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Figure 1: VISPI: our novel virtual staging pipeline takes as input a single omnidirectional image representing an indoor environment, performs deep-learning-

based inference of multiple signals related to the scene without clutter, and estimates lighting through Spherical Gaussian parameterization in a way to allow

placement of virtual objects inside the scene with plausible lighting conditions.

Abstract

Taking a 360◦ image is the quickest and most cost-effective way to capture the entire environment around the viewer in a form

that can be directly exploited for creating immersive content [PBAG23]. In this work, we introduce novel solutions for the

virtual staging of indoor environments, supporting automatic emptying, object insertion, and relighting. Our solution, dubbed

VISPI (Virtual Staging Pipeline for Single Indoor Panoramic Images), integrates data-driven processing components, that take

advantage of the analysis of knowledge learned from massive data collections, within a real-time rendering and editing system,

allowing for interactive restaging of indoor scenes. Key components of VISPI include: i) a holistic architecture based on a

multi-task vision transformer for extracting geometry, semantic, and material information from a single panoramic image, ii) a

lighting model based on spherical Gaussians, iii) a method for lighting estimation from the geometric, semantic, and material

signals, and iv) a real-time editing and rendering component. The proposed framework provides an interactive and user-friendly

solution for creating immersive visualizations of indoor spaces. We present a preliminary assessment of VISPI using a synthetic

dataset – Structured3D – and demonstrate its application in creating restaged indoor scenes.

CCS Concepts

• Computing methodologies → Computer graphics; Computer vision; Shape inference; Neural networks;

1. Introduction

Virtual staging is becoming an increasingly popular tool in indus-

tries such as real estate, interior design, and architecture, where

visualization of alternative designs plays a crucial role in decision-

making processes [ZCB∗22]. Traditional virtual staging methods,

often relying on flat 2D images, have several limitations. These

methods usually require multiple images to cover a space ade-

quately, leading to a fragmented and sometimes disjointed repre-

sentation of the environment. Moreover, the lack of a comprehen-

sive, immersive view can hinder the user’s ability to fully experi-

ence and evaluate a space.

To overcome these limitations, omnidirectional imaging, a tech-

nique that captures most of the visual information about a scene in a

single shot, has become increasingly popular for acquiring environ-

ments in the Architecture, Engineering, and Construction (AEC)

domain, particularly for indoor scenes [PGGS16, SLK∗23].

Concurrently, several data-driven solutions have been developed

for a range of processing operations that are now routinely per-

formed in the AEC domain, such as the extraction of metric in-

formation about room layouts [PAG20], 3D geometry in the form

of meshes [PAAG21] or point clouds, and semantic information to

enable editing operations [SLL∗22].

More recently, researchers have begun exploring diminished

reality solutions that can be applied for restaging applica-

tions [JSN24]. These solutions effectively empty the interior of

an environment, making it ready to be filled with different 3D as-
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sets to create new environments [PAAG22]. However, to achieve

realism and effectiveness, it is essential to recover also informa-

tion about the lighting conditions. Although recent advancements

in inverse rendering techniques have been proposed to address this

need [GDHG∗24], they primarily focus on perspective images and

have complexity requirements that limit their integration into real-

time editing pipelines.

To address these gaps and overcome these challenges, we pro-

pose a novel processing framework named VISPI (Virtual Staging

Pipeline for Single Indoor Panoramic Images). VISPI is designed to

enhance virtual staging by focusing on single omnidirectional im-

ages. It integrates data-driven processing components within a real-

time rendering and editing system, enabling the interactive restag-

ing of indoor scenes represented by single panoramic images. The

framework includes the following novel components (see Fig. 1):

• An architecture based on a vision transformer for multi-task

extraction of geometry, semantic, and material information

from single equirectangular RGB images of fully cluttered

scenes (Sec. 4). This architecture is exploited to create unclut-

tered environments ready for virtual staging.

• A parametric lighting model based on spherical Gaussians com-

puted from the geometry and material information related to

the indoor scene. This model is used for two tasks: estimating

the light parameters through the least square method from in-

ferred signals, and illuminating virtual objects through a real-

time shader (Sec. 5).

• A real-time editing and rendering component that integrates all

precomputed scene information, enabling virtual object place-

ment inside the empty environment.

The proposed framework offers a fast interactive solution for cre-

ating immersive visualizations of indoor spaces. Our virtual stag-

ing pipeline has transformative potential across several application

domains: real estate, furniture retail, interior design, the construc-

tion industry, as well as the creation of immersive environments

for the Metaverse for supporting remote collaboration, and immer-

sive training [TSH∗24, CA24]. We report on a preliminary assess-

ment of the pipeline on a synthetic public domain dataset (Struc-

tured3D [ZZL∗20]) and we describe examples of usage of the

pipeline for the creation of restaged indoor scenes.

2. Related work

Our work deals with data-driven processing solutions single

panoramic images representing indoor environments and inverse

rendering methods targeting virtual staging applications. For space

reasons, we won’t provide here an extensive discussion of the im-

portant literature corpus in this field, but we will instead discuss the

most recent methods most closely related to our framework. For a

comprehensive literature review related to these topics, we refer

the interested readers to the recent surveys about omnidirectional

visual computing [dJ23], indoor reconstruction [PMG∗20, WL24],

3D scene understanding from panoramic imaging [dSPMLJ22],

and deep learning for lighting estimation [EGH21].

Indoor panoramic processing Inferring geometric and physical

signals from omnidirectional images presents a challenging prob-

lem that has garnered significant attention from the computer vi-

sion community in recent years. Generally, to effectively manage

the spherical distortions caused by equirectangular projection, var-

ious approaches have been developed that incorporate reprojec-

tion in conjunction with Convolutional Neural Networks. More

specifically, several methods have been proposed to tackle indi-

vidual dense estimation tasks. For geometry estimation, methods

like UniFuse [JSZ∗21] and Bifuse [WYS∗20] significantly reduce

distortion by combining features extracted from both equirect-

angular projections and cube maps at different stages within

encoder-decoder architectures. Meanwhile, M3PT [YLW∗22] ap-

plies random masking to process both panoramas and sky-box

depth patches simultaneously, targeting panoramic depth comple-

tion. Other techniques involve slicing the panoramic image ver-

tically, based on the assumption that vertical lines remain undis-

torted in equirectangular projections when the acquisition is mostly

gravity-aligned [PAA∗21, PAAG21]. Additionally, some methods

employ tangent projection to extract multiple undistorted patches

that are processed using standard approaches for perspective im-

ages, as demonstrated by 360MonoDepth [RAYR22] and Omni-

Fusion [LGY∗22]. Recently, vision transformers have been ex-

plored for these tasks. PanoFormer [SLL∗22] uses tangent pro-

jection (TP) to reduce the inherent distortion in omnidirectional

images, treating the TP patches as tokens within a vision trans-

former architecture. HRDFuse [ACC∗23] proposes a hybrid CNN-

transformer architecture that integrates comprehensive contex-

tual information from the original equirectangular projection with

regional structural information extracted via tangent projection.

Similarly, PanelNet [YHJ∗23] represents the equirectangular pro-

jection (ERP) as sequential vertical panels with corresponding

panel geometry, using a transformer to aggregate local informa-

tion within a panel along with the panel-wise global context.

Lastly, EGformer [YSL∗23] focused on extracting equirectangular

geometry-aware local attention with a large receptive field, by using

the geometry as the bias for the local attention instead of trying to

reduce the distortion generated by equirectangular projection. An-

other class of methods try to get additional information enabling

editing operations on indoor environments, like the extraction of

3D layouts [PAAG21], or full scene composition [DFB∗24] in form

of 3D layouts together with the oriented bounding boxes of the ob-

jects contained inside the scene. Similarly, Pintore et al. [PAAG22]

proposed a model for diminished reality able to automatically infer

the depth signal of the scene without clutter. For what concerns Di-

minished Reality, very recently Gsaxner et al. [GMS∗24] proposed

a structure-aware generative network able to perform RGB-D in-

painting in real time without artifacts, while Liu et al [LZS∗23]

proposed an impainting method for indoor panoramic images based

on fast Fourier convolution. Finally, MultiPanoWise [STA∗24] pro-

posed a vision transformer for branched multi-task inference by in-

troducing a hybrid Pareto-optimal hybrid loss scalarization strategy

for improving the inference of multiple signals. In this work, we

extend the latter architecture and take inspiration from the instant

emptying method proposed by Pintore et al. [PAAG22]. The pro-

posed architecture is a multi-task vision transformer able to infer

multiple signals related to an empty scene from an RGB picture of

a cluttered scene. Specifically, our model can extract concurrently

depth, normals, semantic information, and reflectance information.
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Figure 2: Proposed Architecture: Our model builds upon the MultiPanoWise framework [SSP∗24], with the addition of a new binary mask head. We compute

spatial attention between the multi-task features and the binary mask to effectively filter out furniture and clutter. The refined multi-task features are then

passed to multiple heads, generating outputs such as semantic segmentation, depth, and other task-specific signals.

Inverse rendering and virtual staging Inverse rendering is the

process of inferring scene properties from images in a way to en-

able editing and rendering applications [LWH∗22], and it is a chal-

lenging problem. The task is ill-posed, as many different scene con-

figurations can produce the same image [LLM21]. Over the last

years, various solutions have been proposed to decompose scenes,

most of them based on data-driven architectures, and falling into

two main categories for indoor scenes. The first category consid-

ers parametric representations like spherical harmonics [GSH∗19]

and spherical Gaussians [GHGS∗19, LSR∗20, LYO∗23], while

the second category considers prediction models for environment

maps [WYLL22, LMF∗19]. Both methods have advantages and

drawbacks: the parametric methods are simpler to implement but

they often fail to capture correctly the lighting conditions, while

the environment map prediction gives accurate results on perspec-

tive images but the underlying models are very complex to setup

and train. A potential application of inverse rendering methods is

scene editing, and especially virtual staging operations: recently,

Zhi et al. [ZCB∗22] developed a semantically supervised appear-

ance decomposition architecture for performing virtual object in-

sertion, while Ji et al. [JSN24] developed an inverse rendering ap-

proach using the High Dynamic Range (HDR) technique to capture

an indoor panorama and its paired outdoor hemispherical photo-

graph, for scene relighting and editing under natural illumination.

In our pipeline, we consider a parametric model based on Spheri-

cal Gaussians, taking as input the inferred material, semantic, and

geometry properties of indoor panoramic scenes, and providing as

output a set of light parameters that can be used for virtual shad-

ing operations. We trained our inference and parametric model on

synthetic data [ZZL∗20].

Figure 3: Evolution of light estimation with incremental Spherical Gaus-
sian lights. On the top the estimated light maps starting from one Spheri-

cal Gaussian light up to three. On the bottom are the approximated diffuse

maps.

3. Pipeline overview

The processing pipeline for virtual staging is depicted in Fig. 1. It

is mainly composed by two subsequent tasks:

• Empty scene inference: We developed an end-to-end holis-

tic architecture for multi-task learning, specifically designed for

single panoramic images representing cluttered indoor environ-

ments. Our framework is based on the MultiPanoWise [SSP∗24]

architecture and is capable of concurrently inferring multiple sig-

nals relevant to tasks such as virtual staging or inverse rendering.

These signals include geometric information in the form of depth

and surface normals, semantic segmentation masks, and intrinsic

decomposition signals like reflectance and shading.

The core of our framework is an encoder-decoder structure that

enriches multi-task features. These enriched features are passed

through various task-specific heads, each responsible for infer-

ring a particular signal. Before generating these signals, the

multi-task feature is fed into a separate mask decoder that gen-

erates a binary mask, representing the probability of object pres-

ence. This binary mask assigns high probabilities to key archi-
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Figure 4: Qualitative Example of Model Predictions vs Ground Truth: This figure illustrates the comparison between predicted and ground truth outputs

across three scenes, with each row corresponding to one example. The columns, from left to right, show: (1) Full RGB Image, (2) Shading, (3) Semantic

Segmentation, (4) Depth Map, (5) Normal Map, (6) Albedo, and (7) Empty RGB Scene. For each row, the top image represents the model’s prediction, while

the bottom image is the ground truth.

tectural elements like walls, ceilings, floors, windows, and doors

while assigning lower probabilities to other objects.

Next, we calculate spatial attention between the multi-task fea-

tures and the binary mask to effectively mask out furniture and

other objects that need removal. The refined multi-task features

are then passed to their respective heads to generate various out-

puts such as empty RGB images, shading, albedo, normals, se-

mantic segmentation, and depth maps. This process enables effi-

cient processing of cluttered indoor scenes by extracting detailed

and task-specific information.

• Lighting estimation: We developed a fast and interactive light-

ing estimation method for indoor omnidirectional images using

Spherical Gaussian (SG) models [XSD∗13]. The approach in-

volves optimizing lighting parameters to minimize residuals be-

tween the ground truth and approximated images, enabling real-

istic shading and virtual placement of 3D objects with consistent

lighting. The lighting is modeled using SG functions, which ef-

ficiently approximate specular and diffuse components. The al-

gorithm iteratively adds Gaussian lights, optimizing the Gaus-

sian light source parameters such as color and position through

least-squares minimization. This method is also implemented as

a GLSL shader in an OpenGL system for panoramic image ren-

dering.

In the following we detail the components of the proposed

pipeline.

4. Empty scene inference

Our framework is based on MultiPanoWise [SSP∗24], a multi-task

learning model designed for processing panoramic images as pre-

sented in Fig. 2. Building on the foundation of the PanoFormer

transformer [SLL∗22], this architecture enhances local feature ex-

traction through pixel-level patch division, integrates relative po-

sition embeddings for better positional awareness, and employs

panoramic self-attention to capture key structures in panoramic im-

ages. The model architecture is depicted in Fig. 2 and follows an

encoder-decoder structure with four hierarchical stages, each con-

sisting of position embeddings, Panoramic Self-Attention (PST)

blocks, and convolution layers. The decoder is equipped with mul-

tiple heads that generate various outputs, including semantic seg-

mentation, intrinsic decomposition signals (reflectance and shad-

ing), surface normals, and depth maps. To extend the model’s ca-

pabilities, we introduced a new head for generating an empty RGB

signal, which removes objects from the scene. Initially, this model

served as our baseline, which we progressively refined to han-

dle both object removal and the generation of multiple signals

concurrently. Drawing inspiration from the Instant Empty frame-

work [PAAG22], we adopted a two-stage approach. In the first

stage, a binary mask is generated, marking cluttered pixels with

1 and non-cluttered pixels with 0. This binary mask is then com-

bined with the original panoramic image and passed to the main

model, which removes furniture and other objects while simultane-

ously generating empty RGB and depth outputs. By incorporating

this two-stage approach—using a CNN-based U-Net architecture

to generate the binary mask in the first stage—we observed sig-

nificant performance improvements over the baseline model. How-

ever, challenges in generating precise signals remained. To address

this, we added a new head within the main model to predict the

binary mask directly. This additional head serves as a supervision

mechanism, allowing the model to better identify objects for re-

moval without relying on a separate model, as required in the In-

stant Empty approach. This modification reduced the number of
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parameters and further improved the model’s performance. Further-

more, we removed the context adjustment module from the original

PanoWise architecture, which was originally intended to mitigate

data loss and correct distortions, particularly around object edges.

The module fused low-level features from the input stem with raw

semantic, albedo, and shading outputs to fill gaps and correct dis-

tortions. However, our qualitative results revealed unwanted geo-

metric structures and shadows in the final outputs, likely caused

by the blending of low-level features with raw outputs. By remov-

ing this module, we achieved cleaner outputs and enhanced overall

model performance. Finally, we compute spatial attention between

the multi-task features and the binary mask to effectively filter out

furniture and other objects marked for removal. The refined multi-

task features are then passed to their respective heads to generate

various outputs such as empty RGB images, shading, albedo, sur-

face normals, semantic segmentation, and depth maps. This pro-

cess enables efficient processing of cluttered indoor environments

by extracting detailed and task-specific information.

Losses For the loss function, we used Berhu loss, augmented with

gradient loss based on Sobel filter detection for all tasks except

for semantic segmentation and binary mask prediction. For those

tasks, we applied a combination of cross-entropy loss and Dice loss.

Given the multi-task nature of our framework, we opted for a lin-

ear scalarization objective (equation Equation 1) to efficiently com-

bine the losses from each task. Specifically, we linearly combined

all task-specific losses and then applied hypervolume scalarization

(Equation 2) to identify the maximum loss. This hybrid objective

function (Equation 3) was controlled by a learnable parameter, α,

which balanced the influence of the linear scalarization and hyper-

volume scalarization components:

Llin =
N

∑
k=1

wkLk, (1)

Lhyp = max
k∈[1,N]

{wkLk}, (2)

Lhybrid = αLhyp +(1−α)Llin, (3)

This hybrid loss formulation allowed for better optimization by dy-

namically adjusting to the most critical task at each step of the train-

ing process.

5. Lighting estimation

For the sake of interactivity and fast computations, we developed

a method for estimating lighting parameters using spherical Gaus-

sian (SG) models and we applied them to indoor scenes captured in

omnidirectional images. The method involves optimizing light pa-

rameters to minimize the residuals between the ground truth and

approximated images, thus enabling approximate shading of the

scene, and the virtual placement of 3D objects inside the scene with

consistent lighting.

Problem Formulation The goal is to estimate the lighting condi-

tions in a given indoor scene represented by an RGB image I, a

normal map N, a depth map D, and an albedo map R. The light-

ing is modeled using a set of spherical Gaussian (SG) functions,

each characterized by a set of parameters x = xi. The optimization

problem can be formulated as:

min
x

|I − Ia(x,D,N,R))|2 , (4)

where I is the ground truth image, and Ia(x,D,N,R) is a function

representing the approximate lighting model and depending on the

lighting parameters x. We designed the model in a way to be ef-

ficient both for the estimation stage, as well as for the real-time

rendering component. The estimated lighting parameters x are then

incorporated in a GLSL shader and applied to virtual objects placed

inside the scene.

Lighting Model The lighting is modeled using Spherical Gaus-

sian (SG) functions [WRG∗09]. This model became recently pop-

ular in the graphics community since it can be used for creating

differentiable renderers [LWH∗22,ZLW∗21], and it is very efficient

for real time approximations for gaming [HJL∗20]. The light inten-

sity of a general SG function is given by:

Γ(ω;σ,ξ) = e
σ(ω·ξ−1)

, (5)

where ω is the direction vector, σ is a sharpness parameter, and

ξ is the direction of the lobe.

Γ(ω;σ,ξ) = e
σ(ω·ξ−1)

, (6)

The Spherical Gaussian formulation is a convenient way to ap-

proximate lighting, since it is possible to compute the integral of

the SG over the hemisphere as:

∫
Ω

Γ(ω,σ,ξ)dω =
2π

(

1− e−2σ
)

σ
, (7)

and also other properties useful for shading can be applied. For

example, the inner product of two SGs with different parameters

Γx(ω;σx,ξx) and Γy(ω;σy,ξy) is the integral over the hemisphere

of the product of the two Gaussians and it is defined in the following

way:

∫
Ω

Γx(ω)Γy(ω)dω =
2πedm−σx−σy

(

1− e−2dm

)

dm
, (8)

where dm = |σxξx +σyξy|.

This formulation enables the approximated computation of spec-

ular and diffuse components, given a point in the scene character-

ized by position p and normal n. In our formulation, we further

consider an additional distance decay parameter to approximate lo-

cal effects, hence each Gaussian light ΓL is parametrized by a color

CL, a 3d position µL, a 3D direction ξL, a sharpness parameter σL

and a distance decay γL.
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Figure 5: Lighting estimation performance. Boxplots of root mean square

error (left) and structural similarity(right) with respect to the number of

Gaussian light sources.

Diffuse and specular term In a typical rendering scenario, we

have a surface point p being lit by a light source L, represented

by an SG named ΓL. The outgoing radiance towards the eye for a

surface with a Lambertian diffuse BRDF is given by:

L(o,p) =
1

π

∫
Ω

L(ω,p)cos(θi)dω, (9)

where θi is the angle between the incident light direction ω and

the surface normal n. If the light is represented by an SG, the latter

integral can be approximated as an inner product between an SG

and a cosine lobe. In our model, we consider the approximation

proposed by Pettineo and Hill and referenced in [Tok22]. In this

way, the diffuse irradiance for a given normal n and the light SG

parameters is computed as:

Γdiff(n,σ,ξ) = α · y+β, (10)

where α and β are empirically fitted parameters, and y is a

clamped value based on the dot product ξ ·n. Once approximated,

the integral can be computed with Equation 7. On the other side,

the specular lighting for a surface point x due to a light source L

represented by an SG ΓL is computed using the Phong reflection

model. The outgoing radiance L(o,x) towards the eye direction v is

given by:

L(o,x) =
∫

Ω
L(i,x)R(i,o,x)(n · i)dΩ, (11)

where L(i,x) is the incoming radiance from direction i, R(i,o,x) is

the reflectance, and n is the surface normal at point x. For approx-

imating the specular term we consider again the model proposed

by Pettineo and Hill and referenced in [Tok22], based on visbility

approximated through the GGX distribution [Hei18,KHDN22] and

spherical Gaussian warping.

Lighting estimation We developed an algorithm for estimating

Gaussian light parameters, that take as input the inferred signals

of the empty scene: the depth, the normal, the semantic, and the

material properties in the form of reflectance. The script involves

least-squares optimization aiming to minimize the difference be-

tween the ground truth image Igt and the rendered image Ia accord-

ing to the lighting model described above:

x
∗ = argmin

x

W

∑
v=1

H

∑
u=1

|Igt[v,u]− Ia[v,u]|
2
. (12)

The vector x contains the parameters for each light source, includ-

ing color, direction, position, spread, and distance decay. We iter-

atively run the optimization by adding the Gaussian lights one by

one, up to a maximum of three lights per scene. To reduce the com-

putation time we perform uniform sampling over the scene (in our

experiments we consider 1024 samples), while for the initialization

we consider random light positions from a potential set of candi-

dates extracted from a binarized version of the semantic signal, ob-

tained by considering windows, lights, and other potential illumina-

tors. The optimization is performed using the least_squares method

from the SciPy library, which minimizes the sum of squared resid-

uals with bounds on the parameter values. The output of the algo-

rithm is the set of light parameters that can be used for relighting

the scene, and for performing illumination of virtual objects. Fig. 3

shows an example of the effects of adding Gaussian light sources

on the iterative approximation of the diffuse map: from left to right

the outcomes for Gaussian lights ranging from one to three, with

the light maps on the top, and the diffuse maps on the bottom.

Rendering We implemented the Spherical Gaussian lighting

model considered for lighting estimation as a GLSL fragment

shader inside an OpenGL interactive editing and rendering sys-

tem [TPG∗23] for panoramic images. The framework can im-

port 3D textured assets inside the rasterized version of the empty

panoramic scene, and apply affine transformation to place them

in different positions of the scene to obtain a restaged scene. The

shader can also apply environment mapping.

6. Results

Our framework was implemented in python using PyTorch for the

processing part, and in OpenGL and Qt for the editing and render-

ing component. For the experiments, we used a cluster with four

Nvidia RTX 4090 for training the multi-task transformer, and a lap-

top connected to an e-GPU Nvidia RTX Titanium for the lighting

estimation and for rendering.

Training data In our experiments, we evaluate the effectiveness

of our proposed method using the Structured3D dataset, a syn-

thetic indoor panoramic dataset. Structured3D contains 21,835

panoramic images, each annotated with semantic labels, depth, sur-

face normals, reflectance, and shading information. However, some

images had incomplete or corrupted annotations, so we carefully

cleaned the dataset, resulting in a final set of 17,434 images. The

dataset includes two distinct sets: full-scene and empty-scene im-

ages. For our experiments, we use the input RGB images from

the full-scene set, while the ground truth for other signals (such

as depth, surface normals, and shading) is taken from the empty-

scene set. As the original dataset does not provide an official split

for training and testing, we adopted the partitioning strategy pro-

posed by [SSP∗24].

Training setup We used the Structured3D dataset for both train-

ing and testing the model’s performance, adhering to the data split

outlined in MultiPanoWise [STA∗24]. We employed the AdamW

optimizer with an initial learning rate of 1e−4 and set the batch

size to one. Both training and evaluation were conducted with an

image resolution of 512×1024. The model was trained for up to 30

© 2024 The Authors.
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Figure 6: Examples of lighting estimation. From left to right, the ground truth of the empty scene, the approximated rendering with the Gaussian lighting

model, and the corresponding diffuse map. The method is able to capture the general shading appearance of the scene, but it fails to reconstruct local effects

due to multiple lights and inter-reflections.

Approach
Depth Shading Normal Semantic Albedo Empty RGB

MAE ↓ RMSE ↓ σ1 ↑ MSE ↓ MAN ↓ mIoU ↑ Dice ↑ MSE ↓ PSNR ↑ MSE ↓ PSNR ↑ SSIM ↑

Baseline [SSP∗24] 0.072 0.174 0.952 0.121 7.242 0.701 0.914 0.054 19.15 0.054 20.25 0.826

Pintore et. al. [PAAG22] 0.091 0.197 0.954 0.014 24.70 0.925

Ours 0.057 0.154 0.971 0.116 7.069 0.757 0.939 0.031 22.73 0.023 23.76 0.845

Table 1: Quantative comparison of our model with baseline and current SOTAPresents a quantitative evaluation of various approaches on a specific visual

task. The metrics used include Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Squared Error (MSE), Peak Signal-to-Noise Ratio

(PSNR), Structural Similarity Index (SSIM), Mean Angular error (MAN) and Intersection over Union (IoU). The results are categorized into different aspects

of the task, such as depth, shading, normal, semantic, albedo, and empty RGB.

epochs, with the best-performing weights retained based on valida-

tion after each epoch.

Signal estimation results In this section, we present the evalua-

tion results of our multi-task model on the Structured3D dataset,

which is used to estimate various signals. To the best of our knowl-

edge, our model is the first to utilize a single panoramic image to

generate multiple output signals. Fig. 4 shows the qualitative exam-

ples of model prediction vs ground truth.

© 2024 The Authors.
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Figure 7: Example of virtual staging. On the top the original scene ver-

sus the restaged one. On the bottom a detail comparison. Note the two ar-

madillo models differently shaded.

Figure 8: Example of virtual staging. On the top is the original scene ver-

sus the restaged one. On the bottom a detail comparison. Note the bunnies

naturally integrated in the scene.

Depth Estimation: We assessed the performance of our depth es-

timation using metrics such as Mean Absolute Error (MAE), Root

Mean Squared Error (RMSE), and σ1. Table 1 provides a quan-

titative comparison between our model and current state-of-the-art

models. Our model demonstrates significant improvements over re-

cent methods, including the Instant Empty and baseline models.

For instance, Instant Empty achieves an MAE of 0.091, whereas

our model’s MAE is 0.057. Additionally, Instant Empty’s RMSE

is 0.197 compared to our model’s 0.157, and Instant Empty’s σ1 is

0.954, while our model achieves 0.971.

Empty RGB Estimation: We evaluated the performance of our

empty RGB estimation using Mean Squared Error (MSE), Peak

Signal-to-Noise Ratio (PSNR), and Structural Similarity Index

(SSIM). Our model demonstrates competitive results relative to

the current state-of-the-art. Although the state-of-the-art model

Figure 9: Example of virtual staging. On the top is the original scene ver-

sus the restaged one. On the middle and bottom comparisons between de-

tails. Note the integration of the couch.

Figure 10: Example of virtual staging. On the top is the original scene

versus the restaged one. On the bottom comparisons between details. Note

the different shading of the flowers.

© 2024 The Authors.
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Figure 11: Example of virtual staging. On the top is the original scene

versus the restaged one. On the bottom comparisons between details. Note

the dragons differently illuminated.

achieves a best PSNR of 24.7, our model’s best score is 23.76. De-

spite this, our model outperforms the baseline model.

Semantic Segmentation: We evaluated our semantic segmenta-

tion performance using the mean Intersection over Union (mIoU)

and Dice score. To the best of our knowledge, no existing model

concurrently removes objects from the scene and predicts dense

semantic labels for the empty scene. Our model achieves a best

mIoU of 0.757 and a Dice score of 0.939, compared to the baseline

model’s mIoU of 0.701 and Dice score of 0.914.

Shading Estimation: We assessed the performance of shading es-

timation using Mean Squared Error (MSE). Our model achieves an

MSE of 0.116, which is better than the baseline model’s MSE of

0.121.

Albedo Estimation: We evaluated the performance of albedo esti-

mation using MSE and PSNR metrics. Our model achieved a PSNR

of 22.73 and an MSE of 0.031, whereas the baseline model reached

a PSNR of 19.5 and an MSE of 0.054.

Surface Normal Estimation: We assessed performance using the

Mean Angular Error (MAN). Our model achieves a mean angular

error of 7.069, compared to the baseline model’s mean angular er-

ror of 7.24.

# Lights Time (sec) RMSE SSIM

1 57.17 ± 13.52 0.464 ± 0.149 0.727 ± 0.157

2 171.1 ± 40.9 0.335 ± 0.139 0.818 ± 0.113

3 429.9 ± 121.0 0.31 ± 0.104 0.843 ± 0.07

Table 2: Lighting estimation statistics: average and standard deviation

values for processing time (seconds), and for RMSE and SSIM accuracy

metrics.

Lighting estimation results We tested our lighting estimation

model on a subset of 20 scenes extracted from the synthetic dataset

Structured3D [ZZL∗20]. We compared the approximation of light-

ing with a parametrization involving a different number of lights

ranging from one to three. Tab. 2 reports the statistics for light-

ing estimation: namely the processing time in seconds, and the

root mean square error and structural similarity with respect to the

ground truth. Fig. 5 shows the boxplots related to the root mean

square error and structural similarity with respect to the number

of light sources, showcasing a slight improvement for three light

sources: we also tried few experiments with a number of lights

higher than three without obtaining significant improvement. For

a qualitative comparison, we show some examples of the outcomes

of lighting estimation in Fig. 6: from left to right, the ground truth

image, the approximated one with three Gaussian light sources, and

the corresponding diffuse map. From this figure, it is evident that

the method is able to reconstruct a plausible estimation of the over-

all scene, but it fails to reconstruct local effects due to multiple

lights and inter-reflections.

Virtual staging We tested the lighting estimation for restaging

some scenes extracted from the Structured3D dataset [ZZL∗20].

To this end, we used public domain assets for digital furnish-

ing (https://www.sweethome3d.com/) and standard mod-

els used in CG for testing a rendering algorithm (bunny, dragon,

buddha). Fig. 7, Fig. 8, Fig. 9, Fig. 10, and Fig. 11 show exam-

ples of restaging operations performed with our editing prototype.

From our first initial tests we could see that the illumination of

the virtual objects appears plausible and consistent: see the bun-

nies naturally integrated in the shelf in Fig. 8, or the flowers dif-

ferently illuminated in Fig. 10, or the dragons differently shaded in

Fig. 11. Despite the user interface not being optimized for design

purposes (lack of collision detection, limited point-and-click oper-

ations, lack of orthogonal views), the generation of each restaged

scene took a few minutes of effort.

Limitations Despite the promising initial results, the proposed

framework has still some limitations resulting in artifacts that need

further research:

• The estimation of material properties is currently limited to a sin-

gle reflectance signal, that we use for both the diffuse and spec-

ular components. A more accurate scene characterization should

involve the estimation of distinct reflectance signals as well as

roughness [LWH∗22, ZCB∗22]. We plan to extend our process-

ing pipeline to incorporate those signals;

• Our current lighting model estimates the scene with a constant

number of light sources that are the same for the whole omni-

directional scene. While this model provides acceptable global

approximations, it is not adequate to represent local effects due

to indirect lighting and interreflections, that are particularly evi-

dent in indoor scenes. We plan to decompose the scene in small

portions where to compute local lighting parameterizations;

• Our current rendering system does not consider shadowing.

We plan to incorporate shadow mapping techniques and in-

vestigate methods for shadow recovery from panoramic im-

ages [JYH∗24].

7. Conclusions

We presented a framework for the virtual staging of indoor

panoramic images, addressing the challenges of lighting estima-

© 2024 The Authors.
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tion and object insertion in immersive environments. By integrat-

ing a multi-task vision transformer and spherical Gaussian lighting

models, VISPI enables efficient virtual restaging of cluttered in-

door scenes using a single image. Our preliminary results demon-

strate the system’s capability to generate plausible lighting and ob-

ject placement, though future work will focus on improving mate-

rial estimation and handling complex lighting scenarios. Moreover,

we plan to test the pipeline on real-world imagery and to integrate

it with other tools for performing image-based editing of environ-

ments [TRP∗23]. The framework provides a promising foundation

for applications in real estate, interior design, and other domains

requiring realistic virtual environment manipulation.
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