolutions as

bottleneck [88]. Compared to common inpainting baselines [86, 87], our architecture

is thinner, deeper, and with fewer parameters. Moreover, it has only a single branch

and it includes several solutions to improve accuracy and reduce computational

complexity.

To simplify training and guarantee low latency at inference time, our network uses

a modified version of gated convolution called Light Weight Gated Convolutions

(LWGC), which reduces the number of parameters and processing time while main-

taining the effectiveness [89]. The input is then encoded through a sequence of

lightweight gated convolutions having different strides (Figure 5.2, red blocks). Re-

peated dilations [88] are instead used for the bottleneck (Figure 5.2, yellow blocks).

The dilated convolution operator is implemented as a modified gated convolution:

Dy,x = σ(b+
k′

h∑
i=−k′

h

k′
w∑

i=−k′
w

Wk′
h

+i,k′
w+j · Iy+ηi,x+ηj), (3.5)

where η is a dilation factor, σ()̇ is a component-wise non-linear transfer function

and b ∈ RCout is the layer bias vector. In our model, we adopt, respectively, η =
2, 4, 8, 16 for the four bottleneck layers. The network decoder follows a scheme that

is symmetrical with respect to the scheme of the encoder until the input resolution is

reached.
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3.4.3 Training and losses

We train both the ADM (section 3.4.1) and GVS (section 3.4.2) networks using a

supervised training approach (Figure 3.2b) on synthetic data (see section 3.5.1).

ADM requires a dataset in which ground truth depth is also available, while GVS

requires only original and translated views, as it can exploit a pre-trained ADM for

geometric and structural information.

ADM loss functions. We train the ADM network by combining and extending the

standard depth and layout losses:

Ladm = λdLd − λssLss + λlLl + λhLh. (3.6)

Ld is the robust Adaptive Reverse Huber Loss (BerHu) [90] for the predicted depth;Lss

is the Structural Similarity Index Measure (SSIM), which measures the preservation

of highly structured signals with strong neighborhood dependencies; Ll is binary

cross entropy wuth logits loss for the predicted probability map Pw section 3.4.1; Lh

is the L1 distance error for the predicted ceiling-floor distances Dc and Df . The λ

weights in our experiments are λd = 1.0, λss = 0.5, λl = 0.5, λh = 0.1.

GVS loss functions. The novel view synthesis network is trained by combining

visual terms and indoor-domain geometric terms: Lvsn = Lvis + Lgeo.

Visual terms include losses that measure the photorealistic quality of the output:

Lvis = λpxLpx + λpercLperc + λstyleLstyle + λadvLadv. (3.7)

Here the first term is a pixel-based L1 loss between the predicted RGB image It and

the ground truth target image Igt, Lperc and Lstyle are the data-driven perceptual and

style losses [50], enforcing Iout and Igt to have a similar representation in the feature

space as computed by a pre-trained V GG− 19 [91], while Ladv is a discriminator-

based loss (i.e., PatchGAN [92]). λ weights are λpx = 1.0, λstyle = 100.0, λperc =
1.0, λadv = 0.2. Such components are a common and effective solution for many

single pose inpainting problems [87].

However, in our problem the scene to be reconstructed is from a different pose,

thus standard inpainting techniques return many artifacts, especially for disoccluded

structures, such as wall edges or hidden corners (Figure 3.4). To this end, to better
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exploit the guiding of the structural information, we introduce in our method specific

geometric and indoor-domain loss terms, exploiting the capabilities of ADM network

to return indoor scene latent representations.

As described in section 3.4.1, our latent, compressed scene representation is given

by 4 layers L = (l1 . . . l4), which shapes (i.e., l × s), for a 1024 × 2048 input, are:

512 × 512, 512 × 256, 512 × 128, 512 × 64.

Since the network is pre-trained to recover pixel-wise depth and the Atlanta World

model of the room, including the parts occluded in the source view, we assume that

L features contain important characterizing features of the indoor scene we want to

reconstruct.

Analogous to the fundamental concepts of style-transfer[50], we expect that the L1
distance between the latent representation of It and Igt, respectively the predicted

and ground truth target images, preserves the high-level content of the scene, and

thus global similarity:

Lgeocont =
4∑
n

∥Ln(It) − Ln(Igt)∥1. (3.8)

According to the same concepts, we also define an objective function giving more

importance to local similarity, acting as a kind of geometric style loss, based on the

Gram matrix function of the same 4 layers:

Lgeostyle =
4∑
n

∥∥∥Kn(Ln(It)TLn(It)) − Ln(Igt)TLn(Igt)
∥∥∥

1
, (3.9)

where Kn is the Gram matrix normalization factor 1/s ∗ l for the nth selected layer.

In addition, a direct depth loss term Ltdepth is included (i.e., (BerHu) [90]) to enforce

geometric consistency. It should be noted that, since the available datasets[17]

do not provide a ground truth depth for the target pose, the loss is calculated by

assuming as ground truth the depth predicted by the ADM network, respectively

on the target ground truth image Igt (dubbed D∗
gt) and on the predicted image It

(dubbed Dt) (Figure 3.2b). For completeness, we also tried a self-supervised loss in

order to estimate the target depth without ground truth [93], but with significantly

less accurate results.
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As a result, the full geometric term is:

Lgeom = λgcontLgcont + λgstyleLgstyle + λtdepthLtdepth. (3.10)

Here λ weights are λgcont = 1.0, λgstyle = 100.0, λtdepth = 0.01.

3.5 Results

Our approach was implemented using PyTorch [51] and has been tested on a large

variety of indoor scenes. The accompanying video shows its usage for the exploration

of free viewpoint exploration of panoramic images with HMDs. In this section, we

focus on analyzing the performance of our approach for depth and layout estimation

and view synthesis.

3.5.1 Training and testing datasets

For training our solutions, we harness the availability of public panoramic scene

datasets where ground truth is available. In particular, for training and testing

ADM, we exploit Structured3D [52]), a large-scale synthetic database of indoor

scenes comprising 21,000 photorealistic scenes, which provides ground truth depth

and layout information for each panoramic image. To train and test GVS, instead,

we exploit PNVS[17], a subset of Structured3D scenes providing, for each source

panoramic image, three views translated by 0.2-0.3m along random directions, and

three views translated by 1.0-2.0m. In contrast to the original PNVS setup, we

included the zero-motion case for a fraction of the samples (i.e., 15%) to better adapt

the dataset to a common VR use case where users may remain still for a portion of

the time. It should be noted that in PNVS, the ground truth depth and layout are

provided only for the source pose, while only the visual rendering is provided for

the target views. The pre-trained ADM network is therefore used for providing the

additional geometric and structural information, which is regarded as ground truth

for GVS training. All these datasets provide data at a resolution of 1024x512 that we

have used for all training.

In this paper, we also use Structured3D [52] and PNVS [17] as test datasets, using

official splits that do not replicate data between training and testing sets, so as to make

it possible to have a comparison with other solutions. Furthermore, to demonstrate
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transfer learning capabilities and versatility, we present results on real-world scenes

captured by non-professional users.

We also considered other commonly used datasets, but none of them were fully

suitable for our task. As an example, Matterport3D [41], provides incomplete depth

maps not reliable for accurate rendering of points on novel views, while Matter-

portLayout [14] (annotated layouts for the Matterport3D dataset), only provides

layout for a limited number of rectified scenes, with manual annotation not always

coincident with the underlying image[14].

In our tests, we handle novel poses in a range of 50cm, which is well above what is

required for stereo (6-7cm) and assumed consistent with natural head movements to

avoid full hallucination of image content [94, 57]. The accompanying video shows

typical allowed motion.

(a) RGB input (b) ground truth (c) other [6] (d) our

Fig. 3.4.: We present qualitative performance and comparison vs. ground truth and PanoSyn-
thVR [6] on the Structured3D dataset [52]. The average movement for each scene
is about 50cm distributed on x, y, z axis.

3.5.2 Setup and computational performance

We trained both the ADM (section 3.4.1) and the GVS (section 3.4.2) networks with

the Adam optimizer [95], with β1 = 0.9, β2 = 0.999 and an adaptive learning rate

from 0.0001, on an NVIDIA RTX A5000 (24GB VRAM) with a batch size of 8 for

ADM and 2 for GVS. When using the Structured3D [52] 512 × 1024 native resolution

for both training tasks [52, 17], the average training time for the ADM model is

76 ms/image and 428 ms/image for the GVS model. Inference time on the same

NVIDIA RTX A5000 is 18 ms/image for ADM and 29 ms/image for GVS.
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Method Params↓ GFLOPS↓ Output type
Bifuse [63] 253 M 682 only depth
SliceNet [15] 79 M 101 only depth
AtlantaNet [48] 100 M 273 only layout
ADM (our) 29 M 79 depth+layout

Tab. 3.1.: Depth-layout estimation computational performance. We show our com-
putational performance compared to other specific state-of-the-art works for a
512 × 1024 image.

Table 5.1 presents the computational performance of our ADM compared to state-of-

the-art depth and layout estimation solutions.

For depth estimation, we compare with SliceNet [15] and Bifuse [63], which are

state-of-the-art methods commonly used as benchmarks in the latest panoramic

works [67, 66]. Both works [15, 63] adopt as backbone a ResNet, which is often

employed for depth estimation in stand-alone view synth pipelines [17], but do not

use patch projection or transformers, that would add additional load to the pipeline

making it less suitable for VR applications.

For layout estimation, we compare our method with AtlantaNet [48], a fast state-

of-the-art solution that also handles the same scene types as ours. In particular,

AtlantaNet does not use pre- and post-processing (i.e., usually done in CPU with

considerable computational load), as done by pipelines based on LayoutNet [55, 17],

or HorizonNet [24]. Our ADM approach is clearly the most lightweight and has lower

computational complexity (GFLOPS) than the compared methods, even though it

jointly performs both tasks.

Method Params↓ GFLOPS↓ Output type
PNVS [17] 13.9 M 359 rgb
DeepFillv2 [33] 13.8 M 163 rgb
GVS (our) 1.7 M 83 rgb-d

Tab. 3.2.: View-synthesis computational performance. We show our computational per-
formance compared to other deep-learning approaches for view synthesis for a
512 × 1024 image.

Table 3.2 presents the computational performance for the view synthesis network

(GVS). Here we compare pipelines that are, like ours, end-to-end deep learning

networks. Thus, we compare to the PNVS [17] view synthesis branch, as well

as, for completeness, with a state-of-the-art network for generic image inpainting

(DeepFill [33]). Since the PNVS [17] source code is not available, we evaluate its

computational cost from the information provided by the authors in the original paper,

since the view synthesis network is an adaption of EdgeConnect [85] network.
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Other types of approaches, not directly comparable in these terms, are also included

for completeness. PanoSynthVR [6] exploits a pre-trained MPI network [19] to build,

for each input panoramic scene, an MCI (multi-cylinder image) structure is about in

383ms (declared by the authors on an NVIDIA V100 GPU). Similar considerations

apply to NeRF adaptations to equirectangular images. In this case, the training time

is about 8h42m an NVIDIA RTX A5000 (24GB VRAM), with subsequent 14s inference

time for each individual new scene view generated at 512 × 1024. In this case, much

of the computational load is from generating new views around the main view.

3.5.3 Run-time performance

We ran the server connected to the display on a desktop machine equipped with

an NVIDIA RTX 2080Ti. Predicting, once per scene, the enriched representation

with ADM takes 32 ms, while performing per-frame view synthesis with GVS takes

39 ms. Cropping the image to 90x90◦ and upsampling it (2x) using Real-ESRGAN

(with model realesr-animevideov3) [80] takes 39 ms. Transfering to CPU and im-

age encoding, which in our prototype is done using TurboJPG takes an additional

5 ms/image. Server-side, thus, image computation can be performed at about 12fps,

and is reduced to about 11fps including encoding and transmission. It should be

noted that the machine is over 30% slower than the A5000 used for training. More-

over, encoding time could be reduced by integrating hardware JPEG encoding [96] or

using alternative codecs, in particular for the ETC2 texturing format, which is widely

supported on mobile platforms [97]. Client side, the WebXR application running on A

PICO 4 VR headseat refreshes the display, in response to head rotations, at 72fps and

updates the current panorama at the server speed. As a result, the proof-of-concept

implementation supports about 70Hz refresh rate while updating panoramas at 11fps

with a latency of ≈ 0.1s, for a working volume of ≈ ±30cm around the original

viewpoint. Latency was measured on the client by computing the difference from

the time at which the position was sent to the server and the time the corresponding

updated panorama is first displayed.

3.5.4 Performance vs. ground truth and competitors

As discussed in section 3.4, the quality of the novel pose generation results strongly

depends on the geometric information available, since the input image to be com-

pleted depends on the accuracy of reprojection, guided by the estimated depth, and

the complementary information to guide inpanting depends on the indoor structure
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(a) RGB input (b) P. source depth (c) P. target layout (d) Predicted view (e) Ground truth

Fig. 3.5.: We present our qualitative performance on scenes with structural occlusions. The
average movement for each new pose is about 60 cm distributed on x, y, z axis.

(a) RGB input (b) Pred source depth (c) Pred target layout (d) Predicted view

Fig. 3.6.: We present our qualitative performance on scene acquired by non-professional
users. Input resolution here is 6720 × 3360. The average movement for each scene
is about 40 cm.

inferred (section 3.4.2). For this reason, we present specific results for depth and

layout estimation, followed by the results on the quality of the synthesized scene.

For depth estimation, in Table 5.4 we summarize our performance compared to

SliceNet [15], and to the work of Jin et al. [98], which is a representative pipeline that

jointly predicts depth and layout, where layout is predicted through LayoutNet [55,

17]. While the source code is available for SliceNet, for Jin et al. [98] we compare

with their official results, where only depth estimation performance is available. For a

fair comparison, we adopt the Structured3D [52] splitting of Jin et al. [98], adapting

both SliceNet and our code to it. We adopt common metrics, i.e., mean squared error

(MSE) and root mean square error of linear measures (RMSE) and relative accuracy

δ1, defined as the fraction of pixels where the relative error is within a threshold of

1.25. For layout estimation, we compare, instead, with AtlantaNet [48], an end-to-end

solution that, like ours, does not require Manhattan World pre and post-processing

to work [14]. Here, we adopt the common metrics IoU3D (volumetric intersection

over union) and IoU2D (pixel-wise intersection over union). The results demonstrate
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Method mse↓ rmse↑ δ1 ↑ iou3d↑ iou2d↑
Jin et al. [98] 0.103 0.666 0.91 - -
SliceNet [15] 0.044 0.174 0.93 - -
AtlantaNet [48] - - - 82.45 85.78
AVN (Our) 0.008 0.043 0.96 84.56 88.86

Tab. 3.3.: Depth and layout performance. We show our quantitative performance com-
pared to other representative state-of-the-art works.

how our method achieves state-of-the-art performance in both tasks, despite the

lower computational burden compared to those baselines. To evaluate the gated

Method PSNR↑ SSIM↑ LPIPS↓
MPI 32 [19, 6] 17.59 0.768 0.263
MPI 64 [19] 17.93 0.783 0.258
MPI 128 [19] 18.22 0.789 0.252
GVS (Our) 22.97 0.817 0.178

Tab. 3.4.: GVS quantitative performance. We show GVS quantitative performance com-
pared to other state-of-the-art works.

view synthesis network (GVS), we compared our performance to the one achieved by

state-of-the-art methods [19, 18, 6], which are representative and suitable for VR

applications, as discussed in section 3.3, and for which source code was available.

In Table 3.4, we present our quantitative results compared to the solutions already

exploited for panoramic VR applications [6] that can be trained end-to-end and for

which a comparison with respect to ground truth was possible [19, 6]. Specifically,

MPI [19] is adopted by PanoSynthVR [6] to generate multi-cylinder-images (in their

case with 32 layers) from a single panoramic view, as well as by MatryODska [4] to

generate low-resolution views form stereoscopic panoramic input. We also considered

Synsin [57], but no official panoramic implementation was available, and only low-

resolution results have been presented [17].

Since such multi-layer approaches have a limited working range, we adopt the PNVS

benchmark called easy set [17], which limits motion to 0.1-0.2cm. Differently from

the experiments proposed in the PNVS paper [17], we choose to test on Structured3D

full resolution (i.e., 512×1024), since the benchmark proposed in the PNVS paper [17]

was run at a resolution of 256 × 512, way too low for our applications.

Table 3.4 summarizes the results with standard metrics: Peak Signal-to-Noise Ratio

(PSNR), Structural Similarity Index (SSIM) [99], and the Learned Perceptual Image

Patch Similarity (LPIPS) [100]. These results show how our method outperforms
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other solutions in terms of accuracy in all metrics. It should be noted that the current

approaches are adaptations of methods based on planar or semi-planar projections,

while our method fully exploits depth and layout data.

Qualitative results on a variety of indoor scenes are presented in Figure 3.4, Fig-

ure 3.10, Figure 3.6, and Figure 3.7. Figure 3.4 shows our performance compared

with a recent approach for VR applications based on MPI [6], using the same target

position and converting the cylindrical output of that system to an equirectangular

map. As in Table 3.4, we adopt data for which ground truth is available [17]. In

this regard, the same images provided by PanoSynthVR are not usable for direct

comparison, since these are cylindrical crops and not full equirectangular scenes.

The comparison shows how our method is able to predict occluded and disoccluded

parts even in the presence of significant structural occlusions, such as corridors to

particularly bulky furniture. Furthermore, besides our superior performance in terms

of accuracy, it should be noted that the compared solution, although returning a

perceptual plausible view, does not reconstruct a spatially reliable scene, probably

due to approximation with a limited number of planes/cylinders.

In Figure 3.10, we present instead qualitative examples of our performance, illus-

trating different tasks. Alongside the input source image, we show the predicted

source depth, the predicted layout translated at the target position, our prediction

at the target position, and the ground truth target. In this case, it is noticeable the

correlation of depth and layout quality with the generated output view.

In addition to the results on synthetic scenes, we present in Figure 3.6 qualitative

performances on real-world, user-captured scenes. Here we exploit the training

with Structured3D [52] to predict depth, layout, and novel views, from an input

6720 × 3360 images captured by a Ricoh Theta S. Also in this case our method returns

visually realistic reconstructions. Finally, we present a qualitative comparison with a

NeRF approach. As recent omnidirectional image-based methods attempt to build a

NeRF structure from a single image (section 3.3), in Figure 3.7 we show a comparison

to a NeRF-based approach for equirectangular images, OmniNeRF [18]. In this case,

as no ground truth is available, we present a qualitative assessment of the data made

available by the authors, considering their same spatial range (i.e., 30cm). As clearly

highlighted in Figure 3.7 details, our solution provides better accuracy in many parts

of the scene. In this context, we expect that our work could be used to generate input

views for further NeRF processing.
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(a) OmniNeRF [18] (b) Our

Fig. 3.7.: Comparison to NeRF. we show a comparison to OmniNeRF [18], using data
released by the authors. As the details clearly show, our solution provides better
accuracy in many parts of the scene.

3.5.5 Discussion and ablation study

Table 5.5 illustrates the results of an ablation study made to analyze the major

technical choices of our method. The first test (first and second row in Table 5.5)

shows the importance of effective depth estimation. The accuracy of depth is critical

to synthesize the new pose, as the correct displacement of elements visible from the

new view depends on it [57]. In our ablation study, the first row presents results

where depth is estimated with a domain-independent approach with a baseline that

exploits only multi-resolution aggregation [17] but without compression according to

a preferred direction. Using gravity-aligned features here results in a great increment

in performance.

Row 3 and 4 in Table 5.5 show the contribution of layout knowledge to handle occlu-

sion and disocclusion. In this case, we detail the performance difference between

using a standard layout estimation with Manhattan World post-processing [24], vs.

our approach (i.e., ATL - row 4). Finally, in row 5 we show our full-configuration

performance, even using our novel geometric perceptual and style losses (see sec-

tion 3.4.3). It should be noted how this contribution mainly affects SSIM and LPIPS.

Our model proves versatile on different types of indoor scenes, even as the type of

real or synthetic input data varies. However, there are cases, mainly in real-world

scenes very different from training data, where our method did not produce plausible

images. In such bad cases (i.e., illustrated and discussed in the supplementary
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GAF MW ATL GPS PSNR↑ SSIM↑ LPIPS↓
- - - - 16.87 0.693 0.325
✓ - - - 18.28 0.751 0.206
✓ ✓ - - 19.12 0.776 0.186
✓ - ✓ - 22.01 0.798 0.181
✓ - ✓ ✓ 22.97 0.817 0.178

Tab. 3.5.: Ablation stats. We show the effect of several key choices of our approach. In
bold is the adopted configuration. GAF: gravity aligned features-based depth
estimation; MW: standard Manhattan World layout estimation; ATL: Atlanta
transform structure estimation; GPS: geometric perceptual and style loss.

material), the lack of performance depends on the quality of the depth associated

with the initial view. This depth, in fact, depends on the projection of the visible

pixels or any associated features, which is, in fact, the real input to the actual view

synthesis network. In this sense, even the commonly used soft z-buffer method [84]

may be subject to error and may be the subject of future work.

We also noted that, even if the structure and depth of the scene are predicted once

and remain the same for all frames, visible instabilities may occur in the form of

flickering in the application in which a new image is generated per frame. Examples

are visible in the accompanying video. This is due, mainly, to small changes in the

reprojection that trigger large changes in predicted images. We plan to mitigate this

problem through the inclusion of regularization terms, as well as by augmenting the

training sets.

Another important discussion point is the resolution of the generated images. Cur-

rently, the biggest limitation is the resolution of the available training datasets, which

is still below the capabilities of modern VR viewers. Although new datasets will

soon be available at higher resolutions, one practical solution is now the use of fast

super-resolution methods [80, 101].

3.6 Client server design

The diagram in Figure 3.8 illustrates the operation of a client-server application

for immersive rendering of synthesized indoor environments from new viewpoints

using a pre-trained neural network. A user wears a head-mounted device (HMD)

where the client runs on a browser enabled for immersive WebXR applications. The

server consists of a multi-threaded C++ program that continuously receives the head

position and control state from the client via a WebSocket and emits to the client the
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Fig. 3.8.: Client-server system architecture. A thin WebXR client performs image display
and head tracking, offloading translated panoramic image computation to a ren-
dering server.

images synthesized by the neural network and corresponding to what is visible from

the new viewpoint. Upon receiving new images, the JavaScript client updates the

WebGL resources from the server and handles the interactive rendering of the scenes

by merging the received information with the HMD device state data.

Specifically, the server is implemented in C++ on Linux using the QT framework,

which enables multithreading. The main thread (HMD xform receiver) is the main QT

application, and its sole purpose is to establish a WebSocket connection with the client,

wait for HMD position messages, and keep the HMD state updated using appropriate

synchronization primitives. A second thread (Producer) retrieves the current HMD

state and infers the views corresponding to the new state through the CNN network

using the CPython interface. During initialization, the Producer requests the first

network to produce the augmented representation (getAugmentedPanoModel) and

configures the synthesis network to be ready to produce translated views using this

augmented representation.

When a new HMD state (new viewpoint) is available, the Producer synthesizes two

cropped equirectangular views that cover the field of view at different resolutions.

By default, for maximum coverage, the low-resolution image spans a large area

(fov_lrt to 180x180 degrees) encompassing the full frontal view. This allows the user

to perceive a continuous immersive space, even during rapid head rotations. The

high-resolution image, instead, is limited to cover only the field of view of the headset

itself (fov_hr = 90x90 degrees), to provide greater visual detail of the projected

content. When the user is about static, the full image is in high resolution, while

when the user rotates the head, low-resolution areas start to appear only in peripheral

regions.
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The production process consists in estimating the full low-res panoramic image with

the view synthesis network, providing the current translation, and using the scene

representation previously calculated. The resulting image tensor is then cropped to

the field of view and encoded in JPEG format using TurboJPEG. The high-resolution

image is, instead, produced by first cropping the region of interest of the tensor, and

then upsampling it using a super-resolution neural network (currently Real-ESRGAN

with model realesr-animevideov3 [80]) prior to JPEG encoding.

The two cropped images are calculated based on the viewing direction and position

of the headset in space. Computed images and their associated auxiliary information

(look-at vector, fov_lr, fov_hr, image size, etc.) are stored in a synchronized data

structure (Perspective views). Another thread retrieves the most up-to-date informa-

tion from the views data structure, serializes it, and sends it to the JavaScript client

via a WebSocket.

The three highly specialized threads run their cycles in parallel, maximizing the

system’s capabilities and ensuring efficient handling of all data acquisition and

production processes.

The JavaScript client uses the ThreeJS library and its dedicated components for

immersive systems (WebXR). The HMD consists of two screens, one for each eye. The

client renders the cropped equirectangular images received from the server using a

custom WebGL shader developed for this purpose. Upon receiving an update, the

images are decoded and stored into two 2D textures. A fragment shader calculates the

foveated rendering color by obtaining the camera ray, converting it to equirectangular

UV coordinates, and blending the colors from the high-resolution and low-resolution

textures based on the alpha value of the high-resolution texture.

Fig. 3.9.: Forward pipeline. At loading time, we process the input equirectangular image
to recover depth Ds, Atlanta structure As, occupancy map Om, and latent scene
representation Ls. When moving from the source position, the generation of
the new views is done by a soft z-buffer and a gated neural network, dubbed
Gated View Synth network - GVS. The GVS network is trained in a supervised way
combining visual and perceptual losses with novel indoor-specific losses.
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(a) RGB input (b) Occu-
pancy map

(c) Predicted frame

Fig. 3.10.: Structure and synthesis. We show some examples with the predicted floor
occupancy map and novel poses generated inside it

3.7 Neural Network architecture details

As a complement of the overall description provided in the main paper, we illustrate

here the detailed architecture of the depth estimation block (section 3.7.1), the

details on the computation of floor plan and metric scaling (section 3.7.2), and the

architectural details of the view synthesis network (section 3.7.3).

3.7.1 Depth estimation block architecture

From the input image, a cascade of 5 residual layers [81] returns 4 feature maps

having different depth and spatial size (Figure 3.9). Given the spherical nature of

the image, we also adopt circular padding along the horizon for convolutions, to

overcome the longitudinal boundary discontinuity, and reflection padding to alleviate

the singularities at the poles [32]. In order to support an efficient gathering of

information from the extracted features, we perform a specifically indoor-designed

feature compression exploiting our knowledge of preferential directions, so we

assume that world-space vertical and horizontal features have different characteristics

in most, if not all, man-made environments [65, 24, 15, 56]. According to this

assumption, we perform an anisotropic contractive encoding that reduces the vertical

direction while keeping the horizontal direction unchanged, so that separated vertical

features can be better preserved. Specifically, we reduce the vertical dimension by a

factor of 8 through an asymmetric convolution module with stride (2, 1), applied 3

times, that contains a 2D convolution and an ELU module. We apply such compression
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(a) RGB input (b) Pred source depth(c) Pred tar-
get layout

(d) Pre-
dicted view

(e) Ground truth

Fig. 3.11.: Scenes with significant occlusions from architectural structure. We present
additional qualitative performance on scenes with structural occlusions.

for each encoded feature map (i.e., 4 maps), obtaining a set of latent features

Ls = (l1 . . . l4). Such representation will be also exploited at training time to support

specific loss functions in latent space. To support depth and layout prediction, instead,

compressed features Ls are reshaped to the same size and joined in a flattened latent

feature, as a single sequence of s feature vectors of dimension l (i.e., s horizontal

size of the less deep feature map - s = 2048 and l = 512 for a 1024 × 2048 input).

Such a compressed representation contains a variety of information about the geom-

etry of the scene, both local and non-local, which can be exploited to recover depth,

layout and also to provide a latent representation of the scene.

For the depth estimation, we aim to leverage complementary features in distant

portions of the image rather than only local regions, to maximize the wide contextual

information provided by omnidirectional images while keeping the computational

cost low. To do that, we adopt a single-layer multi-head self-attention (MHSA)

scheme [82]. Our self-attention module takes the latent features L ∈ Rs×l as input,

and outputs a self-attention weight matrix A ∈ Rs×s:

A = softmax

(
(LWq)(LWk)T

√
l

)
(3.11)

where Wq,Wk ∈ Rl×l are learnable weights. The MHSA module has a particularly

lightweight design with 4 heads and only 1 inner layer. We have verified experimen-

tally that increasing the number of layers and heads does not affect performance.

Once passed to the MHSA module, the decoding of the latent feature (1 × 1 × s) is

very fast, through convolutions, upsampling modules, and ELU activations, until we

reach the target output resolution (1 × h× w).

3.7 Neural Network architecture details 46



3.7.2 Room contour extraction and metric scaling

Our ADM module includes a multi-layer perceptron, named layout estimation network

(LEN) (Figure 3.9), that estimates a map Pw representing the probability of the room

footprint on the floorplan. In order to estimate the 2D shape of the room, a set of

corners Cij in image space (i.e., here wp× wp) is recovered from the contour of

the probability map Pw (i.e., softmax and polygonal approximation of contour). By

exploiting the metric distance of ceiling and floor, we recover the 2D corners Cxy

positions in model space:

Cxy = dc

tan(π − fovp) ∗ wp
∗ (Cij − wp/2) (3.12)

The full 3D layout As is then obtained, according to Atlanta model, by combining dc

and df , respectively, z-up and z-down components, with Cxy.

3.7.3 View synthesis network details

To simplify training and guarantee low latency at inference time, our network uses

a modified version of gated convolution called Light Weight Gated Convolutions

(LWGC), which reduces the number of parameters and processing time while main-

taining the effectiveness [89].

The input is encoded through a sequence of light-weight gated convolutions having

different strides (the 6 layers in red in Figure 3.9) so that the original size is reduced

by a factor of four in each direction. Each encoding convolution is followed by

instance normalization [102] and ReLU activation.

Repeated dilations [88] are instead used for the bottleneck (Figure 3.9, yellow

blocks), thus increasing the area that each layer can use as input. It should be noted

that this is done without increasing the number of learnable weights, but obtained

by spreading the convolution kernel across the input map. The dilated convolution

operator is implemented as a modified gated convolution:

Dy,x = σ(b+
k′

h∑
i=−k′

h

k′
w∑

i=−k′
w

Wk′
h

+i,k′
w+j · Iy+ηi,x+ηj) (3.13)

where η is a dilation factor, σ()̇ is a component-wise non-linear transfer function and

b ∈ RCout is the layer bias vector. With η = 1, the equation becomes the standard
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convolution operation. In our model, we adopt, respectively, η = 2, 4, 8, 16 for the

four bottleneck layers.

Using this strategy, we aggregate multi-scale contextual information without losing

resolution, thus capturing the global context efficiently by expanding the receptive

field, avoiding additional parameters, and preventing information loss. This is

important for the image completion task, as capturing sufficient context is critical for

realism. By using dilated convolutions at lower resolutions, the model can effectively

cover a larger area of the input image when computing each output pixel than with

standard convolutional layers [86].

The network decoder (7 blue layers in Figure 3.9) follows a scheme that is sym-

metrical with respect to the scheme of the encoder. Five layers, based on gated

convolutions, restore the resolution of the output to the original input resolution,

and a final layer is dedicated to the synthesis of RGB image by a tanh activation

function.

3.8 Additional experiments

To complement the results discussed in the main paper, we provide here additional ex-

amples of predictions (section 3.8.1), also illustrating the ability to compute the floor

occupancy map (section 3.8.2), an expansion of visual comparison with PanoSyn-

thVR [6] (section 3.8.3), and discussing a number of failure cases (section 3.8.4).

3.8.1 Additional prediction examples

In Figure 3.11 we present additional examples of our qualitative performance on

scenes with structural occlusions. The average movement for each new pose is about

60 cm distributed on the x, y, z axis. We show predicted depth, layout, and novel

pose.

3.8.2 Examples with predicted work area

In Figure 3.10 we present additional results, showing, besides novel poses, the

predicted floor occupancy map.
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(a) Input pose (b) Our novel pose (c) Our de-
tail

(d) PanoSynthVR novel
pose

(e) PanoSyn-
thVR
detail

(f) Input pose (g) Our novel pose (h) Our de-
tail

(i) PanoSynthVR novel
pose

(j) PanoSyn-
thVR
detail

(k) Input pose (l) Our novel pose (m) Our de-
tail

(n) PanoSynthVR novel
pose

(o) PanoSyn-
thVR
detail

Fig. 3.12.: Visual synthesis results. Additional visual comparison with PanoSynthVR [6].

3.8.3 Additional comparisons with PanoSynthVR

In Figure 3.12 we present additional qualitative performance and comparison vs.

ground truth and PanoSynthVR [6] on the Structured3D dataset [52]. The average

movement for each scene is about 50cm distributed on the x, y, z axis.

(a) Input (b) Depth (c) Projection (d) Prediction

Fig. 3.13.: Failure case. View synthesis performance strongly depends on depth accuracy
and visible feature projection.

3.8.4 Failure cases

As shown in the bad case of Figure 5.7, the performance of our approach, as well

as of most current methods, depends on the quality of the depth associated with

the initial view (i.e., Figure 3.13b). This depth in fact depends on the projection

of the visible pixels or any associated features (i.e., Figure 3.13c), which is, in fact,

the real input to the actual view synthesis network. If, as in the case shown, the
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image projected at the new position is incorrect, it compromises any synthesis of the

disoccluded parts as well (i.e., Figure 3.13d).

3.9 Conclusions

In this chapter We have presented a novel deep learning approach that extracts

geometric and structural information from a single panorama in order to quickly

synthesize plausible panoramic images from close-by viewpoints within a workspace

suitable for VR applications. This end-to-end approach is particularly compact and

lightweight, and introduces several innovations. In particular, our novel integrated

network for estimating an environment’s depth and permanent structure produces

elements that are crucial requirements for ensuring reliable view synthesis. By

incorporating novel domain-specific loss functions, we shift the major computational

load on the training phase, and obtain an extremely lightweight network at prediction

time. As a result, our method automatically produces compelling new poses ready for

interactive use. Moreover, the extracted floor plan and 3D wall structure can also be

used to support room exploration. A possible future work will concentrate on further

improving the performance, especially on larger-size images, as well as the stability

for its use in real-time exploration. We also plan to integrate this work with other

solutions for the dynamic exploration of panoramic images, such as automatic room

emptying and editing [40, 103].
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4Immersive exploration of indoor

stereoscopic environments

This chapter presents an innovative approach, targeting the objective 2, to automat-

ically generate and explore immersive stereoscopic indoor environments derived

from a single monoscopic panoramic image in an equirectangular format. Once per

360◦ shot, we estimate the per-pixel depth using a gated deep network architecture.

Subsequently, we synthesize a collection of panoramic slices through reprojection

and view-synthesis employing deep learning. These slices are distributed around

the central viewpoint, with each slice’s projection center placed on the circular path

covered by the eyes during a head rotation. Furthermore, each slice encompasses

an angular extent sufficient to accommodate the potential gaze directions of both

the left and right eye and to provide context for reconstruction. For fast display,

a stereoscopic multiple-center-of-projection stereo pair in equirectangular format

is composed by suitably blending the precomputed slices. At run-time, the pair is

loaded in a lightweight WebXR viewer that responds to head rotations, offering

both motion and stereo cues. The approach combines and extends state-of-the-art

data-driven techniques, incorporating several innovations. Notably, a gated archi-

tecture is introduced for panoramic monocular depth estimation. Leveraging the

predicted depth, the same gated architecture is then applied to the re-projection

of visible pixels, facilitating the inpainting of occluded and disoccluded regions by

incorporating a mixed Generative Adversarial Network (GAN). The resulting system

works on a variety of available VR headsets and can serve as a base component for a

variety of immersive applications. We demonstrate our technology on several indoor

scenes from publicly available data.

4.1 Introduction

Spherical cameras, also known as 360◦, panoramic, or omnidirectional, or surround-

view cameras, provide cost-effective and efficient solutions for rapidly capturing
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Fig. 4.1.: Overview. Taking as input a single panoramic image, a data-driven architecture
synthesizes a comprehensive coverage of the scene’s portion visible to both eyes
during head rotation, encoding the views in the form of panoramic slices. The
slices are then combined into an omnidirectional stereo representation composed
of two multiple-center-of-projection (MCOP) images, tuned for the left and right
eye. A lightweight WebXR viewer presents the suitable portions of these images
on an HMD, responding to rotational head motions and delivering both stereo and
motion parallax.

in a single shot the full context around the viewer of an entire environment [10].

A single panoramic image encompasses the complete scene visible from a specific

viewpoint within a 360◦ field of view at a given instant. When experienced through

a Head-Mounted Display (HMD), users dynamically explore this image by directing

their attention to the desired content through head movements, leading to Vir-

tual/Augmented/Extended Reality (VR/AR/XR) experiences with a natural interface

and good degree of immersion [11].

For these reasons, omnidirectional imagery is increasingly recognized as a founda-

tional element for generating immersive content from real-world scenes and for

supporting a variety of VR/AR/XR applications [3]. Notably, 360◦ virtual tours have

gained widespread popularity in the real estate sector [12]. Furthermore, omnidi-

rectional images are easily shareable across various devices and platforms, making

them highly versatile and accessible. Since they can be seamlessly integrated into

websites, VR/AR/XR applications, or mobile platforms, they enable a broad audience

to engage with indoor environments irrespective of their location or their available

equipment [10]. Serving as representations of the user’s surroundings, panoramic

images also promise to be one of the essential building blocks for the construction of

the shared physical and digital realities envisioned by the Metaverse concept [13].

Even though capturing a single shot panorama is a very appealing way to create

a virtual clone of a real environment, the limitation of presented content to what

was visible around the fixed location from which the panorama was taken leads

to the loss of binocular stereo, which is very important to provide a sense of pres-

ence [6]. The fact that panoramas appear flat is a particularly strong limitation
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in indoor environments, given the relatively short distance from the viewer to the

architectural surfaces and the objects. To provide stereo cues for full 360-degree

rotations, views from a continuous set of shifted viewpoints must be available to the

renderer. Omnidirectional stereo techniques [25, 26] are employed for that purpose

but require the creation of stereo panoramas using cameras moving on a circular

path [27, 26, 25] or multiple synchronized 360 cameras [3]. These acquisition

approaches, however, reduce the possibility of quickly capturing, experiencing, and

sharing a 360◦ scene using consumer hardware. In particular, while several low-cost

cameras are widely available for monocular 360◦ capture (e.g., GoPro, Ricoh Theta,

LadyBug, or Insta360), also due to the booming "action-camera" market, stereo 360◦

solutions (e.g., Vuze+) are more costly and limited, and also typically offer only a low

number (i.e., six to eight) of different point of views, leading to stereo and stitching

artifacts. Moreover, while rotating camera solutions provide more viewpoints, they

do not share the same simplicity and flexibility of single-shot instantaneous capture.

For this reason, research has concentrated on view synthesis methods that generate

stereo contents from a single 360◦ panorama. However, current methods either

require complicated representations or are too heavy to run directly on HMDs and

interactive rates (section 4.3).

To overcome these limitations, we propose in this paper a novel approach for quickly

and automatically generating and experiencing an omnidirectional stereo repre-

sentation of an indoor environment starting from a single monoscopic panoramic

image in an equirectangular format. In our approach, summarized in Figure 4.1

and section 4.4, we start by estimating full-frame per-pixel depth using a gated

deep network designed to exploit interior environment constraints and trained on

large sets of synthetic examples (section 4.5). Then, we synthesize panoramic slices

through reprojection and view-synthesis using a deep network that shares the same

design features and training set of the depth estimation one (section 4.6). These

slices are placed around the central viewpoint, on the circle formed by the two

eyes during head rotations, and cover an angular portion sufficient to accommo-

date the potential gaze directions of both the left and right eye. A stereoscopic

multiple-center-of-projection stereo pair in equirectangular format is then composed

by suitably blending the precomputed slices. The resulting pair is loaded into a

WebXR viewer for a lightweight, responsive experience with both motion and stereo

cues during runtime (section 4.7). In this approach, based on approximating a

full stereo experience through an omnidirectional stereo pair (see section 4.3), the

run-time costs are minimized, both in terms of storage and bandwidth and in terms
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of rendering performance, at the cost of a slight degradation of stereo reconstruction

in the peripheral vision (see section 4.7).

4.2 Contributions

Our main contributions are the following:

• we introduce a novel end-to-end deep network architecture that generates

shifted views of an indoor panoramic image in equirectangular format; a first

network module estimates a depth map from a single panoramic input; then,

these views are reprojected to the desired position, and a full image is syn-

thesized through a second network capable to generate plausible content in

disoccluded areas. Unlike other state-of-the-art approaches in the literature [65,

15], the network is based on a lightweight gated architecture and a dilated

bottleneck; as a result, we ensure scalability to larger image sizes and/or em-

bedded hardware, while maintaining maximum visual detail when re-projecting

onto new views;

• we introduce a unified network architecture with custom training strategies

for both depth estimation and view synthesis. The same lightweight network

is exploited for both tasks, just adapting the final activation function and

changing the training mode. To this end, we introduce a specific photometric

loss for novel view synthesis, combined with a GAN approach. As a result,

photorealistic novel views are generated with a low computational cost. We

moreover use super-resolution GAN-based architectures to increase further the

resolution between the stereo images.

• we exploit our depth estimation, reprojection, and synthesis approach to gener-

ate a set of panoramic slices and use them to compute an omnidirectional stereo

image pair that can be directly experienced on WebXR viewers that sample

them to generate stereo couples that respond to head motion with low-latency

and high frequency. The limitation to panoramic slices greatly simplifies off-line

computational costs in comparison with previous solutions [105], and the direct

exploitation of standard omnidirectional stereo formats fosters the applicability

of the method to a variety of hardware and software platforms.
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Our evaluation (section 4.8) illustrates how depth inference and inpainting networks

achieve state-of-the-art performance and how they can be exploited to produce

seamless omnidirectional stereo images at a high angular sampling rate. Since

the proposed framework is easy to integrate into current panoramic viewers, just

replacing the current monoscopic renderers, it promises to be a practical building

block for delivering engaging and realistic experiences that captivate audiences and

enable them to virtually explore and interact with indoor spaces in current and future

Metaverse applications.

4.3 Related work

Our research focuses on creating immersive content using as sole input a single

monoscopic panoramic image captured within an interior setting. The presentation

of an image with stereo-parallax effects requires synthesizing different views for the

left and the right eye. These views should respond to user motion by taking into

account that the visibility of scene elements may change even for small shifts of the

eye position. This requires not only implicit or explicit geometry estimation to take

into account depth-dependent stereo parallax but also the handling of occlusions

and disocclusions. In the subsequent discussion, we provide a concise overview of

only the most closely-related works. We direct the reader to recent surveys on indoor

reconstruction [1], scene understanding from panoramic imaging [106], as well

as extraction of 3D geometry from 360◦ imagery [107] for a more comprehensive

coverage of the subject matter.

4.3.1 Depth estimation from a single panorama

State-of-the-art monocular depth estimation solutions involve the adoption of data-

driven approaches that extrapolate implicit relationships from extensive labeled

datasets, incorporating priors tailored to specific applications, particularly within

interior environments [1]. Prior studies have demonstrated that the direct application

of perspective methods to 360◦ depth estimation in indoor settings yields suboptimal

outcomes [58]. For this reason, ongoing research directly exploits the wide geomet-

ric context inherent in omnidirectional images while addressing wraparounds and

distortions characteristic of equirectangular projections [59, 60, 108, 58, 109, 15,

110, 111]. Following this trend, our work introduces a streamlined and lightweight
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pipeline directly working on an equirectangular image, introducing an architecture

that we also exploit for the view synthesis network.

4.3.2 Novel view synthesis

A panoramic image with an accompanying depth map can be utilized for view

synthesis using diverse approaches, such as directly rendering point clouds [74],

generating and rendering view-independent meshes from depth maps [112, 103], or

integrating and blending depth maps or generated meshes with multiple images or

signals [27, 73]. Recently, end-to-end view synthesis networks have been proposed to

generate shifted panoramic views at run time [17, 104]. While these networks excel

at inferring immersive views within a limited volume around the viewer (e.g., 50cm),

their computational demands preclude direct execution on embedded platforms.

Consequently, Head-Mounted Displays (HMDs) are exclusively supported via remote

rendering [104]. For stereo generation, Pintore et al. [105], proposed, instead,

to generate a set of stereo pairs off-line and to perform rendering on the HMD

starting from these inferred views through a simple interpolation method. Since

per-frame generation is confined to stereo pairs, the complexity of view synthesis

networks is significantly reduced compared to more general previous solutions for

free-viewpoint synthesis [17, 104]. In this work, we further streamline the method

by generating off-line a set of panoramic slices optimized for subsequent blending

into an omnidirectional stereo panorama. As a result, we further reduce both the

off-line computation and the on-line rendering costs.

4.3.3 View interpolation

The generation of novel views by interpolating images taken at nearby viewpoints

has been widely researched, with effective solutions being proposed, even in the

absence of a prior depth estimation step [113, 114]. However, end-to-end networks

tackling this task face similar computational constraints as depth estimation, limiting

their applicability to interactive-rate frame generation on Head-Mounted Displays

(HMDs). An emerging approach for rapid novel viewpoint synthesis involves em-

ploying layered depth representations, associating each pixel with multiple depth

values [76]. This methodology has been effectively expanded to operate with single

panoramic images [78, 115], as well as to create light field videos through layered

mesh representations [5]. For perspective views, multi-plane panoramas (MPI) have

also been proposed as an output representation produced with convolutional neural
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networks [79, 116]. However, MPIs are limited to viewpoints that are close to the

origin and degrade when the viewpoint moves further. To address this limitation,

adaptive sampling schemes have been proposed [117]. The concept of capturing

the scene at multiple fixed depths has been extended for panoramic imaging by

considering different capturing proxies like multi-spherical images (MSI) [4] or

multi-cylinder images (MCI) [6]. In contrast, our proposed framework synthesizes a

discrete set of panoramic slices that cover the circular trajectory made by both eyes

during head rotations and are oriented towards the main view directions. These

images are subsequently blended to form an omnidirectional stereo pair comprised of

two multiple-center-of-projection (MCOP) equirectangular images. Compared to the

current state-of-the-art, our approach offers the advantage of being lightweight, both

in terms of cost of inferring novel views, since they are constrained to small angular

portions of the sphere, and for immersive exploration through WebXR viewers, since

rendering has about the same cost of monoscopic viewing. Moreover, the solution

is compatible with methods employed for conventional stereo panoramas captured

with moving rigs [118]. It should be noted that our view synthesis machinery would

also be compatible with a run-time presentation of slices sampled by taking into

account per-frame precise per-pixel view directions across the entire field of view. For

general head displacements, Pintore et al. [104], for instance, proposed to generate

novel panoramas on demand on a server in response to head motion changes. The

solution, however, can only update panoramas at around 10Hz and with a latency

of about 0.1s. Despite our faster networks, the expected speed-up is less than a

factor of two, and, in any case, we would still require a high-speed connection to

a fast rendering server. Since we only need to respond to rotation, an alternative

solution would be to upload the entire set of slices to cover all possible eye directions.

Using the same sampling rate employed in this paper would require, however, the

uploading of 360 images, increasing bandwidth and storage requirements by over

two orders of magnitude. However, using a lower sampling rate would increase

ghosting artifacts [105] when employing simple blending or would require more

complex precomputations and blending operations [119].

4.3.4 Omnidirectional stereo display

While 360◦ surround-view panoramas are limited to only the three rotational degrees

of freedom, with the location being fixed, stereo presentation on HMDs requires

different images for the left and right eyes to provide the stereo depth cue. Omnidi-

rectional stereo projection, used in this work, is a multiperspective technique [120]
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based on circular projection stereo [25] that aims to combine in a single represen-

tation all the information required for stereo. For viewing, each vertical column of

an equirectangular image has a different center of projection, corresponding to the

position of the eye viewing it. By generating an image for the left eye and another

one for the right eye, stereo is achieved. However, when viewing such an image in VR,

stereo is only correct at the center of the image and degrades for peripheral vision.

For this reason, recent work has concentrated on generating images that dynamically

adapt to the user’s gaze, in particular through the view-dependent rendering of

depth images [121]. Our solution could also be adapted to those methods, given our

capability to infer good depth maps. However, using plain omnidirectional stereo-

pairs remains an appealing approach for indoor environments viewed on HMDs,

since degradation mostly appears at the poles of the equirectangular image, which

generally do not contain suitable content due to typical indoor environment shape

and capture constraints, and in the peripheral vision, that also incurs in degradation

due to foveation [122].

4.4 Method overview

(a) (b) (c)

Fig. 4.2.: Viewing geometry. (a): we consider that the two eyes are positioned along a
circle whose center is at the center of rotation of the head and their central gaze
direction is aligned with the head rotation; their position is uniquely determined
by the head radius r, the inter-pupillary distance IPD, and by the angular position
of the head θ. (b): during head rotation, at a given position, there is an angular
slice of size ω that contains both the right and the left gaze direction; the slice’s
angular size can be solely determined by r and the IPD. (c): to cover all potential
gaze positions and directions, we compute all angular slices placed at closely
spaced positions on the circle.

Our method automatically and rapidly converts a single monoscopic panoramic

image in equirectangular format into an omnidirectional stereo panorama, also in

equirectangular format, that can be rapidly explored with stereo and motion parallax

on an HMD.
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As depicted in Figure 4.2a, we consider that during exploration, the two eyes will

be on a circular trajectory centered at the head’s rotation center. Thus, their specific

positions are defined by the head radius (r), the inter-pupillary distance (IPD), and

the angular position of the head (θ). Without loss of generality, the central gaze

direction of both eyes is considered in this paper aligned with the head rotation, even

though the method can be easily adapted to other gaze directions (see section 4.7).

Given this geometric configuration, during head rotation, any given position on the

circle may thus become the center of projection for the left or the right eye. Thus, see

Figure 4.2b, from this point of view, there is a constant angular slice of size ω that is

guaranteed to contain both the right and the left gaze direction. The angular size of

such a slice can be solely determined by r and the IPD (see section 4.7). As shown in

Figure 4.2c, it is thus sufficient to compute all angular slices placed at closely spaced

positions on the circle. We exploit this geometric configuration to define an efficient

approach to synthesize all these views and combine them into an omnidirectional

stereo panorama. The first step of our method is to estimate the per-pixel depth of

the input panoramic image that we assume is placed at the head center. This depth

is computed in a single step by a gated deep network designed to exploit interior

environment constraints and trained on large sets of synthetic examples, as detailed

in section 4.5. Given this depth and the original color, we synthesize each of the

required shifted panoramic slices. For each of these slices, we start by reprojecting

the original image into the required slice, defining a bounded vertical section of a

panoramic image in an equirectangular format, using as a center of projection the

relevant eye position. View-synthesis is performed using a deep network that shares

the same design features and training set of the depth estimation one, as detailed in

section 4.6. Finally, an omnidirectional stereoscopic image pair in equirectangular

format is composed by suitably blending the precomputed slices and used for display

in a lightweight WebXR viewer, producing images suitable for HMD consumption.

(section 4.7).

In the following, details are provided for each of the individual components.

4.5 Single panorama depth estimation

Augmenting a single image with depth is essential to establish the 3D position of

visible points in space to compute their novel position when the viewpoint changes.
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Many techniques have been documented in the literature to estimate depth from

a single panoramic image (section 4.3). Given the inherent ambiguity in depth

estimation from single images, all approaches necessitate leveraging prior information

to steer the reconstruction towards plausible architectural forms that align with the

input. Notably, there has been a remarkable advancement in data-driven methods

within this context, wherein these methods acquire knowledge of such priors from

large collections of labeled exemplar data [15, 110]. Following this research trend,

we designed a network for depth prediction that was an efficient compromise between

accuracy and computational cost, and with an architecture that can be reused for the

view synthesis part (section 4.6). Using a lean and scalable network design is also

important to support, in the future, larger and larger image sizesand to provide a

low latency from the acquisition time to the presentation time, especially when using

low-end machines.

To predict depth we designed a gated architecture, which encoder-decoder scheme

follows the same design adopted for view-synthesis (see section 4.6), but with several

differences to adapt it to the specific task of spherical depth estimation. In particular,

here, gating acts as a self-attention weight mask, differently from inpainting, where,

instead, the mask is given as input to indicate the pixels to be inpainted (section 4.6).

Moreover, given the spherical nature of the input, we adopt circular padding along

the horizon for convolutions, thus removing longitudinal boundary discontinuity

and reflection padding to alleviate the singularities at the poles [32]. Furthermore,

considering that our output will be a single channel, we use 32 internal channels

instead of the default 64 channels in standard inpainting networks. Finally, since we

produce depth, the last layer activation function is an ELU , instead of tanh.

The input equirectangular image, which is encoded through a sequence of light-

weight gated convolutions having different strides, so that the original size is reduced

by a factor of four in each direction. Each encoding convolution is followed by

instance normalization [102] and ReLU activation. Generally, compared to view-

synthesis baselines [86, 87], our design has fewer parameters, with a lighter single

branch, and it includes several solutions, described below, to improve accuracy for

the depth estimation task and reduce computational complexity.
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The adopted gated convolution (GC) approach [33] is expressed as:

G = conv(Wg, I)
F = conv(Wf , I)
O = σ(G)

⊙
ψ(F )

(4.1)

where σ is the Sigmoid function, which outputs values in the range [0, 1], ψ is an

activation function (ReLU in our case), and Wg and Wf are two different sets of

convolutional filters, which are used to compute the gates and features respectively.

GC enables the network to learn a dynamic feature selection mechanism. In order

to simplify training and guarantee low latency at inference time, our network uses

a modified version of GC called Light Weight Gated Convolutions (LWGC), which

reduces the number of parameters and processing time while maintaining the effec-

tiveness [89]. Specifically, we decompose G from Equation 5.3 into a depth-wise

convolution [89] (i.e., 3 × 3) followed by a 1 × 1 convolution, having, as a result, the

same gating step but with only kh × kw × Cin + Cin × Cout parameters. Repeated

dilations [88] are used for the bottleneck, thus increasing the area that each layer can

use as input. It should be noted that this is done without increasing the number of

learnable weights but obtained by spreading the convolution kernel across the input

map. The dilated convolution operator is then implemented as a gated convolution

(i.e., Equation 5.3), but with some differences. It is expressed as:

Dy,x = σ(b+
k′

h∑
i=−k′

h

k′
w∑

j=−k′
w

Wk′
h

+i,k′
w+j · Iy+ηi,x+ηj) (4.2)

where η is a dilation factor, σ()̇ is a component-wise non-linear transfer function

and b ∈ RCout is the layer bias vector. With η = 1, the equation becomes the stan-

dard convolution operation. In our model, we adopt, respectively, η = 2, 4, 8, 16 for

the four bottleneck layers. Using this strategy, we aggregate multi-scale contextual

information without losing resolution, thus capturing the global context efficiently

by expanding the receptive field, avoiding additional parameters, and preventing

information loss. This is important for both depth estimation and the image com-

pletion task (section 4.6), as capturing sufficient context is critical for realism. By

using dilated convolutions at lower resolutions, the model can effectively cover a

larger area of the input image when computing each output pixel than with standard

convolutional layers [86]. The network decoder, based on gated convolutions without

dilation, restores the resolution of the output to the original input resolution.
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The effectiveness of such a versatile baseline also depends on its training. In our

approach, we adopt as a loss function for the depth prediction task the robust

Adaptive Reverse Huber Loss (BerHu) [90], combined with a Structural Similarity Index

Measure (SSIM), which measures the preservation of highly structured signals with

strong neighborhood dependencies. As a result, such a panoramic depth prediction

approach returns accurate depth maps for the input pose, as demonstrated by our

results (section 4.8).

Fig. 4.3.: Panoramic slice One of the slices produced by the network, placed at its position
within the equirectangular image. The red line shows the area sampled by the right
eye, while the green line shows the area sampled by the left eye (see Figure 4.2b).
In the background, we see the original panorama from the central viewpoint (note
the large shift due to parallax effects).

Fig. 4.4.: Novel view synthesis. Given the source image Is and its predicted depth Ds,
a new, sliced viewport Ĩt,θ is rendered from a new viewpoint translated by Tθ,r,
according to a given direction θ and an offset r. The field-of-view ω, designed to
cover both eyes’ viewport (section 4.7), is assumed constant. To generate an It,θ

slice, we exploit the gated architecture already exploited for depth but adapted to
have greater accuracy on the 3 RGB channels of the spherical section S. Legend:
in,out channels; k convolution kernel; s stride; u upsample; d dilation.
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4.6 Synthesis of novel views

Taking as input the original panoramic image and the registered panoramic depth map

estimated by our deep network, this task aims to synthesize a collection of panoramic

slices through re-projection and view synthesis. These slices are distributed around

the central viewpoint, with each slice’s projection center placed on the circular path

covered by each eye during a head rotation. Furthermore, each slice encompasses an

angular extent sufficient to accommodate the potential gaze directions of both the

left and right eye (section 4.7).

To this end, given a full angular extent of 180 degrees along the vertical direction

and a limited viewpoint ω along the horizon, we generate novel spherical images in

viewports Sθ,ω (i.e., slices) along the circular path, by translating the original, central

view Is by an offset Tθ,r for each direction θ and distance r from the input view. For a

typical human-size configuration, with a head radius of 100mm and an IPD of 65mm,

we can safely assume 45 degrees as a portion of the image covering both eyes, which

would correspond to 128 pixels for a 1024 × 512 equirectangular image. We further

expand this region by ±5 degrees to provide context for reconstructing missing

areas and to support eye convergence at a finite distance. For a 1024 × 512 image

(corresponding to a 512 × 1024 tensor), each slice in our experiments is assumed to

be 160 pixels wide, while the overall angle ω is about 56 degrees. An example of a

slice produced by the network is depicted in Figure 4.3. The View-synthesis pipeline

Fig. 4.5.: Reprojected vs. synthesized image Two examples from different scenes. On
the left, we see a detail of a reprojected image slice, where disoccluded areas are
apparent. On the right, we see the output of the view synthesis network.

is depicted in Figure 4.4 and includes two steps. The first is a view-dependent

rendering step, which exploits the predicted depth Ds and translation Tθ,r to move

pixel information to the new position. Tθ is given by polar coordinates, which depend

on the head radius r (i.e., assuming in our experiment an average radius of 100mm)
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and by the angle θ, while Ĩt,θ is the portion of translated pixels viewed from the

viewport Sθ,ω. The second step consists in a view-synthesis deep network, which

takes as input the translated pixels Ĩt,θ and their disocclusion mask Bt (i.e, black

pixels in Figure 4.4), returning as output the novel viewport It,θ. Figure 4.5 shows,

for two different scenes, a detail of a reprojected slice, with missing pixels in black,

and the corresponding area of the output of the view-synthesis network.

In our case, by design, pixel rendering is not part of the learnable layers, and we

assume we can directly project visible points according to Ds depth and Tθ translation

using regular z-buffering to obtain the starting view to be optimized. This solution

is better suited to our case than more elaborate splatting methods [84], since for

stereo rendering, the limited displacement of the eyes from the center generates

much narrower disocclusion zones than in the case of free viewpoint motion.

In an equirectangular image, columns correspond to constant longitude/azimuth

θ angles, while rows to constant latitude/elevation ϕ angles. Each pixel can be

mapped to angular spherical coordinates and vice-versa. This mapping between

image domain pixels and spherical domain angular coordinates allows for direct

transitions between image-based and spherical-based operations [93]. Omitting

the straightforward relationship between Cartesian and spherical coordinates, the

following equation relates spatial (i.e, Tθ,r) with angular displacements (i.e., Ĩt,θ

pixels): 
∂d

∂ϕ

∂θ

 =


sin(ϕ) sin(θ) cos(θ) cos(ϕ) sin(θ)

cos(ϕ)
d sin(θ) 0 − sin(ϕ)

d sin(θ)
sin(ϕ) cos(θ)

d
− sin(θ)

d
cos(ϕ) cos(θ)

d



∂x

∂y

∂z

 (4.3)

where d is the depth of the given pixel.

For the view-synthesis task, we assume Ĩt,θ
3×h×w

as input. As in typical inpainting

approaches, we define a binary inpainting mask Bt
1×h×w, identifying missing parts

in the rendered image. This mask is computed directly in the reprojection step.

Bt is then concatenated to Ĩt (i.e., along the batch dimension - 4 layers input

(Figure 4.4).

To predict the output It,θ slice, we adopt the lightweight gated architecture exploited

for depth estimation (section 4.5) but adapted for having greater accuracy on the RGB

channels of the current spherical viewport Sθ,ω. Here, spherical padding is replaced

by replicate padding in all layers. Similarly to other works (e.g., DeepFillV2 [33]),

we use f(x) = max(0, tanh(x)) as activation function for the output layer. Limited to
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the [0..1] range, this function behaves similarly to ReLU near the lower bound while

smoothly saturating at the upper bound.

As shown in Figure 4.4, this network has a higher density at the inner channel level,

whose starting value is 64 (first encoder layer in Figure 4.4). This increase in layers,

compared to the configuration used for depth, is compensated, from the computa-

tional point of view, by the fact that the network processes a smaller portion of the

image than the full equirectangular image, leading to a contained computational

cost, as demonstrated in section 4.8. This is particularly important since, for each

input panorama, the generation of omnidirectional stereo representation requires

the generation of hundreds of slices.

We train the inpainting network by including losses that measure the photorealistic

quality of the output slice. It should be noted that, in contrast to full image prediction,

here the loss is calculated by comparing the predicted slice It,θ with the corresponding

crop Igt,θ of the ground truth equirectangular image. Our loss function is expressed

as:

Lvis = λpxLpx + λpercLperc + λstyleLstyle + λadvLadv − λlpipsLlpips. (4.4)

where the first term is a pixel-based L1 loss between the predicted RGB slice It,θ and

the ground truth target crop Igt,θ, Lperc and Lstyle are the data-driven perceptual and

style losses [50], enforcing Iout and Igt to have a similar representation in the feature

space as computed by a pre-trained V GG− 19 [91], while Ladv is a discriminator-

based loss (i.e., PatchGAN [92]). Furthermore, in addition to conventional inpainting

losses, we introduce a loss based on Learned Perceptual Image Patch Similarity

(LPIPS) [100] to enforce similarity due to the restricted field-of-view of the slice.

λ weights are common for many single-pose inpainting problems [87]: λpx =
1.0, λstyle = 100.0, λperc = 1.0, λadv = 0.2, λlpips = 1.0.

4.7 Omnidirectional stereo generation and
rendering

Starting from the slices synthesized by the network, we have all the information

to provide stereoscopic viewing during head rotations, as these slices contain a

plausible scene reconstruction for all the possible points of view of both the left and

the right eye. While previous works used a small set of these synthesized images
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and combined them at rendering time [105], here we densely sample the position

space and construct off line a compact omnidirectional stereoscopic representation

by appropriately fusing these slices. The issue of constructing stereoscopic panoramic

image pairs has already been addressed in the literature (section 4.3). In this work,

we selected to achieve the stereoscopic effect by generating two aligned multiple-

center-of-projection (MCOP) images encoded in equirectangular format. As longitude

varies in these images, the corresponding pixel column is generated from a different

camera position, which corresponds to the position of the eye when it is looking

straight in this direction.

The calculation for each eye starts, thus, from the generation of n vertical slices

radially uniformly distributed around the head, as shown in Figure 4.2c. Since our

networks are computationally efficient, and all the computation is performed offline,

we can generate very dense angular samplings in a short time (ideally, even with

n equal to the output image width). In practice, we have seen that an angular

sampling of one degree (i.e., 360 slices) is sufficient to obtain a very high-quality

reconstruction. The single MCOP image for each eye is constructed from the union of

vertical slices associated with each θ angle of longitude. The stereo effect is ensured

by the fact that, for a given rotation θ of the head, the eyes will point in the same

front-facing direction, but each with a slightly different perspective due to the offset

caused by the inter-pupillary distance IPD. As seen in Figure 4.2a, when we rotate

the head around its vertical axis, for a given θ, the eyes will be positioned on the circle

of radius r at angles θ − ϕ (left eye) and θ + ϕ (right eye), where the value of ϕ is

given by ϕ = asin( IP D
2r ). When computing the omnidirectional stereo representation

for the left eye, we thus loop over all the output columns. For each vertical column

at an angle θ, we identify the eye position as θ − ϕ and find the two synthesized

panoramic slices with the closest centers of projection (i.e., one to the left and one to

the right). The pixels of these slices are then blended with a Gaussian weight based

on the angular distance to the output column. The same process is done for the right

eye, with the only difference being that the eye position is θ+ϕ. Since we are using a

very high angular sampling rate in this paper to place slices, i.e., 360 slices per image,

the blending area is extremely small – pixel-sized for our typical network outputs,

and using such a simple blending does not lead to any noticeable ghosting artifacts,

as illustrated in section 4.8.

Note that while we have assumed here a view with both eyes looking in the same

direction (zero parallax at infinity), we can apply the same approach for calculating

MCOP images with eyes that have zero parallax at a finite distance for improved
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simulated stereoscopic vision in confined environments. The only variation would be

in the extraction of the column, which would not be in the θ direction but towards

the focal point.

As a final pre-processing step, we also perform upsampling of the images to match

the quality of the display. This is because, currently, our synthesis is performed

at a resolution smaller than the display size (i.e., a vertical slice resolution of 512

pixels vs 2048 for a typical headset). This limitation is not due to our easily scalable

network architectures (see section 4.5 and section 4.6), but, rather, to limitations

in available ground-truth training sets. In the current work, good quality results

are obtained by applying available super-resolution generative adversarial networks

capable of zooming images by creating plausible geometric and texture detail. To

apply these methods to equirectangular images without boundary effects, we extend,

before zooming, the original image to the left by incorporating portions from the

right side and vice versa. This extension makes available to the network a sufficient

context to define all important areas. After zooming, the image is then cropped

only to contain the relevant portion of the equirectangular representation. The two

MCOP images resulting from this process can then be presented to the viewer using

the same approach used for regular panoramas, presenting the left panorama to

the left eye and the right panorama to the right eye, and using the same viewing

transformation for both panoramas to adjust for head orientation. When looking in

a specific viewing direction, the correct perspective for the left and right eyes will

be projected in the headset, with the correct horizontal parallax for the front-facing

pixels and a small degradation towards the periphery. The stereoscopic effect of the

two images calculated in this way is guaranteed by the fact that human stereoscopic

vision is concentrated mostly in the central portion of the field of view and does not

exist in the outer peripheral zones.

The rendering on the headset is accomplished using a standard viewer for omnidirec-

tional stereo images through a WebXR API browser. In practice, the high-resolution

stereo panoramic images serve as textures for two spheres positioned in the scene —

one centered around the left eye and the other around the right eye. The result is

a kind of distinct environment map for each eye. As per the WebXR specifications,

when XR rendering is enabled, the system retrieves parameters defining the head’s

position from the headset’s sensors during each frame of the animation loop. These

parameters are then used to create the correct perspective projections for each eye.

For a given longitude θ, the left and right eyes will centrally align with images with
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the correct horizontal parallax disparity, thereby providing the effect of stereoscopic

perception.

(a) Input (PNVS [17]) (b) Prediction (c) Ground Truth (PNVS [17])

(d) Input (PNVS [17]) (e) Prediction (f) Ground Truth (PNVS [17])

(g) Input (real capture) (h) Prediction

Fig. 4.6.: Depth estimation. Two examples of depth prediction on PNVS [17] dataset
scenes and an example of depth prediction from a user-acquired panoramic scene
taken with a Ricoh Theta 360◦ camera.

4.8 Results

The processing components to obtain stereo panoramic images for loading onto the

headset have been developed in Python, using Pytorch to implement our custom net-

works, combined with standard image processing and computation libraries (NumPy,

Pillow, OpenCV). The generative adversarial network used for zoom operations is

Real-ESRGAN (with model realesr-animevideov3) [80], that has been directly inte-

grated as a post-processing step in our system. The immersive rendering components,

instead, have been realized in WebGL and WebXR.

4.8.1 Dataset and training

For training our solutions, we harness the availability of public panoramic scene

datasets where ground truth is available. To train and test depth estimation, we ex-

ploit Structured3D [52]), a large-scale (21K photorealistic scenes) synthetic database

of indoor scenes providing the ground truth depth for each panoramic image.
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(a) Central pano (PNVS [17]) (b) Central pano (PNVS [17]) (c) Central pano (PNVS [17])

(d) Left/right MCOP pano (e) Left/right MCOP pano (f) Left/right MCOP pano

Fig. 4.7.: Ominidirectional stereo panoramas. Three representative scenes from the
PNVS [17] dataset (testing split). Top row: source panorama. Middle row: auto-
matically generated MCOP panorama for the left eye; Bottom row: automatically
generated MCOP panorama for the right eye. The vertical alignment clearly shows
the parallax effects.

To train and test view synthesis, instead, we exploit PNVS [17], a subset of Struc-

tured3D scenes providing several translated views for each source panoramic image.

Since the baseline for stereo view generation is very small, we opt for the PNVS subset

known as easy, characterized by a maximum range of 300mm. This range comfortably

exceeds our default radius of r = 100mm. Train and test splits are maintained as

in the original papers. The depth estimation network is trained and tested directly

on the original images, while the view synthesis network is trained and tested on

randomly oriented slices of the provided examples. The generation of randomly

oriented slices is implemented as a data augmentation step. Given that the available

training and testing data sets are provided at a resolution of 1024 × 512 pixels, all our

processing is done at that size. In the future, we plan to generate synthetic training

and testing sets at higher resolution (2K-4K), exploiting the scalability of our net-

works to directly process images at typical native 360◦ camera resolution, removing

the need for the downscaling and upscaling steps. We trained both networks with

the Adam optimizer [95], with β1 = 0.9, β2 = 0.999 and an adaptive learning rate

from 0.0001, on an NVIDIA RTX A5000 (24GB VRAM) with a batch size of 8 for

depth estimation and 4 for view synthesis. The average training time for the depth

estimation network is 150ms/image, while for view synthesis is 160ms/image.
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4.8.2 Computational performance

Our depth estimation and view synthesis baselines are extremely lightweight. Ta-

ble 5.2 shows learnable parameters, GFlops, and milliseconds for different tasks and

outputs. The benchmarks have been made on the same A5000 machine used for

training.

In all presented tasks, we assume 512 × 1024 as the source image tensor resolution.

Indeed, the output resolution is the same for depth estimation, where the network

configuration uses 32 internal channels (section 4.5). For the view synthesis task,

instead, we compare computational stats to generate a full 360◦ image (i.e., 512×1024
tensor size) and to generate a slice (i.e., 512 × 160) that is the final utilization of the

network. For this task, we adopt a network configuration with 64 internal channels, as

well as other task-designed modifications (section 4.6). The results clearly show the

computational advantage in terms of GFlops and inference time. Subsequent results

Tab. 4.1.: Computational performance. We show the computational performance and
latency time of our gated architecture for different tasks. In bold modes are the
current architecture choices.

Mode Output Res Params GFLOPS ms/frame
Depth 512 × 1024 6.06 M 164.11 41
Synth 512 × 1024 6.93 M 326.71 95

Synth sliced 512 × 160 6.93 M 51.05 58

(section 4.8.3) show that the choice of generating a slice maintains a performance

advantage not only in computational terms. With the current approach, a full-quality

omnidirectional stereo image, computed with an angular spacing of 1◦ between slice

projection centers, can be generated and experienced in stereo with a latency of only

about 21s from the time of the shot.

4.8.3 View-synthesis performance

As depth estimation is a fundamental task to achieve novel view synthesis, Table 4.2

presents the quantitative performance of our gated architecture compared to state-

of-the-art panoramic depth solutions. We included in the evaluation the same error

metrics used in many prior depth estimation works (e.g., [15, 65]): mean absolute

error (MAE), mean relative error (MRE), root mean square error of linear measures

(RMSE), and three relative accuracy measures δ1, δ2 and δ3, defined, for an accuracy
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δn, as the fraction of pixels where the relative error is within a threshold of 1.25n.

The latter measures are useful to illustrate the error distribution.

We compare our performance with SliceNet [15] and HoHoNet [65], which are state-

of-the-art methods commonly used as benchmarks in the latest panoramic works [110,

66], and, particularly for the domain of this paper, can provide performance with

low latency. In this case, we show the reconstruction performance on the main

Tab. 4.2.: Quantitative performance comparison on depth reconstruction. Our results
are compared to other state-of-the-art works.

Method MAE↓ MSE↓ RMSE↑ δ1 ↑ δ2 ↑ δ3 ↑
HoHoNet [65] 0.081 0.065 0.206 0.958 0.987 0.993
SliceNet [15] 0.082 0.054 0.198 0.961 0.988 0.993
Our 0.061 0.008 0.038 0.962 0.989 0.994

Structured3D [52] test set, for which results from those baselines are available. We

show some qualitative results in Figure 4.6 (top two rows) on the PNVS scenes

adopted instead for view-synthesis benchmarking. The deformation in the views is

present in the original images and is due to the equirectangular projection, which

preserves horizontal lines and curves vertical ones. The same deformation is visible in

all other images in equirectangular format included in this article. As an illustration

of how the same model can be applied to casually captured images, the bottom row of

Figure 4.6 shows how our network successfully predicts the depth of a user-acquired

scene captured with a hand-held Ricoh Theta 360◦ camera.

As shown in the qualitative results of Figure 4.6, the overall shape of the room is well

preserved, and, similarly to other works [65, 15] the main prediction errors appear

on very thin structure (e.g., the lamp in the second row). These thin structures are

not very well resolved and, at run time, can cause visual artifacts during exploration.

This problem is common to virtually all depth estimators from single images, and we

expect to reduce them by increasing the resolution of images in the training set.

Table 4.3 summarizes our performance in terms of view synthesis accuracy, bench-

marked on the PNVS [17] test dataset. . Despite presenting much more challenging

translations than stereo parallax, this set provides a ground truth on which it is

possible to compare with other state-of-the-art methods [19, 57] and among different

versions of our architecture.

The results show that our method outperforms other baselines in generating a full

equirectangular view (i.e., row 3). Furthermore, we show how reconstructing the
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Tab. 4.3.: View synthesis performance. We show the quantitative performance of view
synthesis compared to other state-of-the-art methods, all of which operate at
a minimum resolution of 1024 × 512 image size (i.e., 512 × 1024 tensor size).
The last line shows our sliced solution compared with our baseline trained to
reconstruct the whole image.

Method Output Res PSNR↑ SSIM↑ LPIPS↓
SynSin [57] 512 × 1024 17.28 0.721 0.226
MPI [19] 512 × 1024 17.59 0.725 0.223
Our full 512 × 1024 21.55 0.731 0.202
Our full crop 512 × 160 22.77 0.738 0.196
Our sliced 512 × 160 23.00 0.744 0.186
Our-sliced-no-LPIPS 512 × 160 22.38 0.748 0.205

single slice still achieves state-of-the-art performance even though the reconstruction

is done by having a smaller context (i.e., 56 degrees vs. 360 degrees). The standard

deviation of the error measures on the sliced version amounts to 0.075 for LPIPS,

0.098 for SSIM, and 4.53 for PSNR, and is in very similar ranges for the other versions

of the network. We noticed that the main errors found on the set of scenes are due

to the imprecise depth reconstruction (see above), especially on thin structures. We

thus identify depth estimation as one of the main avenues for improvement.

The last row shows the results obtained with an instantiation of our network trained

without the Llpips loss term. It should be noted how adding this term not only

improves the LIPS metric but also has a beneficial effect on the PSNR. Since LPIPS

strongly correlates with perceptual quality [100], its addition in the loss improves

the final quality of presented images.

To compare the accuracy of the reconstruction, we measured performance by com-

paring random 512 × 160 crops on the full generated overview (i.e., training with

512 × 1024 tensor output), with slices generated with the dedicated network (i.e.,

training with 512 × 160). The experiments show that despite the significantly lower

computational complexity, performance is on par, if not better, than generating a full

equirectangular image for each angle.

4.8.4 Stereoscopic exploration on HMD

We tested the immersive viewer on various devices, including a Meta Quest 2 and

an Android mobile device Samsung Galaxy S 22 with a Google Cardboard. Here

we report on experiments made on a Pico4, a headset with two 2.56-inch Fast-LCD

displays, a global resolution of 4320x2160 pixels (equivalent to 2160x2160 pixels
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Fig. 4.8.: The WebXR viewer. The user on the left wears a Pico4 HMD. The images to the
right present the left and right images, as rendered by our WebXR viewer running
on the PicoBrowser. The source image is a single-shot monoscopic 360◦ capture of
a real environment, transformed to omnidirectional stereo by our framework.

(a) Left MCOP panoramas (b) Central panorama (c) Right MCOP panoramas

Fig. 4.9.: Ominidirectional stereo panoramas. Example from real-world capture. Central:
the source panorama captured with a Ricoh Theta. Left/Right: automatically
generated MCOP panorama for the left and right eyes.

per screen), a pixel density (PPI) of 1200, a variable refresh rate ranging between 72

and 90 Hz, and a diagonal Field of View (FOV) of 105 degrees (diagonal).

The web application for rendering is served by a web server that only has to transmit

the two panoramic images to the HMD, since the embedded client performs all

the rest of the computation and rendering work. The client application is built on

the ThreeJS framework, enabling the development of WebGL graphics components,

and incorporates mechanisms for interaction with WebXR APIs. On the client side,

the application, written in JavaScript ECMAScript 6 following a modular approach,

is run on the native PicoBrowser when using Pico4, but the viewer can naturally

be run on any headset compatible with WebXR specifications, as demonstrated by

our tests on Android Phones with Google Cardboard and on the Meta Quest 2.

Figure 4.8 shows an image of the viewer. Other standard viewers supporting the

omnidirectional stereo format can also be employed. Using a custom viewer allows

us to implement specific operations (i.e., switching among scenes or from mono to

stereo, or constraining/freeing the up vector during navigation).

When displayed on the HMD, the images provide immersive stereo cues, as also

confirmed by an informal test with ten subjects who were requested to explore the
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Fig. 4.10.: Comparison of omnidirectional stereo approximation with ground truth.
The top portion of the two images shows the perspective generated using the
multiple-center-of-projection image for the left and the right eye, while the bottom
portion shows the ground truth image generated with a center of projection
placed at the eye position. As we can see, the perspective is indistinguishable at
the center but slowly degrades in the periphery.

stereoscopic environment on Oculus Quest and provide their opinion on immersion

and stereoscopic perception of the generated scenes. The test was simply carried out

by loading either the original 360◦ version or the omnidirectional stereo one. In all

cases, users always differentiated the mono and stereo versions and confirmed that

the stereo one was providing a more immersive experience.

Figure 4.7 shows the results of omnidirectional stereo generation for three represen-

tative scenes from the PNVS [17] dataset (testing split), while Figure 4.9 shows the

results of omnidirectional stereo generation for a real-world captured-scene. In both

figures, the top row shows the source panorama, positioned at the center of the head,

while the middle and bottom rows show the generated MCOP panoramas for the left

and right eye, which incorporate stereo parallax effects.

Figure 4.10 shows a comparison between the real-time rendering obtained from the

omnidirectional stereo representation and a ground truth image. The top portion

of the two images shows the perspective generated using the multiple-center-of-

projection image for the left and the right eye, while the bottom portion shows the

ground truth view, obtained by placing the center of projection placed at the eye

position. As we can see, the two perspectives are indistinguishable at the center but

slowly diverge when moving towards the periphery. We noticed that, while this effect

is not perceived by the users for most of the scenes, in cases where a strong parallax

exists (very nearby objects with details), the users perceive an effect of slight object
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motion when rotating the head while still being capable to perceive the parallax. This

motion effect is due to the motion of the center of projection across the image. This

is, however, an effect perceivable in all multiple-center-of-projection methods and

is not introduced by our approach, which aims to present ways for the automated

generation of those representations.

4.9 Conclusions

In this chapter we presented a framework for the automatic generation of omnidi-

rectional stereoscopic indoor environments to be used in immersive applications,

especially consumed through head-mounted displays. Our method starts from a sin-

gle panoramic image of an interior environment and uses data-driven architectures

for depth estimation and novel view synthesis to quickly generate the images seen by

both eyes during head rotation. For this work, these images are combined into an

omnidirectional stereo representation, which is consumed on a lightweight WebXR

viewer supporting stereoscopic exploration during head rotations. The preliminary

results show that the automatic generation components achieve state-of-the-art ac-

curacy, and the visualization component can provide an immersive experience to

casual users on a variety of devices. As a result, we can provide a quick method to

enhance the exploration of environments acquired with the increasingly ubiquitous

and affordable monoscopic panoramic cameras. One of the limitations of the current

approach stems from the mismatch between the resolution of the synthesized images

and the achievable resolution with nowadays cameras and displays. This mismatch is

currently handled by downsampling images before construction and a deep-learning-

assisted upsampling before display presentation. The limitation is not due to the

lightweight network architecture, which promises to be scalable to much larger image

sizes, but instead to the availability of training sets for the depth estimation and view

synthesis networks. We plan to tackle this problem by generating higher-resolution

training data. In terms of display, we have taken the approach of generating omnidi-

rectional stereo images, which have the major advantage of requiring very limited

rendering resources but also introduce a little degradation in the peripheral areas and

when the view direction converges towards the poles. Since we have depth available,

we can easily improve the method by incorporating state-of-the-art depth-dependent

adaptations that have been designed for real captures [121]. In this context, it will

be interesting to explore how our deep-learning-based solutions could be further

adapted to directly produce the data required for depth-dependent adaptation. We

will also evaluate the possibility of exploiting this approach to support a limited
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amount of horizontal and vertical head motion in addition to rotation, exploiting the

fact that our networks can synthesize arbitrarily displaced images. Finally, we plan to

use this panoramic capture and immersive rendering system as a building block for

constructing applications that perform actions in shared physical and digital realities.

One important direction of work will be to exploit these explorable panoramic envi-

ronments to serve as interfaces for digital twins of buildings constructed from casually

captured real data, that can provide location awareness and be easily annotated in a

VR interface.
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5Automatic-assisted editing of

immersive indoor models

In this chapter we address the specific objective 3, related to immersive editing appli-

cation from panoramic imagery. Nowadays 360◦ cameras are increasingly being used

in a variety of Extended Reality (XR) applications that require specific Diminished

Reality (DR) techniques to conceal selected classes of objects. In this chapter, we

present a new data-driven approach that, from an input 360◦ image of a furnished

indoor space automatically returns, with very low latency, an omnidirectional photo-

realistic view and architecturally plausible depth of the same scene emptied of all

clutter. Such an approach addressed the research problems of objective 3. Contrary

to recent data-driven inpainting methods that remove single user-defined objects

based on their semantics, our approach is holistically applied to the entire scene, and

is capable to separate the clutter from the architectural structure in a single step. By

exploiting peculiar geometric features of the indoor environment, we shift the major

computational load on the training phase and having an extremely lightweight net-

work at prediction time. This end-to-end approach starts by calculating an attention

mask of the clutter in the image based on the geometric difference between full and

empty scene. This mask is then propagated through gated convolutions that drive the

generation of the output image and its depth. Returning the depth of the resulting

structure allows us to exploit, during supervised training, geometric losses of different

orders, including robust pixel-wise geometric losses and high-order 3D constraints

typical of indoor structures. The experimental results demonstrate that our method

provides interactive performance and outperforms current state-of-the-art solutions

in prediction accuracy on available commonly used indoor panoramic benchmarks.

In addition, our method presents consistent quality results even for scenes captured

in the wild and for data for which there is no ground truth to support supervised

training.

77



Fig. 5.1.: Given a 360 panoramic photo of a cluttered indoor scene, our end-to-end approach
automatically returns a photorealistic view and depth of same scene emptied of
furniture and clutter. Both visual appearance and depth, estimated at interactive
speed, are highly suitable for compelling and immersive XR applications, such as
(re-)furnishing or planning of interior spaces.

5.1 Introduction

Current 360◦ cameras offering viable low-cost and energy-efficient solutions for full-

context single-shot capture are increasingly popular in many application fields [10].

Since the captured 360◦ content, also known as panoramic, spherical, or omnidirec-

tional imagery, covers the entire sphere around the viewer, even a single shot cannot

be statically experienced at once, making it fundamentally different, more immersive

and more dynamic, than traditional 2D imagery [16]. In particular, when consumed

through Head-Mounted-Displays (HMDs), the user actively focuses on the desired

content via natural head movements, just like humans do in real world, achieving

a very high degree of immersion [11]. For this reason, omnidirectional imagery is

becoming a fundamental component for creating immersive content from real-world

scenes, and for supporting a variety of Virtual Reality (VR) applications [3]. Notably,

virtual tours based on spherical images are extremely popular in the real estate

domain, and have rapidly increased their appeal in the pandemic period [12]. A

pure exploration of existing environments through the original spherical photos, is,

however very limiting. Prominent examples of additional needs include the emptying

of rooms before their presentation to virtual visitors (if only for privacy reasons),

or the refurnishing or redecorating of interior spaces [28]. In this context, fast and

effective Diminished Reality (DR) techniques, which conceal real-life parts from the

view field, are paramount to remove the furniture and other clutter that masks the

architectural structure. In particular, DR features are essential to allow users to im-

mediately compare the furnished and unfurnished scene, and to support Augmented

Reality (AR) applications in placing objects in the empty scene [29, 30]. Making

these features available on novel environments with minimum latency, ideally in

real-time, would, in addition, enable their usage in remote collaboration contexts,

without the need for prior modeling [31].
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While a variety of object erasing and image inpainting solutions have been presented

in the literature (section 5.3), DR for interior environments must generate images of

empty indoor spaces that not only have a realistic appearance, but respect the context

in stricter ways, in particular by inferring a plausible organization of the permanent

architectural structure that bounds the room’s interior [32]. Data-driven solutions,

that learn hidden relations from examples, are emerging as viable approaches for this

class of problems. However, state-of-the-art methods for image inpainting are mostly

focused on photorealism [33, 34], and additional information about the scene is

exploited only from the semantic point-of-view [35, 36, 32]. Current pipelines make

limited use of the structure of the observed scene, and reconstruction accuracy is

achieved at the price of high computational complexity or increased user intervention,

using, for example, recursive networks [37], multi-branch architectures [34], and

manual definition of specific parts of the original image to be removed [35].

In this chapter, we present a novel light-weight end-to-end deep network that, from

an input 360◦ image of a furnished indoor space automatically returns, with very low

latency, an omnidirectional photorealistic view and architecturally plausible depth of

the same scene emptied of all clutter.

By harnessing the availability of large scale, photorealistic synthetic datasets, we train

our network on pairs using a set of examples composed of registered equirectangular

images of the cluttered environment color, the empty environment color, and their

depth. The final end-to-end network is decomposed in two blocks, which are trained

separately to reduce training costs. The first block learns an attention mask of the

uncluttered parts of the input image, generating training examples from the cluttered

input image and the depth pairs. The second block takes as input the attention

mask and the cluttered image, and performs the synthesis of the uncluttered scene,

using for training indoor-specific losses that embed our knowledge of expected

indoor environments. Contrary to other object removal approaches, our approach is

holistically applied to the entire scene, removing all clutter in a single step without

user intervention. Rapidly emptying the room without manual intervention is the

essential building block upon which the other features required for a DR application.

For instance, removing a single object (or keeping only a single object) is achieved

by compositing the empty room image from our network with the original image,

while taking into account the computed object mask (see, e.g., the design of Gkiktas

et al. [32]). Moreover, by inferring the room’s geometry while removing clutter, we

provide support various scene edits, including adding/positioning furniture while

resting on floor or attached to a wall (see Figure 5.1).
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5.2 Contributions

Our main contributions are summarized as follows:

• We propose a light-weight end-to-end deep-learning technique (section 5.4),

which provides, at interactive rate, a panoramic indoor scene emptied automat-

ically without user intervention and suitable for use in XR applications. Our

prediction network develops in a linear fashion, with no need to fuse features

from parallel branches [34, 32], or to refine the result recursively [37]. In

order to alleviate the burden of convolutional gating for generic user-assisted

inpainting [33], we adopt instead a depth-separable gated convolution strategy,

reducing the number of parameters and processing time while maintaining

the effectiveness [89]. Furthermore, both visual and geometric constraints are

applied only at training time, where the visual ones follow a strategy of transfer

learning [123] and the geometric ones adopt robust and efficient losses that

encode our prior knowledge on interior environments (section 5.4.3).

• We predict a geometric representation paired with the output image, that is

a dense depth estimation of the empty scene. This geometric representation

can be directly used as a basis for further processing in XR application (e.g., to

aid object positioning or to compute occlusions). It is obtained jointly with the

visual representation and without the need of onerous parallel branches [34,

32]. We also exploit it to define a robust and effective pixel-wise prior together

with other 3D priors and losses (section 5.4.3) The generation of a geometric

clue as output reduces the need to add additional semantic analysis on the

image or to use GAN strategies [92, 124] to disambiguate the results obtained,

as demonstrated by our results (section 5.5). By contrast, current inpainting

methods are mainly focused on the visual and perceptual output [33, 34],

where structure preservation is handled at image-feature level [125] or seman-

tically [35, 36]. Other approaches are based, instead, on manual and simplified

annotations of the underlying layout, which does not necessarily represent the

true 3D geometry. This information is best interpreted as a 2D semantic prior

rather than a geometric one [36, 32].

• We drive our training using a loss function that combines photorealistic and

geometric terms. In particular, our geometric terms exploit both pixel-wise

information from depth maps and the concept of virtual normals generated by
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triples of points at a large distance [126], to efficiently recover the salient char-

acteristics of man-made indoor structures, in terms of flatness and smoothness,

without falling into restrictive structures such as Manhattan World, Atlanta

World or even vertical walls [1].

Our results show that our method outperforms current state-of-the-art approaches,

using common benchmarks with a measurable ground truth, in terms of accuracy,

quality and less computational complexity (section 5.5.3). Moreover, our model is

also able to produce compelling predictions even on images from common datasets

where no ground truth is available for training, as well as on novel images captured

by an user (section 5.5.4).

3xWxH

(RGB)

WxH

(Object Mask)

+

4

512

32 64 51
2

256

128 128 128 25
6

128

128 128 128 128 25
6

128

128 128 25
6

128

64 64 51
2

256

32

3

1

3xWxH

(RGB)

WxH

(Depth)

Fig. 5.2.: Model architecture. We process the input equirectangular image to identify
the cluttered area in the scene, exploiting a light-weight network (purple blocks
- section 5.4.1). The clutter mask and the input image are passed to the empty
scene synthesis network (section 5.4.2), including a gated encoder (red blocks), a
dilation bottleneck (yellow blocks) and a gated decoder (blue blocks), whose last
layer is split in 2 layers: one for the photorealistic equirectangular representation
of the emptied scene and one for its depth. The scene synthesis network is trained
end-to-end through the methods and losses described in section 5.4.3.

5.3 Related Work

DR for indoor scenes builds on techniques for data-driven inpainting and image-

to-image translation, and must extend them in order to produce a realistic and

geometrically consistent environment, eventually estimating the depth of the unclut-

tered scene. In the following, we focus on the methods that are most closely related

to ours.
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5.3.1 Diminished reality for indoor spaces

DR applications provide the illusion of concealing, eliminating, and seeing through

objects while perceiving an environment. In contrast to AR and MR, which superim-

pose virtual objects to real-world representations, they require techniques to detect

the unwanted objects and replace them with the hidden background in generated

images. In most DR applications, the objects to be removed are already determined

as targets of interest, and specific techniques are employed for their detection (e.g.,

pedestrians [127] or buildings [128]). In indoor spaces, the most basic operation

is the removal of interior clutter (furniture and other non-permanent objects) [29,

28, 129, 30, 32], which is supported either through interactive mask definitions

(e.g., [32]), or through semantic or instance segmentation (e.g., [36]). In this work,

instead, we learn, from synthetic examples, a geometric definition of clutter, that

includes anything with an appreciable geometric volume that is not part of the per-

manent architectural structure. A wide variety of approaches have been proposed in

the literature for synthesizing the hidden background (see [7] for a comprehensive

survey). A number of methods employ reprojections of actual background images,

generated through a prior observation of the same scene [130, 131] or a concurrent

observation from other points of view, e.g., by employing multiple cameras [132].

Since these approaches require considerable effort and/or specialized setups, much

research has focused, instead, on generating plausible background rather than re-

covering actual ones. Early solutions recovered background textures from the same

image, especially analyzing areas nearby removed objects (e.g., [133]). Since these

methods are generally limited to small holes and fairly regular scenes, the focus has

recently shifted towards data-driven solutions that learn from a large body of prior

examples. We follow this trend by generating a plausible background of a novel scene

using a single 360◦ observation, exploiting concepts from data-driven inpainting and

image-to-image translation, recovering not only the color but also the geometry of

the empty scene in the form of a depth map. Shape inference is very important for

DR of indoor environments, since it improves texture reprojection [133, 134] and

parallax effects [72], and offers a basis for the editing operations [28, 135]. However,

prior DR solutions either expected a simplified geometry in the hidden area (e.g., a

plane [133, 134]) or required particular capture setup (e.g., multi-view [130, 132,

131] or one or more RGB-D cameras [129, 28, 135]).
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5.3.2 Data-driven inpainting

The first data-driven inpainting approaches combined auto-encoders with an adver-

sarial loss [136] or global and local discriminators [86] to produce photo-consistent

images. They used regular or dilated convolutions [88] combining valid and masked

parts of the image, thus leading to visual artifacts such as color discrepancy and blur-

riness. To overcome such limitations, Liu et al. [137] introduced partial convolutions

to handle masking effects. Later, the partial convolution concept was revisited to

incorporate structural information (edges) in the reconstructed feature map [125].

Recognizing the importance of edge preservation and generation, EdgeConnect [85]

introduced an edge generator to hallucinate edges in the missing regions, to use

them as structural guidance for the inpainting task. All the above methods assume

that the mask is given and concentrate on the infilling part. Yu et al. [33] further

extended the idea of partial convolutions by proposing gated convolutions to learn a

mask automatically from a large number of examples. Combined with SN-PatchGAN

[124, 138], this approach showed the ability of effectively supporting free-form

user input as guidance. We also exploit gated convolutions, but learn to separate

clutter from architectural structure using examples that exploit the availability of

ground truth depths, without resorting to user input in any of our phases. In parallel

developments, several authors have shown the importance of feature fusion at differ-

ent scales, including the pyramid-context encoder approach [139] and the mutual

encoder-decoder [140]. Conversely, Li et.al [37] propose a recurrent (i.e., iterative)

method to inpaint missing regions from the outer regions of the hole towards the

inner ones. Thanks to the data-driven design, the method is superior to previous

techniques that assumed that gaps should be filled with similar content to that of

the background, and can hallucinate new content for large holes. Zheng et al. [34]

further extended the exploitation of global relations by designing a framework to

generate multiple plausible results with reasonable content for each masked input,

based on a probabilistic approach. To achieve that, they combine generative and

variational synthesis approaches. None of the above methods, however, is applied to

360◦ imagery and exploits and generates geometric data.

5.3.3 Image-to-image translation

DR can be also recast as an image-to-image translation problem [92], as it maps

the input cluttered image to the output uncluttered image. Visual content and

style preservation is very important in this context [141, 50]. Isola et al. [92]

5.3 Related Work 83



proposed conditional GANs as a general solution to various translation problems,

semantic image synthesis being the most related to ours. The classic approach is to

use semantic labeling, and reconstruct images from the semantic maps, preserving

boundaries among classes [142]. Conserving semantic information fed to a deep layer

built by stacking convolutional, normalization, and non-linear layers is, however,

difficult, since normalization layers tend to blur semantic input. For this reason, Park

et al. [35] introduced spatially adaptive normalization, in which the input map is

exploited for modulating the activation in normalization layers through a spatially-

adaptive, learned transformation. The approach has been recently extended by

introducing per-region style encoding and allowing the user to select a different style

input image for each semantic region [36]. Very recently, PanoDR [32] applied the

above method to panoramic images of indoor scenes. In their approach, a pixel-wise

semantic prior maps each pixel to the ceiling, wall, or floor class, while inpainting is

performed exploiting a SEAN module [36]. As for classic inpainting methods, all these

techniques are focused on the perceptual aspect and, in order to improve the realism

of prediction, they exploit clues of image structure consistency (boundaries, edges),

additional semantic information [35, 36] or user input [33]. Using such additional

information mainly involves feature fusion from parallel branches [34, 32] or refining

the result recursively [37], increasing the computational cost of the methods. In our

approach, instead, we propose a linear pipeline avoiding feature fusion and recursion,

leveraging the fact that the scene to be reconstructed has a specific geometry, and

exploiting such an information only at training time. Furthermore, such geometric

constraints reduce the need to use adversarial losses [92, 124] to disambiguate the

results obtained, simplifying model structure and training approach. This leads to

novel contributions in terms of network structure and loss functions.

5.3.4 Uncluttered depth estimation

In order to integrate models into the empty scenes, or to perform geometric measures,

DR requires shape information in addition to color. We do that by also inferring the

depth map of the uncluttered image. Learning-based monocular depth estimation

was introduced over a decade ago (e.g., Make3D [143]), and the emergence of deep

learning, as well as the availability of large-scale 3D datasets, has contributed to

significant performance improvements. Since the restricted field of view (FOV) of

conventional perspective images inevitably results in a limited geometric context [2],

much of the research on reconstruction of indoors from sparse imagery is now focused

on inferring depth from a single omnidirectional interior image [63, 65, 15]. While
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these methods have been shown to cope with large amounts of clutter, they target

the generation of the visible depth of the fully cluttered viewed room, rather than the

estimation of the depth of the uncluttered one. For this reason, specific approaches

for inferring the architectural layout are being actively researched. As noted by

Zou et al. [14], most current data-driven layout reconstruction methods basically

follow a pipeline that, based on specific indoor assumptions (e.g., Manhattan World),

predicts layout elements in image space, followed by a post-processing for fitting a

regularized 3D model to the predicted 2D elements. Recent solutions fully working

in 3D [56] produce an approximate result in the form of a low-poly 3D mesh. By

contrast, our approach, differently from all prior approaches strives to produce a

per-pixel uncluttered depth, within a single-branch light-weight network that also

produces the uncluttered color.

5.4 Methods

The overall architecture is illustrated in Figure 5.2 and explained in the following

sections. We first process the input image (i.e, equirectangular format) to identify

the cluttered area in the scene, exploiting a separately-trained light-weight network

(purple blocks in Figure 5.2), described in section 5.4.1. The returned clutter mask

and the original input image are then passed to the empty scene synthesis network,

described in section 5.4.2 (main network in Figure 5.2), which returns the photoreal-

istic equirectangular representation of the emptied scene and its registered depth.

The scene synthesis network is trained end-to-end through the methods and losses

described in section 5.4.3.

5.4.1 Clutter mask prediction

The first stage of our method consists of an identification of the area containing the

clutter that should be removed from the image If
h×w to generate the empty room

color and depth panoramas. This identification consists of a binary mask Mh×w,

that contains 1 for pixels containing clutter, and 0 otherwise. Contrary to many

current DR approaches, that are oriented to the removal of single objects, we do

not expect that users define it interactively [32], eventually supported by object

recognition and segmentation systems [36], but learn how to generate this mask

directly from If through a lean segmentation network. We do that since we want

our mask to identifies all the non-permanent structures that need to be removed at
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the same time, differentiating them from the architectural layout of the room. For

training, we exploit the large body of information provided by recent large-scale

photorealistic synthetic datasets [52], which contain the registered representation

of empty and non-empty rooms. Even though, in this thesis, we only exploit the

differentiation between clutter and layout, for maximum generality, we cast our

problem as a classification problem, since many datasets contain, for each pixel also

the type of object and/or the type of layout surface (ceiling, floor, wall). Such a

classification might be of interest for reconstruction or when wanting to remove only

particular kinds of objects. In our context, we only consider a two-class situation

(layout=0, clutter=1), that can be generated, in absence of annotations in the source

datasets, by simply comparing the ground-truth depths of the empty (De
h×w) and

non-empty (Df
h×w) room representations, including in the clutter class the pixels

for which Df < De and to the layout class all others.

With this approach, we define as clutter the portions of the environment that have an

appreciable geometric volume in the room, but are not part of the bounding architec-

tural structure of the room. Flat objects such as electric outlets or decorations (or

mirror images) thus appear in the empty room by design. Such a definition is also com-

monly adopted for indoor structured reconstruction approaches [Pintore:2019:AMC,

144]. This choice avoids the need for semantic annotations, and lets the system learn

a stable association between color and geometric shape using a completely auto-

matic method using commonly available datasets. This approach does not exclude a

combination with semantic information (e.g., [36]) to also remove flat objects.

We predict our full-empty mask from the image If
h×w as a dual channel probability

map Dm
2×h×w (i.e., full and empty channel), using a very lightweight encoder-

decoder network based on the U-Net architecture, using just 256 channels as bottle-

neck (i.e., 4M parameters) and skip-connections [83]. The training of this network,

the purple one in Figure 5.2, is performed independently from the image synthesis

network, as we experienced that training the clutter mask network simultaneously

with the image synthesis network produces little or no advantages, but imposes an

additional load on the entire training process (see section 5.5). For each of the two

channels, training of the clutter mask is driven by binary cross-entropy loss:

− 1
n

∑
p∈Dm

c

(p̂ log p+ (1 − p̂) log (1 − p)) (5.1)

where Dm
c is the slice c of Dm, p is the predicted probability of one pixel of being of

class c, and p̂ is the ground truth probability. The final predicted binary mask Mh×w,
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that feeds the second stage of our complete network, is obtained by assigning each

pixel to the class with maximum probability and setting the pixel value according to

this classification.

5.4.2 Empty scene synthesis

To generate the empty scene image and depth, we adopt the architecture illustrated

in Figure 5.2. The overall encoder-decoder scheme follows a common design for

image inpainting [86], exploiting dilated convolutions as bottleneck [88], and gated

convolutions for encoding decoding [87]. Compared to the baseline [86, 87], our

architecture is thinner, deeper, and with fewer parameters. Moreover, it has only a

single branch and it includes several solutions (described below) to improve accuracy

and reduce computational complexity. Furthermore, given the spherical nature

of the image, we adopt circular padding along the horizon for convolutions, thus

removing longitudinal boundary discontinuity, and reflection padding to alleviate the

singularities at the poles [32].

The input of the network consists of a masked image of the cluttered room, with

white in clutter regions, together with the binary mask indicating the hole regions

(section 5.4.1). The paired input is encoded through a sequence of light-weight

gated convolutions having different strides (the 6 layers in red in Figure 5.2), so

that the original size is reduced by a factor four in each direction. Each encoding

convolution is followed by instance normalization [102] and ReLU activation. In our

network, we adopt a specific form of gated convolution, that integrates a learnable

gating technique when selecting features [87], since vanilla convolutions are ill-fitted

for image inpainting [87, 86]. Considering a standard convolutional layer and a

Cin − channel input feature map, each pixel located at (y, x) in the Cout − channel

output map is computed as:

Oy,x =
k′

h∑
i=−k′

h

k′
w∑

i=−k′
w

Wk′
h

+i,k′
w+j · Iy+i,x+j (5.2)

where x, y represents the location along the x- and y-axis of the output map, kh and

kw is the kernel size (e.g. 3 × 3), k′
h = kh−1

2 , k′
w = kw−1

2 , W ∈ Rkh×kw×Cin×Cout

are convolutional filters, and Iy+i,x+j ∈ RCin and Oy,x ∈ RCout are inputs and

outputs. The application of the same filters at each spatial location (y, x) is not

appropriate. This is because, for inpainting, the input will need to combine valid

pixels/features coming from regions outside holes with invalid pixels/features (in
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shallow layers) or synthesized pixels/features (in deep layers) coming from masked

regions [33]. Although simple partial convolutions [137] can be used to make the

convolution dependent only on valid pixels, they are not suitable for our problem,

since, essentially, they act as single-channel hard-gating.

Thus, we adopt a gated convolution (GC) approach [33], expressed as:

G = conv(Wg, I)
F = conv(Wf , I)
O = σ(G)

⊙
ψ(F )

(5.3)

where σ is the Sigmoid function, which outputs values in [0, 1], ψ is an activation

function (ReLU in our case), and Wg and Wf are two different sets of convolutional

filters, which are used to compute the gates and features respectively. GC enables the

network to learn a dynamic feature selection mechanism. It should be noted that,

according to Equation 5.2, Wg has kh × kw × Cin × Cout parameters, almost doubling

the number of parameters and processing time in comparison to vanilla convolution.

In order to simplify training and guarantee low latency at inference time, our network

uses a modified version of GC called Light Weight Gated Convolutions (LWGC),

which reduces the number of parameters and processing time while maintaining the

effectiveness [89]. Specifically, we decompose G from Equation 5.3 into a depth-wise

convolution [89] (i.e., 3 × 3) followed by a 1 × 1 convolution, having, as a result, the

same gating step but with only kh × kw × Cin + Cin × Cout parameters.

Repeated dilations [88] are used for the bottleneck (Figure 5.2, yellow blocks), thus

increasing the area that each layer can use as input. It should be noted that this is

done without increasing the number of learnable weights, but obtained by spreading

the convolution kernel across the input map. The dilated convolution operator is then

implemented as a gated convolution (i.e., Equation 5.3), but with some differences.

It is expressed as:

Dy,x = σ(b+
k′

h∑
i=−k′

h

k′
w∑

i=−k′
w

Wk′
h

+i,k′
w+j · Iy+ηi,x+ηj) (5.4)

where, assuming the same notation of Equation 5.2, η is a dilation factor, σ()̇ is a

component-wise non-linear transfer function and b ∈ RCout is the layer bias vector.

With η = 1, the equation becomes the standard convolution operation. In our

model, we adopt, respectively, η = 2, 4, 8, 16 for the four bottleneck layers. Using this

strategy, we aggregate multi-scale contextual information without losing resolution,
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thus capturing the global context efficiently by expanding the receptive field, avoiding

additional parameters and preventing information loss. This is important for the

image completion task, as capturing sufficient context is critical for realism. By

using dilated convolutions at lower resolutions, the model can effectively cover a

larger area of the input image when computing each output pixel than with standard

convolutional layers [86].

The network decoder (7 blue layers in Figure 5.2) follows a scheme which is sym-

metrical with respect to the scheme of the encoder. Five layers, based on gated

convolutions, restore the resolution of the output to the original input resolution,

and a final double layer (two layers in parallel) is dedicated respectively to the

synthesized RGB image and its depth (Figure 5.2). These last two layers have two

different activation functions, respectively tanh for the RGB output and ELU for the

depth output.

5.4.3 Training and losses

During the training phase, we compute the parameters of the network (section 5.4.2)

using a supervised training approach. To this end, we currently exploit Struc-

tured3D [52]), a large-scale, synthetic database of indoor scenes. For each scene, a

photorealistic, equirectangular rendering of the cluttered environment is matched

with the rendering of the same empty scene and with its depth map. It should be

noted that such a pixel-wise accurate matching between full and empty scenes and

their depths is practically only possible with synthetic data. However, an important

benefit of our method is the ability to perform transfer learning efficiently, so the

model trained on the synthetic dataset also performs very well on real images, as

demonstrated in our results (section 5.5).

Our loss functions are designed to combine a visual term, that measures the photore-

alistic quality of the output, with a geometric term, that drives the solution towards

a plausible reconstruction of an indoor environments.

The visual term is a combination of different domain losses to ensure the photorealis-

tic quality of the predictions:

Lvis = λpxLpx + λpercLperc + λstyleLstyle (5.5)
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The first term is a pixel-based L1 loss between the predicted RGB image Iout and the

ground truth empty scene image Igt. Lperc and Lstyle are the data-driven perceptual

and style losses [50]. These enforce Iout and Igt to have a similar representation in

the feature space as computed by a CNN model ψ, which, as in many image synthesis

approaches, is a pre-trained V GG− 19 [91]. The perceptual loss is, thus, given by:

Lperc =
N−1∑

n

∥ψn(Iout) − ψn(Igt)∥1 (5.6)

and computes the L1 distance between the projection of Iout and Igt into high-level

features using the pre-trained network ψ, thus preserving high-level content of the

image. In Equation 5.6, ψn is the activation map of the n-th selected layer. In our

loss, we use relu11, relu21, relu31, relu41 and relu51 layers [141].

The style loss, calculated on the same layers of perceptual loss, is given by:

Lstyle =
N−1∑

n

∥∥∥Kn(ψn(Iout)Tψn(Iout)) − ψn(Igt)Tψn(Igt)
∥∥∥

1
(5.7)

which includes the Gram matrix function, where the high level feature ψ(x)n is of

shape (HnWn)×Cn, resulting in a Cn ×Cn Gram matrix, and Kn is the normalization

factor 1/CnHnKn for the nth selected layer. Differently from the perceptual loss, this

component gives more importance to local similarity (e.g., texture).

The geometric term is a combination of low- and high-order 3D constraints:

Lgeom = λdLd + λnLn (5.8)

The low-order term Ld is a robust pixel-wise loss between the predicted depth Dout

and the ground truth depth of the empty scene Du (section 5.4.1). Similarly to other

recent state-of-the-art solutions (e.g., BiFuse [63] and SliceNet [15]), we adopt as

objective function the Adaptive Reverse Huber Loss (BerHu) [90]. For the high-order

term Ln, we consider a geometric constraint from a global perspective to take long-

range relations into account. This is achieved by exploiting the concept of virtual

normal [126], i.e., the normal vector of a virtual plane formed by three randomly

sampled non-collinear points in 3D space. By minimizing the direction divergence

between a small set of ground-truth and predicted virtual normals, serving as a

high-order 3D geometric constraint, we preserve the global shape of the model. Such

an approach is very effective for indoor environments, typical composed of the union

of a small set of smooth surfaces.
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From the given depth map Dh×w, a 3D point cloud is reconstructed by spherical

projection, so that, for each pixel pi(ui, vi) ∈ D, we obtain the location Pi(xi, yi, zi)
in 3D coordinates with respect to the sphere center (i.e., camera point-of-view).

N triples of points are randomly sampled from the point cloud. The three points

{(Pa, Pb, Pc)} in each triple are restricted to be non-collinear as defined by the

following condition:

C = {α ≥ ∠(−−−→
PaPb,

−−−→
PaPc ≤ β, α ≥ ∠(−−→

PbPc,
−−−→
PbPa ≤ β} (5.9)

where α = 150◦ and β = 30◦ in our experiments.

The normal vector ni of the plane formed by the three points is computed by:

ni =
−−−→
PaPb ×

−−−→
PaPc∥∥∥−−−→

PaPb ×
−−−→
PaPc

∥∥∥ (5.10)

The high order loss Ln is computed by:

Ln = 1
N

N∑
i=1

∥∥∥ni
pred − ni

gt
∥∥∥ (5.11)

A small number of triples is sufficient to produce effective results. As an example, for

each predicted or ground truth depth, having 512 × 1024 size, we randomly sample

3600 triplets, from which we obtain a pair of 3600 virtual normals, i.e., less than 0.7%
of the pixels. The contribution of geometric terms is highlighted in the ablation study

at section 5.5.5.

The relative importance of each loss term is determined by the values of the λx

coefficients. In our experiments we use λpx = 4, λperc = 1, λstyle = 40, λd = 0.5, λn =
0.5.

5.5 Results

Our approach was implemented using PyTorch [51] and has been tested on a large

variety of indoor scenes. Here we report on results on the benchmarks used by the

majority of state-of-the-art works [52, 41]. In addition, we report on the applications

to scenes captured by non-professional users.
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Fig. 5.3.: Examples of inference of color and depth of the empty room from a single-shot
panorama

Two examples of depth and color representations of empty rooms starting from a

single-shot panoramic image of cluttered environments are presented in Figure 5.3.

5.5.1 Training and testing datasets

We use Structured3D [52] to train, validate and numerically compare our results

to ground truth and other works. Structured3D [52] is a large-scale photo-realistic

dataset containing 3.5K house designs created by professional designers with a

variety of ground truth 3D structure annotations, including 21, 000 photo-realistic

full-panoramic (i.e., equirectangular format) indoor scenes. These panoramic scenes

are provided with or without furniture and objects. For all configurations, both

RGB images and depth maps are provided, allowing us to immediately use them

for training, validating, and testing without further configuration. The official

splitting [52] is used, with no overlap among training and testing partitions.

It should be noted that, while our method makes no particular assumption on the

architectural structure, Structured3D mostly includes Atlanta World structures [1],

leading to a better performance on scenes also meeting these constraints, even

though this constraint is not necessary for our network structure. As a further minor

limitation of this dataset, we noted that the environment map of the outdoors seen

through the windows is replicated in scenes that are part of the training and testing

partition. We plan to generate higher variations both of room geometry and outdoor

textures in our future works.

In addition to testing with Structured3D, we also adopt Matterport3D [41], a large-

scale RGB-D dataset containing 10, 800 panoramic views from 194, 400 RGB-D images

of 90 real building-scale scenes, to test our method on real-world scenes. We also
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(a) RGB input (b) ground truth (c) other [32] (d) our RGB (e) our depth

Fig. 5.4.: Qualitative performance and comparison vs. ground truth and other approaches
on the Structured3D dataset [52]. We compare to PanoDR [32], which has the
best panoramic performances among the available methods. We additionally show
our output depth paired with our visual results (Figure 5.4d).

exploit this dataset to demonstrate our transfer-learning capabilities. Furthermore, to

demonstrate the robustness of the method towards real acquisitions of various types,

we selected scenes from a variety of real-world datasets used in the field of automatic

building reconstruction [1] or manually acquired by non-professional users using the

widely available Ricoh Theta spherical cameras.

5.5.2 Setup and computational performance

We trained both the clutter mask prediction (section 5.4.1) and the scene synthesis

(section 5.4.1) networks with the Adam optimizer [95], with β1 = 0.9, β2 = 0.999,

on two NVIDIA RTX 2080Ti GPUs (11GB VRAM) with a batch size of 8 and a

learning rate of 0.0001. When using the typical 512 × 1024 resolution, the average

training time for the clutter mask prediction model is 32ms/image, while it is

196ms/image for the scene synthesis model. We adopt for training both networks

the Structured3D [52] official splitting. V GG− 19 [91] pre-trained model is the one

provided by TorchVision [51].

Table 5.1 presents our computational performance compared to state-of-the-art in-

painting methods. Although our method is fully scalable in resolution (see Table 5.2),
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(a) input [41] (b) prediction (c) input [41] (d) prediction

(e) user input (f) prediction (g) user input (h) prediction

Fig. 5.5.: We present qualitative performance on data for which no ground truth or training
set was available. Here, we show cases from the large scale real-world dataset
Matterport3D [41] and from typical user-acquired scenes, where captured images
are not perfectly aligned and the photographer is visible.

Table 5.1 shows the performance with a resolution compatible with the other base-

lines and adopted in previous comparisons [32], avoiding modifications of the other

models (i.e., 256 × 512). Our method is clearly the most lightweight and has a lower

computational complexity (e.g., GFLOPS) than the compared inpainting methods.

Moreover, as our approach is designed to remove all the objects in the scene at the

same time without user intervention, our presented statistics include the cost of

both the clutter mask estimation and scene synthesis networks, while other methods,

designed for general infilling, report results only for the synthesis part.

Method Params↓ GFLOPS↓ ms/frame↓
RFR [37] 30.59 M 412.22 157
Deepfillv2 [33] 13.86 M 163.44 41
PanoDR [32] 20.88 M 122.53 270
Our 6.06 M 41.03 17

Tab. 5.1.: Computational performance. We show our computational performance com-
pared to other state-of-the-art works on a single NVIDIA RTX 2080Ti GPU.
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Resolution Params GFLOPS ms/frame
256 × 512 6.06 M 41.03 15
512 × 1024 6.06 M 164.11 41
1024 × 2048 6.06 M 656.45 174

Tab. 5.2.: Computational scalability. We show our computational performance and latency
time for different input resolution. Our results demonstrate how we diminish
images with a very low latency even when resolution increase.

Table 5.2 shows, instead, how our approach scales to higher resolutions. As demon-

strated in the results, we diminish images with a very low latency, even at the higher

tested resolution (1024 × 2048). Applications can, thus, provide a quick feedback fol-

lowing a camera motion and/or environmental changes. While we currently exploit

these advantages for interactively taken single-shot images, the achieved perfor-

mance makes it possible to consider an extension to real-time room emptying during

continuous capture. As a term of comparison, approaches such as PanoDR [32] take

1183 GFLOPS at the 512 × 1024 resolution (i.e., close to an order of magnitude larger

than ours), making it hard to perform the inference on a single commodity graphics

board.

5.5.3 Performance vs. ground truth and competitors

We compared our performance to the one achieved by several state of the art in-

painting methods [37, 34, 33, 32], which are representative of the most related

approaches discussed in section 5.3. To provide a quantitative evaluation with re-

spect to ground truth, we train all methods using Structured3D [52] and used the

official implementation, minimally adapted to the equirectangular format, for the

computational performance evaluation (section 5.5.2). Table 5.3 presents results on

the full Structured3D [52] test set, according to its official split.

We adopt standard metrics: Mean Absolute Error (MAE), Peak Signal-to-Noise Ratio

(PSNR), Structural Similarity Index (SSIM) [99] and the Learned Perceptual Image

Patch Similarity (LPIPS) [100]. LPIPS is a metric that has been shown to better assess

the perceptual similarity between two images. It measures the distance between the

target and generated images using features extracted from a pre-trained VGG-16

model. Since other compared approaches assume that a mask of the parts of the

image to be removed is provided by a user (i.e., the whole clutter), we have used as

input the ground truth clutter mask (section 5.4.1). Note that this aspects favors the

other approaches, since for our method we use, instead, the mask estimated from the

color input.
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Even with this difference, our method outperforms the other approaches on all

considered metrics. This can be explained by the fact that the currently available

methods are designed to remove limited portions of the image or single objects, rather

than the entire clutter preserving only the architectural layout, while our method

is adapted to that situation. This fact clearly shows the advantage of designing a

task-specific network.

Method LPIPS↓ MAE↓ PSNR↑ SSIM↑
RFR [37] 0.418 0.201 10.885 0.745
PicNet [34] 0.472 0.204 10.922 0.733
Deepfillv2 [33] 0.354 0.188 11.235 0.729
PanoDR [32] 0.310 0.172 11.612 0.754
Our 0.129 0.040 24.702 0.925

Tab. 5.3.: Quantitative performance. We show our quantitative performance compared to
other state-of-the-art works.

Figure 5.4 presents some examples of our qualitative performance (Figure 5.4d),

compared to ground truth (Figure 5.4b) and to other methods (Figure 5.4c). We

choose to compare our approach with PanoDR [32], since it was specifically designed

for diminished reality on panoramic images and, in our tests, it is the best performing

among the other tested methods. Moreover, the method embeds several other state-

of-the-art solutions for image inpainting [33, 36]. Our method performs well under

different conditions, such as near and far objects, poorly or highly textured walls,

more or less distorted foreground, as well as background occlusions.

Figure 5.4e shows the depth produced by our method (Figure 5.4e), which is

not computed by the other inpainting solutions. To provide a term of compari-

son, we compared our method with state-of-the-art publicly available networks for

panoramic depth prediction, i.e., SliceNet [15] and HoHoNet [65], trained on the

Structured3D [52] dataset, and with the work of Jin et al. [98], which released the

full-empty dataset adopted in this work. Since we target the estimation of the depth

of the uncluttered scene, while competing methods do not differentiate clutter from

architectural structure, the comparison is performed in the uncluttered areas for

SliceNet [15] and HoHoNet [65], i.e., only for pixels not masked with the ground

truth masks (section 5.4.1). To compare ourselves with Jin et al. [98], we use instead

the official data provided by the authors on the same data used by our method, since

their original code is not available.

Table 5.4 provides depth results using the common metrics, i.e., mean absolute

error (MAE), mean squared error (MSE), root mean square error of linear measures

5.5 Results 96



(RMSE) and relative accuracy δ1, defined as the fraction of pixels where the relative

error is within a threshold of 1.25. For MAE, MSE, and RMSE, smaller is better (unit

is meter), while for δ1 larger is better.

Method MAE↓ MSE↓ RMSE↑ δ1 ↑
HoHoNet [65] 0.101 0.076 0.206 0.932
Jin et al. [98] - 0.071 0.642 0.958
SliceNet [15] 0.062 0.054 0.198 0.961
Our 0.091 0.073 0.197 0.954

Tab. 5.4.: Depth prediction performance. We show our quantitative performance com-
pared to other state-of-the-art works.

It should be noted that, despite the limited complexity of our network, and the fact

that it also targets color estimation, the accuracy of our depth prediction appears

comparable to the results of state-of-the-art specific methods for panoramic depth

estimation [15, 65]. Our very good results with a much leaner network are due

to the fact that, in this particular setting, we target reconstruction only of the

fairly regular areas comprising the architectural layout of the room, while methods

seeking to reconstruct the full depth [15, 65] must handle much more variable and

discontinuous visible shape, due to the high presence of furniture and other objects

that have to be measured.

5.5.4 Performance in-the-wild

Figure 5.5 presents qualitative performance on data for which no ground truth or

training set was available. This situation is the expected usage of our method.

In the upper part of the figure, we show scenes from the large-scale real-world dataset

Matterport3D [41]. In the bottom part of the figure, we show scenes acquired by

non-professional users using commodity low-cost devices (i.e., Ricoh Theta V and

Ricoh Theta Z), collected or acquired by us. In the case of Matterport data, the blur

in the upper and bottom part of the scene is due to the fact that those areas are

missing due to hardware limitation of the device, and have been approximated in the

input scene with a color diffusion.

Although the training of our model was done on a synthetic dataset mainly including

Atlanta World structures [1], our method makes no special assumption on the

indoor scene kind, or about the precise alignment of the camera with respect to the

ground [15, 65] (within the limits of rational, even manual, capture). Furthermore,

the method automatically removes the photographer who takes a panoramic photo by
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holding the camera (i.e., that is considered as clutter). As an example, the last row of

Figure 5.5 shows our prediction when capture is not aligned to the ground and when

the user is visible in the cluttered scene. In all cases, our method is able to predict

compelling empty scenes on real data acquired with different devices, automatically

removing various types of clutter and very heterogeneous furniture.

The biggest difference in the results, compared to standard synthetic testing sets, is

on the lighting appearance of the resulting scene, which sometimes differs from the

setup of the original cluttered scene (Figure 5.5a). One of the evident consequences

of this phenomenon is the different color tone of some scenes (Figure 5.5b). This

is not surprising, since our model does not, at the moment, make any assumption

about lighting. This aspect could be object of future works (section 5.6).

5.5.5 Discussion and ablation study

In this section, we discuss our major technical choices, supported by an ablation study,

and several features and limitations of our method. As seen in the previous sections,

our approach proves to be light-weight and scalable (see Table 5.2). It should

also be noted that the 3D output allows for real-time 3D rendering applications,

independent of image-based rendering applications only, for instance the usage of

geometric features to help positioning virtual objects on the ground or aligned to

walls (Figure 5.1). As shown in Table 5.4, our depth estimation reaches state-of-

the-art quality. Figure 5.6 shows an example of the predicted point cloud, which

represents a good approximation of the underlying layout of the scene.

(a) Output depth (b) Point cloud

Fig. 5.6.: Predicted depth and its point cloud. Example of 3D point cloud generated from
the predicted depth.

Throughout Table 5.5, we show the differences in performance, with the same

setup as in previous numerical experiments (see section 5.5.2), in exploiting the

geometric features of the scene. In particular, PWG indicates the use or not of

pixel-wise geometric loss and HOG of high-order geometric loss (section 5.4.3).
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In the first case, we tested the model by passing the ground truth masks directly,

and found no performance improvement over using masks learned from the model

itself. It should be noted that this approach is much more efficient than using

adversarial losses, as done in many infilling techniques (see section 5.3). For the

GAN option, we have tested a discriminator-based loss that is learned during training

(i.e., PatchGAN [92]). We experiment that an adversarial loss gives a boost in

performance without geometric hints (second row of Table 5.5), but does not give

additional performance when already using geometric losses. Regarding the initial

PWG HOG UI GAN LPIPS↓ SSIM↑ δ1 Dout ↑
- - - - 0.398 0.698 -
- - - ✓ 0.302 0.748 -
✓ - - - 0.164 0.833 0.905
✓ ✓ ✓ - 0.136 0.914 0.954
✓ ✓ - ✓ 0.121 0.918 0.952
✓ ✓ - - 0.129 0.925 0.954

Tab. 5.5.: Ablation facts. We show the effect of several key choices of our approach. In
bold the adopted configuration. PWG: pixel-wise geometry loss; HOG: high-order
geometric loss; UI: user intervention; GAN: adversarial-loss; LPIPS,SSIM and δ1
metrics described in section 5.5.3.

mask (section 5.4.1), we also experimented that an extreme accuracy of it is not

required for our model to work (i.e., 97% IoU), as the gating mask is dynamically

propagated and learned, and the purpose of the first network is more related to

bootstrapping feature gating. We have also verified that training the clutter mask

network in a separate stage is more efficient than training it simultaneously with

the scene synthesis model, since it accelerates convergence and reduces the use of

memory during training connected to loading all the data at the same time (i.e., both

cluttered and uncluttered depth).

Our model proves versatile on different types of indoor scenes, even as the type of

real or synthetic input data varies. However, there are cases, mainly in real-world

scenes very different from training data, where our method did not produce plausible

images. The first row in Figure 5.7 shows one of these cases. The particular conditions

of illumination and the presence of many reflections do not lead to a plausible

reconstruction. The geometry, in this case, is not sufficient to model the scene, also

for the presence of unconventional structures very distant from the domestic training

set on which the network has been trained. This drop in performance under these

particular lighting conditions is not surprising, as our method does not actually model

the lighting of the scene. This aspect will be object of future work.
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(a) Input (b) Prediction

Fig. 5.7.: Limiting cases. Due to the particular lighting condition our network returns a
blurred model.

Moreover, while our method does not explicitly impose the typical restrictive priors

of several competitors (e.g., Manhattan World, Atlanta World, vertical walls), and

is, therefore, adaptable to more general architectures, the only currently available

training dataset [52] is of the Atlanta World type. Thus, irrespective of the generality

of our network architecture, performances clearly decay when moving away from

this type of scenes. The second row in Figure 5.7 shows a room characterized by a

lot of clutter and a very sloping ceiling, where the lower perimeter walls are barely

visible. Under these conditions, it is difficult to retrieve contextual and geometric

information to reconstruct the missing parts, resulting in several artifacts. Since this

limitation is related to lack of training examples, we expect major improvements

when datasets containing this kind of architecture will become available.

5.6 Conclusions

In this chapter we have presented a new data-driven approach that, from an input

360◦ image of a furnished and cluttered indoor space automatically returns, at

interactive speed, a 360◦ photorealistic view and depth of the same scene emptied of

all furniture and other clutter. Rather than casting the problem as a simple image

infilling problem, we consider the correlation between color and geometry that occurs

in indoor spaces. This allows us to exploit, beside perceptual and style objective

functions, geometric losses of different orders, including robust geometric pixel-wise

and high-order 3D losses targeted for indoor structures, simplifying the prediction

model and its computational complexity. The experimental results demonstrate that

our method provides interactive performance and outperforms current state-of-the-art
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solutions on commonly used indoor panoramic benchmarks and also for indoor scenes

captured in the wild and for which there is no ground truth to support supervised

training. While the application presented in this chapter focused on emptying of

single 360◦ shots, with subsequent exploration and editing of the produced static

environment, the accuracy and speed achieved could make it possible to consider

immersive dynamic scenarios with acquisition and modification of the scene, even in

motion and in real-time. In the future, such a work can be extended in this sense,

also considering the lighting model and the spatial coherence of prediction.

5.7 Bibliographic notes

The contents of this chapter report the journal article Giovanni Pintore, Marco Agus,
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6Conclusion

Panoramic images have become a key component for creating immersive content di-

rectly from real scenes and for supporting a range of Virtual Reality (VR) applications.

While capturing a single-shot panorama is an effective method to create a virtual

replica of a real-world environment, it comes with limitations. The content presented

in such panoramas is restricted to what was visible from the fixed location where the

panorama was taken. Unfortunately, this limitation results in the loss of crucial 3D

cues, which play a significant role in providing a sense of presence. Particularly in

indoor environments, where the viewer is in close proximity to architectural surfaces

and objects, the flat appearance of panoramas becomes a pronounced drawback.

For a truly immersive experience, a system should dynamically generate images

that respond not only to changes in orientation but also to shifts in viewpoint posi-

tion. While multi-view capture setups have been explored, synthesizing views from

single-shot panoramas remains essential due to the widespread use of monocular

360 cameras and their convenience. To achieve effective view synthesis, it becomes

necessary to estimate the geometric model of the imaged environment, either explic-

itly or implicitly. This estimation allows for occlusion-aware reprojection, synthesis

of disoccluded content, and artifact reduction, ultimately enhancing the sense of

presence. Creating a 3D immersive indoor environment from real-world captures

involves challenging research tasks, including depth estimation and architectural

layout modeling from a single image. Depth information enriches the visual rep-

resentation by providing per-pixel data on the distance from the viewer. However,

beyond the geometric scene representation observed from the viewer’s perspective,

an abstract model of the permanent architectural structure (referred to as the indoor

3D layout) is also necessary, typically excluding furniture and other objects.

In this context, our thesis followed a precise research path, combining several funda-

mental research tasks, such as depth and layout estimation, novel-views synthesis and

manipulation of them. Along this path, the various tasks were integrated to: recover

a 3D indoor model for novel view-synthesis (Chapter 3), provide immersive explo-

102



ration of indoor stereoscopic environments (Chapter 4) and enable automatic-assisted

editing of immersive indoor models (Chapter 5). Along this path we introduced

novel techniques that advance the state-of-the-art in 3D reconstruction of indoor

environments and immersive interaction. We provide here a brief summary of the

achieved results and discussion of the potential directions for future work.

6.1 Overview of achievements

Our contributions result in a number of publications and public talks, enlisted

in section 6.3, from which we highlight several innovative, end-to-end solutions,

summarized below:

• A novel methodology for 3D scene synthesis of Atlanta-world interiors from

a single omnidirectional image (section 3). A new data-driven approach

for extracting geometric and structural information from a single spherical

panorama of an interior scene, and for using this information to render the

scene from novel points of view, enhancing 3D immersion in VR applications.

The approach copes with the inherent ambiguities of single-image geometry

estimation and novel view synthesis by focusing on the very common case of

Atlanta-world interiors, bounded by horizontal floors and ceilings and vertical

walls. Based on this prior, we introduce a novel end-to-end deep learning

approach to jointly estimate the depth and the underlying room structure of

the scene. The prior guides the design of the network and of novel domain-

specific loss functions, shifting the major computational load on a training

phase that exploits available large-scale synthetic panoramic imagery. An

extremely lightweight network uses geometric and structural information to

infer novel panoramic views from translated positions at interactive rates, from

which perspective views matching head rotations are produced and upsampled

to the display size. As a result, our method automatically produces new

poses around the original camera at interactive rates, within a working area

suitable for producing depth cues for VR applications, especially when using

head-mounted displays connected to graphics servers. The extracted floor

plan and 3D wall structure can also be used to support room exploration.

The experimental results demonstrate that our method provides low-latency

performance and improves over current state-of-the-art solutions in prediction

accuracy on available commonly used indoor panoramic benchmarks. This work

has been published as a TVCG journal paper [38] and presented at the IEEE
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ISMAR conference 2023, held in Sydney, Australia. The candidate followed

all the aspects of the work, from conceptualization, methodology, software, to

validation, writing and review of the related papers.

• A novel approach for deep synthesis and exploration of omnidirectional

stereoscopic environments from a monoscopic panoramic image (section 4).

An innovative approach to automatically generate and explore immersive stereo-

scopic indoor environments derived from a single monoscopic panoramic image

in an equirectangular format. Once per 360◦ shot, we estimate the per-pixel

depth using a gated deep network architecture. Subsequently, we synthesize a

collection of panoramic slices through reprojection and view-synthesis employ-

ing deep learning. These slices are distributed around the central viewpoint,

with each slice’s projection center placed on the circular path covered by the

eyes during a head rotation. Furthermore, each slice encompasses an angular

extent sufficient to accommodate the potential gaze directions of both the left

and right eye and to provide context for reconstruction. For fast display, a

stereoscopic multiple-center-of-projection stereo pair in equirectangular format

is composed by suitably blending the precomputed slices. At run-time, the

pair is loaded in a lightweight WebXR viewer that responds to head rotations,

offering both motion and stereo cues. The approach combines and extends state-

of-the-art data-driven techniques, incorporating several innovations. Notably,

a gated architecture is introduced for panoramic monocular depth estimation.

Leveraging the predicted depth, the same gated architecture is then applied to

the re-projection of visible pixels, facilitating the inpainting of occluded and

disoccluded regions by incorporating a mixed Generative Adversarial Network

(GAN). The resulting system works on a variety of available VR headsets and

can serve as a base component for a variety of immersive applications. We

demonstrate our technology on several indoor scenes from publicly available

data. This work has been accepted for publishing as a Computers & Graphics

journal paper [39] and its conference form awarded with honorable mention at

the ACM WEB3D conference 2023, held in San Sebastian, Spain. The candidate

followed all the aspects of the work, from conceptualization, methodology,

software, to validation, writing and review of the related papers.

• An innovative end-to-end technique for instant automatic emptying of

panoramic indoor scenes (section 5). A new data-driven approach that, from

an input 360◦ image of a furnished indoor space automatically returns, with

very low latency, an omnidirectional photorealistic view and architecturally
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plausible depth of the same scene emptied of all clutter. Contrary to previous

data-driven inpainting methods that remove single user-defined objects based

on their semantics, our approach is holistically applied to the entire scene, and

is capable to separate the clutter from the architectural structure in a single step.

By exploiting peculiar geometric features of the indoor environment, we shift

the major computational load on the training phase and having an extremely

lightweight network at prediction time. This work has been published as a

TVCG journal paper [40] and presented at the IEEE ISMAR conference 2022,

held in Singapore. The candidate followed all the aspects of the work, from

conceptualization, methodology, software, to validation, writing and review of

the related papers.

6.2 Discussion and future directions

We provide a short assessment of advantages and limitations of our proposed solu-

tions, and an overview of areas where work is still needed.

As seen in the previous chapters, constructing an immersive indoor model from a

single panoramic image requires the ability to extract a structured 3D model from

it. This model should include depth information from the camera’s perspective, a

3D layout that allows for inferring potentially occluded parts, and the capacity to

semantically distinguish between permanent structural elements (i.e., subject to

man-made rules) and clutter. Such a model is a crucial requirement for ensuring

reliable view synthesis.

All techniques presented here leverage distinct characteristics of the capture setup,

particularly gravity alignment, and the spherical environment, specifically world-

space alignment with gravity. This alignment enables the exploitation of regularities

in vertical features along the horizontal direction. These consistent characteristics

have influenced network designs, resulting in the use of asymmetric contractions

and various strategies to combine long- and short-range features [38]. The specific

networks designed based on these principles offer significant advantages over more

generic alternatives. This underscores the value of tailored solutions for interior

capture, rather than relying on generic networks designed for outdoor or generic-

shape 3D reconstruction. However, creating custom networks also comes with a

drawback: they depend on specific environmental characteristics. Consequently,

when the imaged environment deviates from expectations, major failures can occur
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(e.g., see section 3.8.4). While these solutions are more robust than geometry-

reasoning methods, they still exhibit limitations in terms of applicability, as evidenced

by the failure case analyses presented in the previous chapters.

Another significant limitation, also shared by the other current approaches, pertains

to the input size. Although our presented solutions are generally lightweight and the

network design is scalable, the tests have predominantly been conducted on image

sizes smaller than what is currently achievable with panoramic cameras. Existing

benchmarks typically operate at a resolution of 1024×512, rarely venturing into larger

dimensions. In contrast, industrial cameras capture more detailed imagery. An essen-

tial path for future research involves evaluating the scalability of these techniques

to handle larger datasets and real-world cases. Achieving this will necessitate not

only scaling the networks but also generating extensive annotated datasets to serve

as ground truth. While depth estimation requires an accurate per-pixel ground-truth,

layout reconstruction is a more abstract task which relies on user-made annotation.

For practical reasons such annotations are currently mostly limited to Manhattan or

Atlanta-world environments. In the future we expect to solve this problem through

the increasing availability of devices that capture both high-resolution RGB and depth,

and the eventual possibility of integrating annotation systems for semi-automatic

strttures of interest, for example by extending uncluttering systems such as the one

we presented (i.e., chapter 5).

Modern view-synthesis approaches, including our solutions, are basically based on

inpaiting techniques. While in much of the literature such solutions are reinforced

with GAN-type training, one of our major contributions in this topic is to also use

network architectures and strategies based on geometry information, particularly

indoor priors. Such an approach, as demonstrated in previous chapters, greatly

improves the realism of the synthesized scene, both in cases of visual occlusion (i.e.,

a hidden corner that is disoccluded, chapter 3), and in the case of reconstruction

of structural parts previously covered by clutter (i.e., chapter 5). This solution is

particularly effective in case of an edited scene, such as in the case of uncluttering for

diminished reality chapter 5 or for possible virtual staging with addition of 3D objects,

i.e., in case the final output is structural or completed with synthetic objects. In

the case of pure free-form navigation chapter 3, on the other hand, several artifacts

and limitations remain. In this case, indoor structural information cannot help

complete any generic objects, which in some cases can generate obvious artifacts

as the viewpoint changes. This situation currently limits the observer’s range of

motion, since in the presence of large movements, layout information and indoor
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priors would not be useful in reconstructing large portions of disoccluded objects. In

the future this could be addressed by combining multiple images, and increasing the

generative capabilities of the synthesis network with diffusion techniques.

In our research work we also presented a framework for the automatic generation

of omnidirectional stereoscopic indoor environments to be used in immersive appli-

cations (see chapter 5), especially consumed through head-mounted displays. Our

method starts from a single panoramic image of an interior environment and uses

data-driven architectures for depth estimation and novel view synthesis to quickly

generate the images seen by both eyes during head rotation.

One of the limitations of the current approach stems from the mismatch between

the resolution of the synthesized images and the achievable resolution with nowa-

days cameras and displays. This mismatch is currently handled by downsampling

images before construction and a deep-learning-assisted upsampling before display

presentation. The limitation is not due to the proposed lightweight network architec-

ture, which promises to be scalable to much larger image sizes, but instead to the

availability of training sets for the depth estimation and view synthesis networks. We

plan to tackle this problem by generating higher-resolution training data, as for the

free-form view-synthesis problem discussed above.

Another point regards future directions for immersive automated editing methods.

Here we presented a new data-driven approach that, from an input 360◦ image of a

furnished and cluttered indoor space automatically returns, at interactive speed, a

360◦ photorealistic view and depth of the same scene emptied of all furniture and

other clutter. Although the application of diminished reality is self consistent, in that

it allows visualizing the structure of the environment free of objects or generic clutter

for various purposes, some steps are still necessary, however, to have a complete

virtual staging application.First of all, it would be necessary to estimate global

illumination, again from single image, in order to have the ability not only to remove

objects, but to insert new ones in a photorealistic manner. In this regard several

approaches exist for the future to achieve a fully editable model, such as purposed in

some recent work [145].
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6.3 Publications

The scientific results obtained during this PhD work also appeared in related publica-

tions, listed as journal and conference papers.

International journal papers:

• Deep synthesis and exploration of omnidirectional stereoscopic environ-

ments from a single surround-view panoramic image. Giovanni Pintore,

Alberto Jaspe-Villanueva, Markus Hadwiger, Jens Schneider, Marco Agus, Fabio

Marton, Fabio Bettio, and Enrico Gobbetti. Computers & Graphics, 2024.

DOI: cag.2024.103907.

Here we presented a framework for the automatic generation of omnidirec-

tional stereoscopic indoor environments to be used in immersive applications,

especially consumed through head-mounted displays. Our method starts from

a single panoramic image of an interior environment and uses data-driven

architectures for depth estimation and novel view synthesis to quickly generate

the images seen by both eyes during head rotation. For this work, these images

are combined into an omnidirectional stereo representation, which is consumed

on a lightweight WebXR viewer supporting stereoscopic exploration during

head rotations.

The candidate is the lead author, contributing in all phases, including con-

ceptualization, methodology, implementation, testing, and validation of the

method.

• Deep scene synthesis of Atlanta-world interiors from a single omnidirec-

tional image. Giovanni Pintore, Fabio Bettio, Marco Agus, and Enrico Gobbetti.

IEEE Transactions on Visualization and Computer Graphics, 29, November

2023.

DOI: TVCG.2023.3320219.

Here we presented a novel deep learning approach that extracts geometric

and structural information from a single panorama in order to quickly synthe-

size plausible panoramic images from close-by viewpoints within a workspace

suitable for VR applications. Such a end-to-end approach is particularly com-

pact and lightweight, and introduces several innovations. In particular, our

novel integrated network for estimating an environment’s depth and permanent

structure produces elements that are crucial requirements for ensuring reliable
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view synthesis. By incorporating novel domain-specific loss functions, we shift

the major computational load on the training phase, and obtain an extremely

lightweight network at prediction time.

The candidate is the lead author, contributing in all phases, including con-

ceptualization, methodology, implementation, testing, and validation of the

method.

• Instant Automatic Emptying of Panoramic Indoor Scenes. Giovanni Pintore,

Marco Agus, Eva Almansa, and Enrico Gobbetti. IEEE Transactions on Visual-

ization and Computer Graphics, 28(11), November 2022.

DOI: TVCG.2022.3202999.

Here we presented a new data-driven approach that, from an input 360◦ image

of a furnished and cluttered indoor space automatically returns, at interactive

speed, a 360◦ photorealistic view and depth of the same scene emptied of all

furniture and other clutter. Rather than casting the problem as a simple image

infilling problem, we consider the correlation between color and geometry

that occurs in indoor spaces. This allows us to exploit, beside perceptual and

style objective functions, geometric losses of different orders, including robust

geometric pixel-wise and high-order 3D losses targeted for indoor structures,

simplifying the prediction model and its computational complexity.

The candidate is the lead author, contributing in all phases, including con-

ceptualization, methodology, implementation, testing, and validation of the

method.

• Deep Panoramic Depth Prediction and Completion for Indoor Scenes. Gio-

vanni Pintore, Eva Almansa, Armando Sanchez, Giorgio Vassena, and Enrico

Gobbetti. Computational Visual Media 2024.

DOI: 10.1007/s41095-023-0358-0.

Here we presented a novel end-to-end deep-learning solution for rapidly esti-

mating a dense spherical depth map of an indoor environment. Our input is a

single equirectangular image registered with a sparse depth map, as provided

by a variety of common capture setups. Depth is inferred by an efficient and

lightweight single-branch network, which employs a dynamic gating system

to process together dense visual data and sparse geometric data. We exploit

the characteristics of typical man-made environments to efficiently compress

multi-resolution features and find short- and long-range relations among scene

parts.

The candidate is the first co-author, significantly contributing in all phases,
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including conceptualization, methodology, implementation, testing, and valida-

tion of the method.

• SPIDER: A framework for processing, editing and presenting immersive

high-resolution spherical indoor scenes. Muhammad Tukur, Giovanni Pin-

tore, Enrico Gobbetti, Jens Schneider, and Marco Agus. Graphical Models, 128,

July 2023.

DOI: 10.1016/j.gmod.2023.101182.

Here we presented an interactive-based image processing, editing and render-

ing system named SPIDER, that takes a spherical 360-degree indoor scene as

input. The system is composed of a novel integrated deep learning architecture

for extracting geometric and semantic information of full and empty rooms,

based on gated and dilated convolutions, followed by a super-resolution mod-

ule for improving the resolution of the color and depth signals.

The candidate is the first co-author, significantly contributing in all phases,

including conceptualization, methodology, implementation, testing, and valida-

tion of the method.

International conference papers:

• PanoVerse: automatic generation of stereoscopic environments from single

indoor panoramic images for Metaverse applications. Giovanni Pintore,

Alberto Jaspe-Villanueva, Markus Hadwiger, Jens Schneider, Marco Agus, and

Enrico Gobbetti. . In Proc. Web3D 2023 - 28th International ACM Conference

on 3D Web Technology, October 2023. DOI: 10.1145/3611314.3615914. Hon-

orable mention.

DOI: 10.1145/3611314.3615914.

We presented a novel framework, dubbed PanoVerse, for the automatic cre-

ation and presentation of immersive stereoscopic environments from a single

indoor panoramic image. Once per 360 shot, a novel data-driven architecture

generates a fixed set of panoramic stereo pairs distributed around the current

central view-point. Once per frame, directly on the HMD, we rapidly fuse the

precomputed views to seamlessly cover the exploration workspace. Conference

version of this work, awarded with honorable mention and invited for the jour-

nal publication. The method presented here generates a fixed set of panoramic

stereo pairs distributed around the current central view-point, differently from

the extended approach presented in the journal [39].

The candidate is the lead author, contributing in all phases, including con-
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ceptualization, methodology, implementation, testing, and validation of the

method.

• Deep scene synthesis of Atlanta-world interiors from a single omnidirec-

tional image. Giovanni Pintore, Fabio Bettio, Marco Agus, and Enrico Gobbetti.

Proc. of IEEE ISMAR, November 2023.

DOI: TVCG.2023.3320219.

We presented a novel deep learning approach that extracts geometric and

structural information from a single panorama in order to quickly synthesize

plausible panoramic images from close-by viewpoints within a workspace suit-

able for VR applications. This is the conference release of the paper.

The candidate is the presenter and lead author, contributing in all phases,

including conceptualization, methodology, implementation, testing, and valida-

tion of the method.

• Instant Automatic Emptying of Panoramic Indoor Scenes. Giovanni Pintore,

Marco Agus, Eva Almansa, and Enrico Gobbetti. Proc. of IEEE ISMAR, Novem-

ber 2022.

DOI: TVCG.2022.3202999.

We presented a new data-driven approach that, from an input 360◦ image of

a furnished and cluttered indoor space automatically returns, at interactive

speed, a 360◦ photorealistic view and depth of the same scene emptied of all

furniture and other clutter. This is the conference release of the paper.

The candidate is the presenter and lead author, contributing in all phases,

including conceptualization, methodology, implementation, testing, and valida-

tion of the method.
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ASinopsis (thesis summary in

Spanish)

La reconstrucción y el modelado 3D automáticos de entornos interiores han
atraído cada vez más investigación en los últimos años, convirtiéndose en un
tema emergente bien definido tanto en gráficos por ordenador como en visión por
computador. Gran parte del trabajo en este campo se ha centrado en el desarrollo
de técnicas rápidas y eficientes para reconstruir entornos de uso común, como
estructuras residenciales, oficinas o edificios públicos, con un sustancial impacto
en diversos campos como la ingeniería, arquitectura, planificación urbana y
energética y el sector inmobiliario, entre otros. El contenido digital requerido
en diversos dominios de aplicación suele ser un modelo estructurado, que no se
limita únicamente a la captura geométrica, sino que explota e integra el aspecto
visual de la escena y su significado semántico. En este contexto, la adquisición
con fotografías panorámicas 360 grados ha surgido como una solución muy eficaz
para este tipo de ambientes, ya que proporciona una cobertura rápida y completa,
incluso con una sola vista, y es compatible con una amplia gama de dispositivos
de adquisición profesionales y de consumo, lo que la coinvierte en una técnica
rápida y rentable. Además, las imágenes panorámicas se han convertido en
un componente clave para crear contenidos inmersivos directamente a partir
de escenas reales y para dar soporte a una serie de aplicaciones de Realidad
Virtual (VR). En particular, las visitas virtuales basadas en imágenes esféricas
son muy populares en el sector inmobiliario y han aumentado rápidamente su
atractivo en el reciente periodo pandémico. Sin embargo, la mera exploración
de las habitaciones a través de las fotografías esféricas originales tiene múltiples
limitaciones, y en el campo de la exploración de escenas también surge la
necesidad de crear modelos tridimensionales vinculados a la imagen. Los ejemplos
más obvios de tales necesidades incluyen el vaciado de habitaciones antes de su
presentación a los visitantes virtuales (por ejemplo, por razones de privacidad),
o el soporte de exploración con 6 grados de libertad (DoF) en el contexto de la
VR. En este contexto, en esta tesis se planifcó una ruta de trabajo que combina
varias tareas de investigación fundamentales, como la estimación precisa de la
profundidad, la disposición, la síntesis de nuevas vistas y la manipulación de
las mismas. A lo largo de este camino, las diversas tareas se integraron para,
respectivamente, recuperar un modelo 3D de interiores para la síntesis de nuevas
vistas (Capítulo 3), la exploración inmersiva de entornos estereoscópicos de
interiores (Capítulo 4) y la edición asistida automática de modelos inmersivos de
interiores (Capítulo 5). Durate el trabajo, se han introducido técnicas novedosas
que suponen un avance en el estado del arte de la reconstrucción 3D de entornos
interiores y la interacción inmersiva.
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En este anexo se ofrece una sinopsis de la tesis en lengua española, centrándose
en las motivaciones, objetivos, y logros conseguidos, junto a las descripciones
resumidas de los diversos métodos propuestos.

A.1 Contexto, motivación e hipótesis

LA reconstrucción automatizada de modelos 3D a partir de datos adquiridos,

como imágenes o mediciones geométricas, ha sido un tema central de los

gráficos por ordenador y la visión por ordenador durante varias décadas. El

crecimiento de este campo puede atribuirse a la convergencia de avances científicos,

tecnológicos y de mercado. Estos avances se alinean con la creciente accesibilidad y

abaratamiento de sensores visuales y 3D de alta calidad, que ahora están ampliamente

disponibles. En este contexto, la reconstrucción automática de entornos interiores

ha recibido una gran atención [1]. La entrada de datos puede proceder de diversos

sensores. Los datos visuales, como las imágenes fotográficas, han despertado un gran

interés debido a su amplia disponibilidad, facilidad de captura y asequibilidad. Sin

embargo, una sola imagen en perspectiva ofrece una visión limitada, y la captura

de múltiples imágenes introduce complejidades relacionadas con el registro. En

consecuencia, la captura de 360 grados se ha convertido en los últimos años en una

solución atractiva. Proporciona una cobertura rápida y completa a partir de una

sola imagen y cuenta con el apoyo de una amplia gama de dispositivos de captura

profesionales y de consumo, lo que garantiza una adquisición de datos eficaz y

rentable. Las cámaras esféricas, también conocidas como cámaras 360◦, panorámicas,

o omnidireccionales, o surround-view, proporcionan soluciones rentables y eficientes

para capturar rápidamente en una sola toma el contexto completo alrededor del

espectador de todo un entorno [10]. Al servir como representaciones del entorno

del usuario, las imágenes panorámicas también prometen ser uno de los bloques

de construcción esenciales para la construcción de las realidades físicas y digitales

compartidas previstas por el concepto de Metaverso [13]. Aunque la captura de

una panorámica de una sola toma es una forma muy atractiva de crear un clon

virtual de un entorno real, la limitación del contenido presentado a lo que era visible

alrededor de la ubicación fija desde la que se tomó la panorámica conduce a la

pérdida de señal 3D, que es muy importante para proporcionar una sensación de

presencia [6]. El hecho de que las panorámicas aparezcan planas es una limitación

especialmente fuerte en entornos interiores, dada la distancia relativamente corta

del espectador a las superficies arquitectónicas y los objetos. En efecto, para soportar

plenamente la inmersión, un sistema debe ser capaz de generar, en tiempo real,
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imágenes que respondan no sólo a los cambios de orientación, sino también a los

cambios de posición del punto de vista. Aunque se han propuesto muchas soluciones

para configuraciones de captura multivista, la realización de síntesis de vistas a

partir de panoramas de una sola toma es de importancia primordial, debido a la

conveniencia y difusión de la captura dispersa a través de cámaras monoculares de

360 [6].

Para lograr la síntesis de vistas, es necesario estimar explícita o implícitamente el

modelo geométrico del entorno de la imagen. Esto, al menos, permite la reproyec-

ción consciente de la oclusión y la síntesis de contenido desocluido, así como evitar

artefactos y mejorar la sensación de presencia. La recuperación de dicho modelo

es, sin embargo, compleja debido a las características inherentes de las habitaciones

interiores, en las que los muebles y otros elementos interiores enmascaran grandes

áreas de las estructuras de interés, y las formas cóncavas de las habitaciones generan

una gran cantidad de autooclusión. Por lo tanto, la reconstrucción requiere infor-

mación de un contexto muy amplio y debe explotar presupuestos geométricos muy

específicos para la reconstrucción de estructuras [1].

La recuperación de dicho modelo es, sin embargo, compleja debido a las característi-

cas inherentes de las habitaciones interiores, donde los muebles y otros elementos

interiores enmascaran grandes áreas de las estructuras de interés, y las formas cón-

cavas de las habitaciones generan una gran cantidad de auto-oclusión. Por tanto, la

reconstrucción requiere información de un contexto muy amplio y debe explotar pre-

supuestos geométricos muy específicos para la reconstrucción de estructuras [1].

En los últimos años, las soluciones basadas en deep-learning han surgido como una

forma muy eficiente de abordar estos problemas [15]. Debido a la capacidad de

estas técnicas para descubrir relaciones ocultas a partir de grandes colecciones de

datos, se pueden relajar muchos presupuestos que suelen imponer los enfoques

analíticos y heurísticos basados en el razonamiento geométrico. Partiendo de los

aspectos mencionados, esta investigación se propuso avanzar en el estado del arte

del modelado automático de interiores y la síntesis de nuevos puntos de vista a

partir de una única imagen panorámica. Para superar los inevitables problemas y

ambigüedades debidos a una entrada tan complicada, buscamos nuevos enfoques

que explotaran los precedentes típicos de las estructuras artificiales y el potencial de

las últimas técnicas basadas en datos.
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Partiendo de los objetivos mencionados en section 1.2, nuestra investigación pre-

tendía avanzar en el estado del arte tanto del modelado automático de interiores

como de la exploración inmersiva a partir de una única imagen panorámica como

entrada. A continuación resumimos las principales preguntas de investigación especí-

ficas para abordar tales objetivos:

1. Cómo asociar una profundidad en píxeles a la imagen RGB de entrada?. Generar

nuevas vistas en posiciones distintas a la original, requiere necesariamente

conocer la posición espacial de los puntos vistos por el observador, para poder

aplicar la traslación adecuada (ver ??). En otras palabras, cada píxel RGB de

la imagen equirectangular debe asociarse a una profundidad, de forma que el

píxel 2D pueda transformarse, mediante coordenadas esféricas, en un punto de

color 3D, y toda la nube de puntos pueda renderizarse desde una nueva vista

equirectangular. La estimación de la profundidad de una imagen panorámica

de interior es un tema de investigación muy en boga (véase section 3), y por

su naturaleza, un problema de investigación abierto.

2. Cómo recuperar un diseño 3D sin oclusión de la habitación a partir de una única

pose?. La mera traslación de la nube de puntos derivada con profundidad no

contiene toda la información necesaria para definir un viewport trasladado

completo. De hecho, algunas partes de la escena estarán ocluidas o desocluidas.

Se ha demostrado que el conocimiento de información adicional, como la

posición de las esquinas y los bordes de la habitación (es decir, la distribución

de la habitación), especialmente los ocultos en el punto de vista original, mejora

significativamente el realismo de la síntesis [17]. Sin embargo, recuperar la

distribución interior directamente a partir de una única imagen de entrada

es extremadamente difícil [14]. Con este fin, es necesario investigar técnicas

específicas para recuperar la distribución 3D a partir de una única imagen

equirectangular.

3. Cómo generar vistas nuevas fotorrealistas y estructuralmente coherentes?. Para

generar las nuevas vistas necesarias para la experiencia inmersiva, se emplean

técnicas de generación de escenas e impainting (véase section 4). Estas

técnicas de inpainting fotorrealistas funcionan muy bien en casos de pequeñas

desoclusiones debidas a los movimientos naturales del observador en la escena

(véase section 4.3), pero pueden fallar en el caso de grandes desoclusiones.

Este es un caso típico durante la edición de la escena si, por ejemplo, el

desorden tiene que ser eliminado de la escena para aplicaciones de puesta en

escena virtual (véase section 5.3). En esta situación surge el problema de cómo
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completar las partes que faltan, no sólo desde el punto de vista fotorrealista,

sino también en términos de coherencia geométrico-estructural.

Las respuestas a estas preguntas de la investigación, que se explican y detallan en los

capítulos siguientes, se basan en las siguientes hipótesis:

1. Cómo asociar una profundidad en píxeles a la imagen RGB de entrada? Partiendo

del hecho de que la gravedad desempeña un papel importante en el diseño y la

construcción de escenas de interiores artificiales [15], investigamos nuevas téc-

nicas de estimación de la profundidad que explotan las características alineadas

con la gravedad (GAF) para tener en cuenta el hecho de que las característi-

cas verticales y horizontales del espacio arquitectónico tienen características

diferentes en entornos artificiales (véase section 2.1). Este diseño parte del

supuesto de que la captura de la escena a través de una imagen equirectangular

está alineada con el vector de gravedad (es decir, la cámara está situada en un

plano horizontal respecto al suelo).

2. ¿Cómo recuperar una disposición 3D de la habitación sin oclusión a partir de una

sola pose? Derivar una disposición de la escena tiene una complejidad diferente

a la estimación de la profundidad simple, ya que no se limita a asignar un valor

geométrico a cada píxel visible, sino que debe extrapolar grandes porciones de

la estructura invisible, que puede estar ocluida no sólo por objetos, sino por la

propia estructura. En nuestro trabajo, asumimos que una instalación interior

puede representarse razonablemente como un modelo del de tipo Atlanta-world,

es decir, suponemos que las habitaciones tienen suelos y techos planos. Este

supuesto es menos restrictivo que el clásico Manhattan-world, ya que admite

formas de paredes y esquinas libres (véase section 2.1).

3. ¿Cómo generar nuevas vistas fotorrealistas y estructuralmente coherentes? Aunque

parte de la información estructural, como la localización de esquinas y bor-

des desocluidos por la traslación, puede proporcionarse como entrada a una

eventual red neuronal para la síntesis de una nueva vista, condicionar la gen-

eración de la escena final para que sea estructuralmente consistente no es

sencillo (ver section 2.1). En nuestro trabajo hemos afrontado este problema

asumiendo que diferentes presupuestos de la geometría de interiores pueden

representarse como pérdidas específicas, del mismo modo que se impone un

estilo perceptivo [50].

Los objetivos identificados se definen a continuación.
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A.2 Objetivos

En nuestro proyecto de investigación estudiamos el estado de la técnica, en relación

con los temas antes mencionados, e identificamos objetivos específicos:

• Reconstrucción de un modelo 3D de interiores para la síntesis de nuevos

puntos de vista.

Las cámaras actuales de 360◦ que ofrecen soluciones viables de bajo coste y

eficiencia energética para la captura de un solo disparo de contexto completo

son cada vez más populares en muchos campos de aplicación [10]. Dado que

el contenido capturado 360◦, también conocido como imágenes panorámicas,

esféricas o omnidireccionales, cubre toda la esfera alrededor del espectador, ni

siquiera una sola toma puede experimentarse estáticamente de una vez, lo

que la hace fundamentalmente diferente, más inmersiva y más dinámica, que

las imágenes 2D tradicionales [16]. Sin embargo, la reducción de los grados

de libertad a sólo la rotación alrededor del centro de la panorámica, conduce

a limitaciones y artefactos [6], sobre todo porque sólo una o dos tomas por

habitación están disponibles en una visita virtual típica [17]. Además, faltan

totalmente el estéreo binocular y el paralaje de movimiento, que son aspectos

importantes de la inmersión en la VR. Para lograr una inmersión total, el sistema

debe responder también a la traslación del punto de vista. Aunque se han

propuesto muchas soluciones para configuraciones de captura multivista (por

ejemplo, [4, 5]), la realización de síntesis de vistas a partir de panoramas de

una sola toma es de importancia primordial, debido a la conveniencia y difusión

de la captura dispersa a través de cámaras monoculares de 360◦ [6]. La síntesis

de vistas requiere la estimación explícita o implícita de la forma geométrica

del entorno de la imagen (es decir, un modelo 3D de interior), con el fin de

realizar una reproyección consciente de la oclusión y sintetizar el contenido

ocluido. Los enfoques actuales del estado de la técnica (por ejemplo, [18, 6])

se centran en extender a panoramas de una sola toma los enfoques generales

de síntesis de vistas basados en datos diseñados para vistas en perspectiva de

objetos y entornos, como las imágenes multiplanares (MPI) [19] o los campos

neuronales de irradiación (NeRF) [20]. La mezcla de grandes superficies sin

textura, desorden y materiales no cooperativos en entornos interiores plantea,

sin embargo, importantes retos a las soluciones genéricas [1]. En este contexto,

se ha demostrado que el conocimiento de información adicional, como la

localización de la posición de las esquinas y bordes de la habitación, mejora

significativamente el realismo de la síntesis [17].

A.2 Objetivos 129



Sin embargo, recuperar la distribución interior directamente a partir de la

imagen de entrada es extremadamente difícil. Incluso los últimos métodos

específicos [21, 22, 23] siguen dependiendo en gran medida de aproximaciones

y costosos postprocesamientos heurísticos [24], que limitan significativamente

el rendimiento general. Como resultado, se inhibe su uso para aplicaciones de

VR que requieren la generación de imágenes interactivas.

• Exploración inmersiva de entornos interiores estereoscópicos.

Aunque la captura de una panorámica de una sola toma es una forma muy

atractiva de crear un clon virtual de un entorno real, la limitación del contenido

presentado a lo que era visible alrededor de la ubicación fija desde la que se

tomó la panorámica conduce a la pérdida de la estereoscopía binocular, que es

muy importante para proporcionar una sensación de presencia [6]. El hecho de

que las panorámicas aparezcan planas es una limitación especialmente fuerte

en entornos interiores, dada la distancia relativamente corta del espectador

a las superficies arquitectónicas y los objetos. Para proporcionar señales es-

tereoscópicas para rotaciones completas de 360 grados, el renderizador debe

disponer de vistas desde un conjunto continuo de puntos de vista desplazados

(modelo 3D estereoscópico). Las técnicas estéreo omnidireccionales [25, 26]

se emplean con ese fin, pero requieren la creación de panorámicas estéreo

utilizando cámaras que se mueven en una trayectoria circular [27, 26, 25]

o múltiples cámaras 360 sincronizadas [3]. Estos enfoques de adquisición,

sin embargo, reducen la posibilidad de capturar, experimentar y compartir

rápidamente una escena 360◦ utilizando hardware de consumo. En particular,

mientras que una serie de cámaras de bajo coste están ampliamente disponibles

para la captura monocular 360◦ (por ejemplo, GoPro, Ricoh Theta, LadyBug,

o Insta360), también debido al auge del mercado de "cámaras de acción", la

solución estéreo 360◦ (por ejemplo, Vuze+) son más costosas y limitadas, y

también suelen ofrecer sólo un número bajo (es decir, de seis a ocho) de pun-

tos de vista diferentes, lo que provoca artefactos estereoscópicos y de cosido.

Además, aunque las soluciones de cámara giratoria ofrecen más puntos de vista,

no comparten la misma sencillez y flexibilidad de la captura instantánea de

una sola toma. Por este motivo, la investigación se ha centrado en métodos de

síntesis de vistas que generan contenidos estereoscópicos a partir de una única

panorámica de 360◦. Sin embargo, los métodos actuales requieren representa-

ciones complicadas o son demasiado pesados para ejecutarse directamente en

HMD y tipos interactivos.
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• Edición semi-automática de modelos inmersivos de interiores.

Una exploración pura de los entornos existentes a través de las fotos esféricas

originales es, sin embargo, muy limitante. Ejemplos destacados de necesidades

adicionales incluyen el vaciado de habitaciones antes de su presentación a los

visitantes virtuales (aunque solo sea por razones de privacidad), o el reamue-

blamiento o redecoración de espacios interiores [28]. En este contexto, las

técnicas de Realidad Disminuida (DR) rápidas y eficaces, que ocultan partes

reales del campo de visión, son primordiales para eliminar los muebles y otros

elementos desordenados que enmascaran la estructura arquitectónica. En par-

ticular, las características de DR son esenciales para permitir a los usuarios

comparar inmediatamente la escena amueblada y la no amueblada, y para apo-

yar las aplicaciones de Realidad Aumentada (RA) en la colocación de objetos

en la escena vacía [29, 30]. Hacer que estas características estén disponibles

en entornos novedosos con una latencia mínima, idealmente en tiempo real,

permitiría, además, su uso en contextos de colaboración remota, sin necesidad

de modelado previo [31]. Aunque en la bibliografía se han presentado diversas

soluciones de borrado de objetos e inpainting de imágenes (véase section 5.3),

la DR para entornos interiores debe generar imágenes de espacios interiores

vacíos que no solo tengan un aspecto realista, sino que respeten el contexto

de formas más estrictas, en particular infiriendo una organización plausible

de la estructura arquitectónica que delimita el interior de la habitación [32].

Las soluciones basadas en datos, que aprenden relaciones ocultas a partir de

ejemplos, están surgiendo como enfoques viables para esta clase de problemas.

Sin embargo, los métodos más avanzados para el repintado de imágenes se

centran principalmente en el fotorrealismo [33, 34], y la información adi-

cional sobre la escena se explota sólo desde el punto de vista semántico [35,

36, 32]. Los pipelines actuales hacen un uso limitado de la estructura de la

escena observada, y la precisión de la reconstrucción se consigue a costa de

una alta complejidad computacional o de una mayor intervención del usuario,

utilizando, por ejemplo, redes recursivas [37], arquitecturas multirama [34],

y la definición manual de partes específicas de la imagen original que deben

eliminarse [35].

En los párrafos siguientes resumimos nuestras contribuciones.
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A.3 Reconstrucción de un modelo 3D de interiores
para la síntesis de nuevos puntos de vista

La síntesis de vistas requiere la estimación explícita o implícita de la forma geométrica

del entorno de la imagen, con el fin de realizar una reproyección consciente de la

oclusión y sintetizar el contenido ocluido. Los enfoques actuales (por ejemplo, [18,

6]) se centran en extender a panoramas de una sola toma los enfoques generales de

síntesis de vistas basados en datos diseñados para vistas en perspectiva de objetos y

entornos, como las imágenes multiplanares (MPI) [19] o los campos neuronales de

radiación (NeRF) [20]. (section 3.3). La mezcla de grandes superficies sin textura,

desorden y materiales no cooperativos en entornos interiores plantea, sin embargo,

importantes retos a las soluciones genéricas [1]. En este contexto, se ha demostrado

que el conocimiento de información adicional, como la localización de la posición de

las esquinas y bordes de la habitación, mejora significativamente el realismo de la

síntesis [17]. Sin embargo, recuperar la distribución interior directamente a partir

de la imagen de entrada es extremadamente difícil. Incluso los últimos métodos

específicos [21, 22, 23] siguen dependiendo en gran medida de aproximaciones

y costosos post-procesamientos heurísticos [24], que limitan significativamente el

rendimiento global. Como resultado, se inhibe su uso para aplicaciones de VR que

requieren la generación de imágenes interactivas.

En nuestro trabajo, proponemos una nueva solución integral basada en datos que, a

partir de una única panorámica de 360◦ en interiores, supuestamente capturada con

una alineación gravitatoria aproximada, produce con baja latencia una nueva pose

traducida de la que se pueden extraer nuevas imágenes en perspectiva que respondan

tanto a los cambios de posición como de orientación. Mientras que algunas soluciones

de HMD se esfuerzan por funcionar totalmente en la plataforma integrada, un diseño

alternativo consiste en computar las imágenes en servidores de alto rendimiento. Este

enfoque, ampliamente utilizado para los juegos de alta calidad, es posible gracias a

la disponibilidad de conexiones inalámbricas de baja latencia con suficiente ancho de

banda para alimentar las pantallas. En nuestro enfoque, un cliente WebXR gestiona

directamente la rotación de la cabeza, mientras que las imágenes calculadas por el

servidor también responden a las traslaciones de la cabeza.

Nuestra principal novedad radica en las técnicas de aprendizaje profundo específicas

para interiores que sintetizan las vistas. Una vez por escena, enriquecemos el

panorama original con información geométrica y estructural, y una vez por fotograma,
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explotamos la información precalculada para realizar rápidamente la síntesis de

vistas.

El enfoque hace frente a las ambigüedades inherentes a la estimación de la geometría

de una sola imagen y a la síntesis de vistas novedosas en entornos interiores, cen-

trándose en el caso muy común de los interiores que siguen el modelo Atlanta world

(AWM) [1], en el que se espera que el entorno tenga suelo y techo horizontales y

paredes verticales. Basándonos en este modelo previo, introducimos una novedosa

red de extremo a extremo para estimar conjuntamente la profundidad y la estructura

subyacente de la escena, manejando así eficientemente oclusiones y desoclusiones y

permitiendo una predicción plausible incluso en el caso de estructuras extensamente

ocluidas. La información previa determina la estructura de la red, que también

aprovecha las características alineadas con la gravedad (GAF) para tener en cuenta

el hecho de que las características verticales y horizontales del espacio del mundo

tienen características diferentes en los entornos artificiales.

En particular, AWM permite derivar el layout 3D extruyendo su proyección 2D de

suelo, mientras que los GAFs realizan compresión vertical, explotando el hecho

de que las líneas verticales, comunes en escenas de interior, no se deforman en

proyecciones equirectangulares. Debido a estas características, esperamos que los

GAFs de las escenas estén interrelacionados por dependencias espaciales tanto a

corto como a largo plazo, mejorando la calidad de la predicción de la profundidad y

la predicción de la disposición [15], y, por lo tanto, la síntesis visual.

A partir de la representación panorámica enriquecida, una red ligera infiere a veloci-

dades interactivas nuevas imágenes panorámicas desde posiciones trasladadas en un

área de trabajo alrededor del punto de vista original, adecuadas para aplicaciones

de VR. A partir de estas vistas, se producen imágenes en perspectiva que coinciden

con las rotaciones de la cabeza y se amplían a tamaño de pantalla. Además, la infor-

mación geométrica y estructural recuperada también puede utilizarse para apoyar

aplicaciones de VR, por ejemplo, para definir zonas transitables.

Nuestras principales aportaciones novedosas son las siguientes:

• Presentamos un nuevo enfoque, denominado "Módulo de Profundidad de

Atlanta" (ADM), para estimar conjuntamente, a partir de una única imagen

equirectangular, la profundidad de la escena, una representación latente de

la escena, la forma 3D de la habitación y un mapa de ocupación del suelo.
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ADM consigue los mejores resultados tanto en reconstrucción geométrica como

estructural (section 3.5), y proporciona muchas ventajas para las aplicaciones

de VR. En primer lugar, es mucho más ligera que las soluciones actuales

de estimación de profundidad o disposición comúnmente adoptadas en este

contexto [55, 24, 15]. En segundo lugar, la estructura AWM recuperada se

segmenta en techo, paredes y suelo, y se representa en unidades métricas,

incluyendo la predicción de alturas techo-suelo. Esto, además de mejorar la

síntesis de vistas, soporta la creación de un mapa de ocupación del suelo, para

generar trayectorias consistentes dentro de la habitación sin colisiones.

• Introducimos nuevas funciones objetivo para tener en cuenta la consistencia

estructural en interiores (section 3.4.3) de la síntesis de vistas. Dichas funciones,

basadas en la codificación GAF [15, 56], admiten pérdidas directas (es decir,

pérdida de profundidad predicha por el objetivo) y pérdidas de espacio latente.

Las pérdidas del espacio latente guían una reconstrucción estructural coherente

durante el entrenamiento y son duales a las pérdidas visuales, denominadas

perceptual geométrica y estilo geométrico, Dichas pérdidas, combinadas con la

transferencia de estilo perceptual estándar y las pérdidas adversariales, mejoran

la calidad de la escena reconstruida (??), desplazando gran parte de la carga

computacional a la fase de entrenamiento, y haciendo que la fase de inferencia

sea mucho más ligera.

• Presentamos un enfoque totalmente basado en datos, versátil y ligero para

generar nuevas vistas panorámicas a partir de una única panorámica de inte-

riores. Este enfoque de aprendizaje profundo no necesita un procesamiento

dedicado para cada escena [18, 6], sino que se generaliza sobre escenas de

interior que simplemente siguen AWM (??). Una vez que las características

profundas latentes y los presupuestos estructurales se aplican en tiempo de

entrenamiento, se obtiene una síntesis de pose novedosa a través de una red

(GVS) sin capas profundas ni pipelines complejos. De hecho, GVS consiste en

un número limitado de capas, combinando convoluciones gated y dilatadas,

centradas en maximizar el nivel de detalle (section 3.4.2). Como resultado, ten-

emos una red con un número limitado y constante de parámetros aprendibles

(section 3.5.2), incluso cuando varía la resolución de la imagen generada.

Nuestros resultados (section 3.5) mejoran en precisión, calidad y complejidad com-

putacional a los enfoques más avanzados en pruebas de referencia comunes con una

verdad sobre el terreno mensurable. Además, se obtienen predicciones convincentes
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incluso en imágenes en las que no se dispone de datos reales para el entrenamiento,

así como en nuevas imágenes capturadas por el usuario.

A.4 Exploración inmersiva de entornos interiores
estereoscópicos

Aunque capturar una panorámica de una sola toma es una forma muy atractiva de

crear un clon virtual de un entorno real, la limitación del contenido presentado a lo

que era visible alrededor de la ubicación fija desde la que se tomó la panorámica lleva

a la pérdida de la estereoscopía binocular, que es muy importante para proporcionar

una sensación de presencia [6]. El hecho de que las panorámicas aparezcan planas

es una limitación especialmente fuerte en entornos interiores, dada la distancia

relativamente corta del espectador a las superficies arquitectónicas y los objetos.

Para proporcionar señales estéreo para rotaciones completas de 360 grados, el

renderizador debe disponer de vistas desde un conjunto continuo de puntos de

vista desplazados. Las técnicas estéreo omnidireccionales [25, 26] se emplean

con ese fin, pero requieren la creación de panorámicas estéreo utilizando cámaras

que se mueven en una trayectoria circular [27, 26, 25] o múltiples cámaras 360

sincronizadas [3]. Estos enfoques de adquisición, sin embargo, reducen la posibilidad

de capturar, experimentar y compartir rápidamente una escena 360◦ utilizando

hardware de consumo. En particular, mientras que varias cámaras de bajo coste están

ampliamente disponibles para la captura monocular 360◦ (por ejemplo, GoPro, Ricoh

Theta, LadyBug o Insta360), también debido al auge del mercado de las "cámaras

de acción", las soluciones estéreo 360◦ (por ejemplo, Vuze+) son más costosas y

limitadas, y también suelen ofrecer solo un número bajo (es decir, de seis a ocho) de

diferentes puntos de vista, lo que provoca artefactos estereoscópicos y de stitching.

Además, aunque las soluciones de cámara giratoria proporcionan más puntos de

vista, no comparten la misma simplicidad y flexibilidad de la captura instantánea

de una sola toma. Por este motivo, la investigación se ha centrado en métodos

de síntesis de vistas que generan contenidos estereoscópicos a partir de una única

panorámica de 360◦. Sin embargo, los métodos actuales requieren representaciones

complicadas o son demasiado pesados para ejecutarse directamente en HMD y tasas

interactivas (section 4.3). Para superar estas limitaciones, proponemos en este trabajo

un enfoque novedoso para generar y experimentar de forma rápida y automática

una representación estereoscópica omnidireccional de un entorno interior a partir de

una única imagen panorámica monoscópica en formato equirectangular. En nuestro

A.4 Exploración inmersiva de entornos interiores estereoscópicos 135



enfoque, resumido en ?? y section 4.4, comenzamos por estimar la profundidad por

píxel de la imagen completa utilizando una red profunda diseñada para explotar

las restricciones del entorno interior y entrenada en grandes conjuntos de ejemplos

sintéticos (section 4.5). A continuación, sintetizamos cortes panorámicos mediante

reproyección y síntesis de vistas utilizando una red profunda que comparte las

mismas características de diseño y conjunto de entrenamiento que la de estimación

de profundidad (section 4.6). Estos cortes se colocan alrededor del punto de vista

central, en el círculo formado por los dos ojos durante las rotaciones de la cabeza,

y cubren una porción angular suficiente para acomodar las direcciones potenciales

de la mirada tanto del ojo izquierdo como del derecho. A continuación, se compone

un par estereoscópico de centro de proyección múltiple en formato equirectangular

mezclando adecuadamente los cortes precalculados. El par resultante se carga en

un visor WebXR para obtener una experiencia ligera y receptiva con señales de

movimiento y estereoscópicas durante el tiempo de ejecución (section 4.7). En

este enfoque, basado en la aproximación a una experiencia estereoscópica completa

mediante un par estereoscópico omnidireccional (véase section 4.3), se minimizan los

costes de ejecución, tanto en términos de almacenamiento y ancho de banda como de

rendimiento de renderizado, a costa de una ligera degradación de la reconstrucción

estereoscópica en la visión periférica (véase section 4.7).

Nuestras principales aportaciones son las siguientes:

• Introducimos una novedosa arquitectura de red profunda de extremo a extremo

que genera vistas desplazadas de una imagen panorámica de interior en formato

equirectangular; un primer módulo de red estima un mapa de profundidad

a partir de una única entrada panorámica; a continuación, estas vistas se

reproyectan a la posición deseada, y se sintetiza una imagen completa a través

de una segunda red capaz de generar contenido plausible en áreas desocluidas.

A diferencia de otros enfoques de última generación en la literatura [65, 15],

la red se basa en una arquitectura de tipo gated ligera y de cuello de botella

dilatado; como resultado, garantizamos la escalabilidad a tamaños de imagen

más grandes y/o hardware embebido, manteniendo el máximo detalle visual al

reproyectar en nuevas vistas;

• Introducimos una arquitectura de red unificada con estrategias de entre-

namiento personalizadas tanto para la estimación de la profundidad como

para la síntesis de vistas. Se explota la misma red ligera para ambas tareas,

sólo adaptando la función de activación final y cambiando el modo de entre-
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namiento. Para ello, introducimos una pérdida fotométrica específica para

la novedosa síntesis de vistas, combinada con un enfoque GAN. Como resul-

tado, se generan nuevas vistas fotorrealistas con un bajo coste computacional.

Además, utilizamos arquitecturas basadas en GAN de superresolución para

aumentar aún más la resolución entre las imágenes estéreo.

• explotamos nuestro enfoque de estimación de profundidad, reproyección y sín-

tesis para generar un conjunto de cortes panorámicos y utilizarlos para calcular

un par de imágenes estéreo omnidireccionales que pueden experimentarse

directamente en visores WebXR que los muestrean para generar parejas estéreo

que responden al movimiento de la cabeza con baja latencia y alta frecuen-

cia. La limitación a cortes panorámicos simplifica enormemente los costes

computacionales off-line en comparación con soluciones anteriores [105], y la

explotación directa de formatos estéreo omnidireccionales estándar fomenta

la aplicabilidad del método a una variedad de plataformas de hardware y

software.

Nuestra evaluación (section 4.8) ilustra cómo las redes de inferencia de profundidad

e inpainting alcanzan un rendimiento de vanguardia y cómo pueden explotarse

para producir imágenes estereoscópicas omnidireccionales sin fisuras a una alta tasa

de muestreo angular. Dado que el marco propuesto es fácil de integrar en los vi-

sores panorámicos actuales, sustituyendo simplemente a los actuales renderizadores

monoscópicos, promete ser un bloque de construcción práctico para ofrecer experien-

cias atractivas y realistas que cautiven al público y le permitan explorar e interactuar

virtualmente con espacios interiores en aplicaciones Metaverse actuales y futuras.

A.5 Edición semi-automática de modelos
inmersivos de interiores

Aunque en la bibliografía se han presentado diversas soluciones de borrado de

objetos y repintado de imágenes (section 5.3), la DR para entornos interiores debe

generar imágenes de espacios interiores vacíos que no sólo tengan un aspecto realista,

sino que respeten el contexto de formas más estrictas, en particular deduciendo

una organización plausible de la estructura arquitectónica permanente que delimita

el interior de la habitación [32]. Las soluciones basadas en datos, que aprenden

relaciones ocultas a partir de ejemplos, están surgiendo como enfoques viables
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para esta clase de problemas. Sin embargo, los métodos más avanzados para el

repintado de imágenes se centran principalmente en el fotorrealismo [33, 34], y

la información adicional sobre la escena se explota sólo desde el punto de vista

semántico [35, 36, 32]. Los pipelines actuales hacen un uso limitado de la estructura

de la escena observada, y la precisión de la reconstrucción se consigue a costa de una

alta complejidad computacional o de una mayor intervención del usuario, utilizando,

por ejemplo, redes recursivas [37], arquitecturas multirama [34], y la definición

manual de partes específicas de la imagen original que deben eliminarse [35].

En este trabajo, presentamos una nueva red profunda ligera de extremo a extremo

que, a partir de una imagen de entrada de 360◦ de un espacio interior amueblado,

devuelve automáticamente, con muy baja latencia, una vista fotorrealista omnidirec-

cional y una profundidad arquitectónicamente plausible de la misma escena vaciada

de todo desorden.

Aprovechando la disponibilidad de conjuntos de datos sintéticos fotorrealistas a

gran escala, entrenamos nuestra red en pares utilizando un conjunto de ejemplos

compuestos por imágenes equirectangulares registradas del color del entorno des-

ordenado, el color del entorno vacío y su profundidad. La red final de extremo a

extremo se descompone en dos bloques, que se entrenan por separado para reducir

los costes de entrenamiento. El primer bloque aprende una máscara de atención de

las partes despejadas de la imagen de entrada, generando ejemplos de entrenamiento

a partir de la imagen de entrada despejada y los pares de profundidad. El segundo

bloque toma como entrada la máscara de atención y la imagen desordenada, y realiza

la síntesis de la escena despejada, utilizando para el entrenamiento pérdidas especí-

ficas de interiores que incorporan nuestro conocimiento de los entornos interiores

esperados. A diferencia de otros métodos de eliminación de objetos, el nuestro se

aplica de forma holística a toda la escena, eliminando todo el desorden en un solo

paso sin intervención del usuario. El vaciado rápido de la habitación sin intervención

manual es el pilar fundamental sobre el que se asientan las demás características

necesarias para una aplicación de DR. Por ejemplo, la eliminación de un único objeto

(o la conservación de un único objeto) se consigue componiendo la imagen de la

habitación vacía de nuestra red con la imagen original, teniendo en cuenta la máscara

de objeto calculada (véase, por ejemplo, el diseño de Gkiktas et al. [32]). Además,

al inferir la geometría de la habitación y eliminar el desorden, podemos realizar

varias ediciones de la escena, como añadir o colocar muebles apoyados en el suelo o

pegados a una pared (véase Figure 5.1).
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Nuestras principales aportaciones se resumen a continuación:

• Proponemos una técnica ligera de aprendizaje profundo de extremo a extremo

(section 5.4), que proporciona, a tasa interactiva, una escena panorámica de

interiores vaciada automáticamente sin intervención del usuario y adecuada

para su uso en aplicaciones XR. Nuestra red de predicción se desarrolla de

forma lineal, sin necesidad de fusionar características de ramas paralelas [34,

32], ni de refinar el resultado recursivamente [37]. Con el fin de aliviar

la carga del gating convolucional para el inpainting genérico asistido por el

usuario [33], adoptamos en su lugar una estrategia de convolución tipo gated

separable en profundidad, reduciendo el número de parámetros y el tiempo

de procesamiento mientras se mantiene la efectividad [89]. Además, tanto las

restricciones visuales como las geométricas se aplican únicamente en tiempo

de entrenamiento, donde las visuales siguen una estrategia de aprendizaje por

transferencia [123] y las geométricas adoptan pérdidas robustas y eficientes que

codifican nuestro conocimiento previo sobre entornos interiores (section 5.4.3).

• Predecimos una representación geométrica emparejada con la imagen de sal-

ida, es decir, una estimación de profundidad densa de la escena vacía. Esta

representación geométrica puede utilizarse directamente como base para su

posterior procesamiento en la aplicación XR (por ejemplo, para ayudar al

posicionamiento de objetos o para calcular oclusiones). Se obtiene obtenida

conjuntamente con la representación visual y sin necesidad de onerosas ramas

paralelas [34, 32]. También la explotamos para definir una previa robusta y

efectiva a nivel de píxel junto con otras previas y pérdidas 3D (section 5.4.3) La

generación de una pista geométrica como salida reduce la necesidad de añadir

análisis semántico adicional sobre la imagen o de utilizar estrategias GAN [92,

124] para desambiguar los resultados obtenidos, como demuestran nuestros

resultados (section 5.5).

Por el contrario, los métodos actuales de inpainting se centran principalmente

en la salida visual y perceptual [33, 34], donde la preservación de la estructura

se maneja a nivel de características de la imagen o semánticamente [35, 36].

Otros enfoques se basan, en cambio, en anotaciones manuales y simplificadas

del trazado subyacente, que no representa necesariamente la verdadera ge-

ometría 3D. Esta información se interpreta mejor como un previo semántico 2D

que geométrico [36, 32].
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• Dirigimos nuestro entrenamiento utilizando una función de pérdida que com-

bina términos fotorrealistas y geométricos. En particular, nuestros términos

geométricos explotan tanto la información de píxeles de los mapas de pro-

fundidad como el concepto de normales virtuales generadas por triples de

puntos a gran distancia [126], para recuperar eficientemente las características

salientes de las estructuras interiores hechas por el hombre, en términos de

planitud y suavidad, sin caer en estructuras restrictivas como Manhattan-world,

Atlanta-world o incluso paredes verticales [1].

Nuestros resultados muestran que nuestro método supera a los enfoques más avan-

zados, utilizando puntos de referencia comunes con una verdad básica medible, en

términos de precisión, calidad y menor complejidad computacional (section 5.5.3).

Además, nuestro modelo también es capaz de producir predicciones convincentes

incluso en imágenes de conjuntos de datos comunes en los que no se dispone de la

verdad básica para el entrenamiento, así como en imágenes nuevas capturadas por

un usuario (section 5.5.4).

A.6 Logros y conclusiones

Partiendo de los objetivos fijados, investigamos técnicas novedosas, la estructura

de las redes, las funciones de pérdida y los métodos de entrenamiento. Nuestra

investigación produjo una serie de resultados científicos (enumerados en section 6.3),

que hicieron avanzar el estado de la técnica en muchos aspectos. Seleccionamos

entre ellos los principales logros (véase section 1.2):

• Una nueva metodología para la síntesis de escenas 3D de interiores Atlanta-

world a partir de una única imagen omnidireccional. (section 3). Un nuevo

enfoque basado en datos para extraer información geométrica y estructural de

un único panorama esférico de una escena interior, y para utilizar esta infor-

mación para representar la escena desde nuevos puntos de vista, mejorando la

inmersión 3D en aplicaciones de realidad virtual. El enfoque hace frente a las

ambigüedades inherentes a la estimación de la geometría de una sola imagen y

a la síntesis de puntos de vista novedosos centrándose en el caso muy común

de los interiores Atlanta-world, delimitados por suelos y techos horizontales y

paredes verticales. Basándonos en este modelo, introducimos un nuevo enfoque

de aprendizaje profundo de extremo a extremo para estimar conjuntamente la

profundidad y la estructura subyacente de la escena. El aprendizaje previo guía
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el diseño de la red y de nuevas funciones de pérdida específicas del dominio,

desplazando la mayor carga computacional a una fase de entrenamiento que

explota las imágenes panorámicas sintéticas a gran escala disponibles. Una red

extremadamente ligera utiliza información geométrica y estructural para inferir

nuevas vistas panorámicas a partir de posiciones trasladadas a velocidades in-

teractivas, a partir de las cuales se producen vistas en perspectiva que coinciden

con las rotaciones de la cabeza y se amplían al tamaño de la pantalla.Como

resultado, nuestro método produce automáticamente nuevas poses alrededor

de la cámara original a velocidades interactivas, dentro de un área de trabajo

adecuada para producir señales de profundidad para aplicaciones de VR, es-

pecialmente cuando se utilizan pantallas montadas en la cabeza conectadas a

servidores gráficos. El plano extraído y la estructura 3D de las paredes también

pueden utilizarse para explorar la sala. Los resultados experimentales demues-

tran que nuestro método proporciona un rendimiento de baja latencia y mejora

la precisión de la predicción de las soluciones más avanzadas en los puntos

de referencia panorámicos de interiores más utilizados. Este trabajo ha sido

publicado en la revista TVCG [38] y presentado en la conferencia IEEE ISMAR

2023. El candidato fue responsable de todos los aspectos del trabajo, desde

la conceptualización, metodología, software, hasta la validación, redacción y

revisión de los artículos relacionados.

• Un novedoso enfoque para la síntesis profunda y la exploración de en-

tornos estereoscópicos omnidireccionales a partir de una imagen panorámica

monoscópica. (section 4). Un enfoque innovador para generar y explorar

automáticamente entornos interiores estereoscópicos inmersivos derivados de

una única imagen panorámica monoscópica en formato equirectangular. Una

vez por cada toma de 360◦, estimamos la profundidad por píxel utilizando

una arquitectura de red profunda cerrada. Posteriormente, sintetizamos una

colección de cortes panorámicos mediante reproyección y síntesis de vistas

empleando aprendizaje profundo. Estos cortes se distribuyen alrededor del

punto de vista central, con el centro de proyección de cada corte situado en la

trayectoria circular recorrida por los ojos durante una rotación de la cabeza.

Además, cada corte abarca una extensión angular suficiente para acomodar las

posibles direcciones de la mirada de los ojos izquierdo y derecho y proporcionar

contexto para la reconstrucción. Para una visualización rápida, se compone un

par estereoscópico de centro de proyección múltiple en formato equirectangular

mezclando adecuadamente los cortes precalculados. En tiempo de ejecución,

el par se carga en un visor WebXR ligero que responde a las rotaciones de

la cabeza, ofreciendo pistas tanto de movimiento como estereoscópicas. El
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planteamiento combina y amplía las técnicas más avanzadas basadas en datos,

incorporando varias innovaciones. En particular, se introduce una arquitectura

con compuerta para la estimación de la profundidad panorámica monocular.

Aprovechando la profundidad predicha, la misma arquitectura se aplica a la

reproyección de píxeles visibles, facilitando el repintado de regiones ocluidas y

desocluidas mediante la incorporación de una red generativa adversarial mixta

(GAN). El sistema resultante funciona en una gran variedad de cascos de VR

disponibles y puede servir como componente base para una gran variedad de

aplicaciones inmersivas. Demostramos nuestra tecnología en varias escenas de

interiores a partir de datos disponibles públicamente. Este trabajo ha sido acep-

tado para su publicación como artículo en la revista Computers & Graphics [39]

y premiado con mención honorífica en la conferencia ACM WEB3D 2023. El

candidato El candidato fue responsable de todos los aspectos del trabajo, desde

la conceptualización, metodología, software, hasta la validación, redacción y

revisión de los artículos relacionados.

• Una innovadora técnica de extremo a extremo para el vaciado automático

instantáneo de escenas panorámicas de interior (section 5). Un nuevo

enfoque basado en datos que, a partir de una imagen de entrada de 360◦ de un

espacio interior amueblado, devuelve automáticamente, con muy baja latencia,

una vista fotorrealista omnidireccional y una profundidad arquitectónicamente

plausible de la misma escena vaciada de todo desorden. A diferencia de

los anteriores métodos de inpainting basados en datos que eliminan objetos

individuales definidos por el usuario en función de su semántica, nuestro

enfoque se aplica de forma holística a toda la escena y es capaz de separar

el desorden de la estructura arquitectónica en un solo paso. Al explotar las

características geométricas peculiares del entorno de interiores, desplazamos

la mayor carga computacional a la fase de entrenamiento y disponemos de

una red extremadamente ligera en el momento de la predicción. Este trabajo

ha sido publicado como artículo de la revista TVCG [40] y presentado en la

conferencia IEEE ISMAR 2022. El candidato fue responsable de todos los

aspectos del trabajo, desde la conceptualización, metodología, software, hasta

la validación, redacción y revisión de los artículos relacionados.

Además, durante el curso de mis estudios de doctorado y siempre en relación con

esta tesis, he contribuido también en una serie de publicaciones que no han sido

incluidas directamente en este trabajo, y que se listan en la sección dedicada a los

resultado bibliográficos (Sec. 6.3).
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Conclusiones y futuro. Se presenta en esta sección una breve evaluación de las

ventajas y limitaciones de las soluciones, así como una visión de las áreas de trabajo

futuras. Como se ha visto en los capítulos anteriores, la construcción de un modelo

inmersivo de interiores a partir de una sola imagen panorámica requiere la capacidad

de extraer de ella un modelo 3D estructurado. Este modelo debe incluir información

de profundidad desde la perspectiva de la cámara, un trazado 3D que permita

inferir partes potencialmente ocluidas y la capacidad de distinguir semánticamente

entre elementos estructurales permanentes (es decir, sujetos a reglas artificiales) y

desorden. Este modelo es un requisito esencial para garantizar la fiabilidad de la

síntesis de vistas.

Todas las técnicas que aquí se presentan aprovechan las distintas características

de la configuración de captura, en particular la alineación gravitatoria, y del en-

torno esférico, en concreto la alineación del espacio-mundo con la gravedad. Esta

alineación permite explotar las regularidades de las características verticales a lo

largo de la dirección horizontal. Estas características consistentes han influido en

los diseños de las redes, dando lugar al uso de contracciones asimétricas y diversas

estrategias para combinar características de largo y corto alcance [38]. Las redes

específicas diseñadas a partir de estos principios ofrecen ventajas significativas frente

a alternativas más genéricas. Esto subraya el valor de las soluciones a medida para

la captura de interiores, en lugar de confiar en redes genéricas diseñadas para ex-

teriores o para la reconstrucción 3D de formas genéricas. Sin embargo, la creación

de redes personalizadas también tiene un inconveniente: dependen de caracterís-

ticas ambientales específicas. En consecuencia, cuando el entorno de la imagen

se desvía de las expectativas, pueden producirse fallos importantes (por ejemplo,

véase section 3.8.4). Aunque estas soluciones son más robustas que los métodos de

razonamiento geométrico, siguen presentando limitaciones en cuanto a su aplicabil-

idad, como demuestran los análisis de casos de fallo presentados en los capítulos

anteriores.

Otra limitación significativa, también compartida por los demás enfoques actuales,

se refiere al tamaño de entrada. Aunque las soluciones que presentamos son en

general ligeras y el diseño de la red es escalable, las pruebas se han realizado pre-

dominantemente con tamaños de imagen más pequeños de lo que se puede conseguir

actualmente con las cámaras panorámicas. Las pruebas comparativas existentes

suelen funcionar con una resolución de 1024 × 512, y rara vez se aventuran en

dimensiones mayores. En cambio, las cámaras industriales capturan imágenes más

detalladas. Una vía esencial para la investigación futura consiste en evaluar la escala-
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bilidad de estas técnicas para manejar conjuntos de datos más grandes y casos del

mundo real. Para ello será necesario no sólo escalar las redes, sino también generar

amplios conjuntos de datos anotados que sirvan de base. Mientras que la estimación

de la profundidad requiere una verdad de base precisa por píxel, la reconstrucción

del trazado es una tarea más abstracta que depende de las anotaciones realizadas

por el usuario. Por razones prácticas, estas anotaciones se limitan actualmente a los

entornos de Manhattan-world o Atlanta-world. En el futuro esperamos resolver este

problema gracias a la creciente disponibilidad de dispositivos que capturen tanto RGB

de alta resolución como profundidad, y a la eventual posibilidad de integrar sistemas

de anotación semiautomáticos para estructuras de interés, por ejemplo ampliando

sistemas de uncluttering como el que presentamos (véase chapter 5).

Los enfoques modernos de síntesis de vistas, incluidas nuestras soluciones, se basan

básicamente en técnicas de inpaiting. Mientras que en gran parte de la literatura tales

soluciones se refuerzan con un entrenamiento de tipo GAN, una de nuestras mayores

contribuciones en este tema es utilizar también arquitecturas y estrategias de red

basadas en información geométrica, en particular presupuestos de los interiores. Tal

enfoque, como se ha demostrado en capítulos anteriores, mejora enormemente el

realismo de la escena sintetizada, tanto en casos de oclusión visual (es decir, una

esquina oculta que se desocluye, chapter 3), como en el caso de reconstrucción

de partes estructurales previamente cubiertas por clutter (véase chapter 5). Esta

solución es especialmente eficaz en el caso de una escena editada, como en el caso

de uncluttering para disminuir la realidad chapter 5 o para una posible puesta en

escena virtual con adición de objetos 3D, es decir, en el caso de que el resultado

final sea estructural o se complete con objetos sintéticos. En cambio, en el caso de la

navegación de forma libre pura chapter 3, persisten varios artefactos y limitaciones.

En este caso, la información estructural de interiores no puede ayudar a completar

ningún objeto genérico, lo que en algunos casos puede generar artefactos evidentes

al cambiar el punto de vista. En la actualidad, esta situación limita el rango de

movimiento del observador, ya que en presencia de grandes movimientos, la infor-

mación de disposición y las previsiones interiores no serían útiles para reconstruir

grandes porciones de objetos desocluidos. En el futuro, esto podría solucionarse

combinando varias imágenes y aumentando las capacidades generativas de la red de

síntesis con técnicas de difusión.

En nuestro trabajo de investigación también presentamos un marco para la generación

automática de entornos interiores estereoscópicos omnidireccionales para su uso

en aplicaciones inmersivas (véase chapter 5), especialmente consumidas a través
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de pantallas montadas en la cabeza. Nuestro método parte de una única imagen

panorámica de un entorno interior y utiliza arquitecturas basadas en datos para

la estimación de la profundidad y una novedosa síntesis de vistas para generar

rápidamente las imágenes vistas por ambos ojos durante la rotación de la cabeza.

Una de las limitaciones del método actual es el desajuste entre la resolución de las

imágenes sintetizadas y la resolución alcanzable con las cámaras y pantallas actuales.

Este desajuste se resuelve reduciendo la resolución de las imágenes antes de su

construcción y aumentándola con la ayuda del aprendizaje profundo antes de la

presentación en pantalla. La limitación no se debe a la arquitectura de red ligera

propuesta, que promete ser escalable a tamaños de imagen mucho mayores, sino

a la disponibilidad de conjuntos de entrenamiento para las redes de estimación de

profundidad y síntesis de vista. Tenemos previsto abordar este problema generando

datos de entrenamiento de mayor resolución, como en el caso del problema de

síntesis de vistas de forma libre que se ha comentado anteriormente.

Otro punto se refiere a las direcciones futuras de los métodos de edición automática

inmersiva. Aquí se presenta un nuevo enfoque basado en datos que, a partir de

una imagen de entrada de 360◦ de un espacio interior amueblado y desordenado,

devuelve automáticamente, a velocidad interactiva, una vista fotorrealista de 360◦

y profundidad de la misma escena vaciada de todos los muebles y demás desorden.

Aunque la aplicación de la realidad atenuada es coherente por sí misma, en el sentido

de que permite visualizar la estructura del entorno libre de objetos o desorden

genérico para diversos fines, siguen siendo necesarios, sin embargo, algunos pasos

para disponer de una aplicación de puesta en escena virtual completa.En primer

lugar, sería necesario estimar la iluminación global, de nuevo a partir de una sola

imagen, para tener la capacidad no sólo de eliminar objetos, sino de insertar otros

nuevos de forma fotorrealista. A este respecto, existen varios enfoques de cara al

futuro para conseguir un modelo totalmente editable, como el que se propone en

algunos trabajos recientes [145].
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