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Abstract

We introduce EleViT, a novel vision transformer opti-
mized for image processing tasks. Aligning with the trend
towards sustainable computing, EleViT addresses the need
for lightweight and fast models without compromising per-
formance by redefining the multihead attention mechanism
by primarily using element-wise products instead of tradi-
tional matrix multiplication. This modification preserves at-
tention capabilities, while enabling multiple multihead at-
tention blocks within a convolutional projection framework,
resulting in a model with fewer parameters and improved
efficiency in training and inference, especially for moder-
ately complex datasets. Benchmarks against state-of-the-
art vision transformers showcase competitive performance
on low-data regime datasets like CIFAR-10, CIFAR-100,
and Tiny-ImageNet-200.

1. Introduction
The introduction of the transformer architecture [30]

marked a paradigm shift in Natural Language Processing
(NLP) and quickly transcended its original domain. By
transforming image patches into tokens at various scales
and incorporating positional encoding to capture spatial re-
lationships, vision transformers (ViT) [9] have achieved im-
pressive results on a variety of vision tasks. However, the
computational and storage costs of their attention mecha-
nism pose important challenges, especially in terms of train-
ing efficiency and deployment on resource-constrained en-
vironments such as single-GPU workstations or mobile ar-
chitectures (Sec. 2).

Inspired by the natural accommodation mechanism in
human vision, we introduce an efficient, full-fledged trans-
former architecture that replaces the conventional dot prod-

uct in attention with an element-wise Hadamard product,
akin to a blending process for focusing on foreground
objects (Sec. 3.1). We integrate this mechanism into a
novel architecture with multiple convolutional attention
stages (Sec. 3.2), achieving efficient spatial attention across
different channels. This mechanism, compatible with stan-
dard transformer architectures (Appendix A), offers train-
ing and inference efficiency benefits without compromis-
ing accuracy (Fig. 1). Our benchmarks demonstrate com-
petitive performance in moderate-complexity dataset under
constrained resource scenarios (Sec. 4). We present detailed
comparisons with recent vision transformer models [18,25]
on CIFAR-10, CIFAR-100, and Tiny-ImageNet dataset, and
include results from ablation studies.

Figure 1. EleViT provides competitive accuracy as a function
of parameter count (left) and latency time (right). We com-
pare against SwiftFormer [25], EfficientFormer [18] and Efficient-
Former modified with the proposed attention mechanism (Ap-
pendix A) on CIFAR10.

2. Related work
Vision transformers are the subject of extensive research.

A full review is beyond the scope of this paper, and we refer
the reader to recent surveys [6,12,15,22] for a general cov-
erage. Here, we focus on the solutions most closely related
to our work, targeting the reduction of resources required
for training and inference. Since the quadratic time and



space complexity in the length of the sequence of the orig-
inal attention mechanism in (Vision) Transformers [9, 30]
is the major bottleneck, different strategies have been pro-
posed to reduce it, with the dual goal of improving perfor-
mance and reducing the need for training with extremely
large numbers of examples.

Reformer [16] reduces the attention complexity by re-
placing the dot-product with one using locality-sensitive
hashing and reversible residual layers instead of the stan-
dard residuals. Separable Vision Transformers [17] reduce
the complexity in the local-global interaction within and
among the windows in sequential order through a depth-
wise separable self-attention. The Hierarchy Aware Feature
Aggregation framework (HAFA) [5] improves the ConvNet
feature aggregation scheme by adaptively enhancing the ex-
traction of local features in shallow layers where semantic
information is weak while aggregating patches with similar
semantics in deep layers. Finally, recent architectures tried
to reduce the quadratic complexity of the attention mecha-
nism by reformulating it linearly. SwiftFormer [25] intro-
duces an efficient additive attention mechanism replacing
the quadratic matrix multiplication operations with linear
element-wise multiplications. AFF [14] uses the Fourier
Transform to convert the latent representation to the fre-
quency domain and to perform filtering via an element-wise
multiplication. Our architecture follows this trend by hy-
bridizing the linearization process using element-wise prod-
ucts in the filtering stage for composing the attention values
with the similarity weights obtained through the element-
wise product of query and key components. As a result, we
obtain an efficient method that provides good generalization
without requiring extremely large data.

In addition to direct optimizations and reformulations of
the attention mechanisms, many different orthogonal solu-
tions have also been introduced to optimize vision trans-
formers. The proposed approaches range from modeling
multiple-scale attention in a way to separate the handling
of local and global features [4, 7, 8, 13, 19, 29, 31], neural
architecture search methods for optimizing hyperparame-
ters and reducing training costs [2,3,11,18,21,36], pruning
strategies for tokens and coefficients [1, 10, 24, 28, 35], as
well as the exploitation of quantization and mixed-precision
components to reduce the size and improve caching behav-
iors [20, 23, 33]. These methods are orthogonal to ours,
which can coexist with many of these other optimizations.

3. Method
Our efforts have been directed towards the creation of

a more efficient and accurate vision transformer through
the definition of a novel simplified attention mechanism
(Sec. 3.1) and the design of architecture around it (detailed
in Sec. 3.2 and depicted in Fig. 2). This refined model
aims to enhance the generalization capacity when dealing

Figure 2. EleViT architecture: The proposed architecture is de-
signed around the element-wise attention mechanism, and it fea-
tures four stages, composing convolutional layers, residual con-
nections, and batch normalizations in a bottleneck fashion.

with constrained training data while concurrently mitigat-
ing memory and computational complexity.

3.1. Proposed Attention mechanism

Our methodology entails the application of a 3×3 convo-
lutional projection to the input image, yielding query, key,
and value representations. By concurrently utilizing 3D ten-
sors, our approach captures global context within each spa-
tial dimension per channel. The number of channels serves
as distinct heads capturing diverse visual representations.
This perspective enhances the model’s comprehension of
intrinsic relationships within the data, enabling the inter-
play of Q and K within a given channel and across spatial
locations. To this end, the proposed mechanism is akin to
a blending operator, and it better emulates the accommoda-
tion process employed in a vision for improving the visual
clarity of foreground objects (see Fig. 3 in the Appendix).
The channel-wise spatial-attention mechanism operates by
taking an input X ∈ RC×H×W . This input comprises C
channels within an image and possesses height H and width
W . To process this input, X undergoes a transformation,
generating Q, K, and V representations through the appli-
cation of three distinct convolutional filters: Wq , Wk, and
Wv where Q,K,V ∈ RC×H×W . In general, there are var-
ious ways to process the representations to produce similar-
ity scores [26]. In our case we considered the (Hadamard)
element-wise product, already used successfully for neural
question answering systems [32]: the similarity scores are
computed between the Q and K, and then passed through
the softmax layer to obtain attention weights F ranging be-
tween 0 and 1. We also consider an additional learnable
hyperparameter focusing factor α to further modulate the



attention weights, according to the following equation:

F[B,C,H,W ] = α · softmax(
Q[B,C,H,W ] ⊙ KT

[B,C,H,W ]√
C

)

(1)

Finally, the attention weights F are element-wise multiplied
with the corresponding V, defined as follows,

X[B,C,H,W ] = F[B,C,H,W ] ⊙ V[B,C,H,W ] (2)

to obtain the self-attention representation X.

3.2. EleViT Architecture

EleViT draws inspiration from recent advances in hybrid
architectures, particularly SwiftFormer [25] and Efficient-
FormerV2 [18]. It revolves around utilizing the channel-
wise self-attention mechanism introduced above, wherein
element-wise attention is conducted independently for each
channel. We implement depth-wise transformations to de-
rive the Q, key K, and value V tensors, with a key empha-
sis on enhancing computational efficiency. As illustrated in
Fig. 2, EleViT employs a three-stage hierarchical design,
obtaining feature sizes of { 1

8 ,
1
16 ,

1
32} of the input resolu-

tion. Similar to EfficientFormerV2 and SwiftFormer, Ele-
ViT commences with a 3×3 kernel convolution with a stride
of 2 in the stem to embed the input image. We downsample
the input tensor to 1

8 instead of 1
4 to reduce latency. Each

convolution layer is followed by batch normalization and
GELU activation. Stem is defined as:

X[B,C,H8 ,W8 ] = stem
(
X[B,3,H,W ]

)
(3)

where B denotes the batch size, C refers to the channel of
the tensor, H and W are the height and width of the feature
X. whereas X is the output patch embed while X is the in-
put image. In the subsequent three stages, we utilize an Ele-
ViT encoder consisting of ConvEncoder and element-wise
attention. The architecture maintains consistency, featuring
ConvEncoder followed by element-wise attention.

ConvEncoder Our ConvEncoder, akin to SwiftFormer
with slight modifications in point-wise convolution, in-
creases the number of input channels fourfold in the first
layer and reduces it back to the input channels in the second
layer. The input feature maps Xi are fed into a 3x3 con-
volution (DWconv) followed by batch normalization (BN).
The resulting features are fed to two pointwise convolu-
tions (Conv1) alongside GELU activation. Finally, a resid-
ual connection is incorporated to facilitate information flow
across the network. The ConvEncoder is defined as follows,

Xo = Conv1(Conv1,G(DWconvBN (Xi))) + Xi (4)

where Xi is the input feature, Xo is the output, Conv1,G is
a 1 × 1 convolution with GELU activation, DWconvBN is
a 3× 3 convolution with batch normalization.

Element-wise attention As illustrated in Fig. 2, our
element-wise attention takes the input features Xi and feeds
them into three distinct 3×3 depth-wise convolutions (DW-
conv) followed by batch normalization (BN ) to extract
query, key, and value. The query is then element-wise mul-
tiplied with the transpose of the key to obtain the similar-
ity scores [32], divided by the square root of the number
of channels for smoothing, and passed through the softmax
function to normalize the attention weights. Subsequently,
the attention weights are multiplied by a scalar focusing fac-
tor (α), and the result is element-wise multiplied with the
values for the final attention. Finally, a residual connection
is introduced to enable information flow across the network.
The element-wise attention is defined as follows:

Q = DWconvBN (Xi) (5)

K = DWconvBN (Xi) (6)

V = DWconvBN (Xi) (7)

where Xi is the input feature tensor, DWconvBN repre-
sents depth-wise convolution alongside with batch normal-
ization. The query Q and key K undergo Eq. (1) to ob-
tain focused attention weights F, while the focused attention
weights and V pass through Eq. (2).

4. Results
We evaluate our architecture with three low-data regime

dataset: CIFAR100, CIFAR10, and Tiny-Imagenet-200.
Implementation details are provided in Appendix A.

Tab. 1 compares our proposed EleViT model with
state-of-the-art lightweight models, EfficientFormerV2 and
SwiftFormer. The experiments involved training Efficient-
Formerv2l, SwiftFormerL3, EfficientFormerv2l+EleViT,
and our proposed model using the same experimental setup
across three distinct dataset: CIFAR100, CIFAR10, and
TinyImageNet200. Inference latency measurements were
conducted on a GeForce RTX 3090 with a batch size of 128.

CIFAR100 All models underwent training from scratch,
utilizing an image resolution of 224 × 224. In the eval-
uation phase, EfficientFormerv2l+EleViT achieved a com-
mendable top-1 accuracy of 81.2%, surpassing the bench-
marks set by state-of-the-art lightweight models, Effi-
cientFormerV2, and SwiftFormer. This achievement was
particularly notable given that EfficientFormerv2l+EleViT
demonstrated superior performance with 25% fewer pa-
rameters and a 2x faster inference speed than Efficient-
FormerV2. Furthermore, it approached the inference speed
of SwiftFormer, a noteworthy accomplishment in the realm
of lightweight model efficiency. These results underscore
the effectiveness of our attention mechanisms in augment-
ing the overall efficiency of lightweight models. Addition-



dataset Model Lat. (s)↓ Param (M)↓ NAS Top-1 (%)↑

CIFAR100

SwiftFormerL3 0.2 27.5 ✗ 72.6
EfficientFormerv2L 0.47 25.6 ✔ 79.2
EfficientFormerv2L+EleViT 0.23 19.5 ✔ 81.1
EleViT (Our) 0.14 23.4 ✗ 79.7

CIFAR10

SwiftFormerL3 0.2 27.5 ✗ 95.3
EfficientFormerv2L 0.47 25.6 ✔ 95.8
EfficientFormerv2L+EleViT 0.23 19.5 ✔ 95.8
EleViT (Ours) 0.14 23.4 ✗ 96.1

TinyImagenet200

SwiftFormerL3 0.2 27.5 ✗ 59.9
EfficientFormerv2L 0.47 25.6 ✔ 66.3
EfficientFormerv2L+EleViT 0.23 19.5 ✔ 64.2
EleViT (Ours) 0.14 23.4 ✗ 64.8

Table 1. Comparison of model performance on CIFAR100, CIFAR10, and Tiny-
ImageNet200 dataset. Latency, parameter count (Param), Network Architecture
Search (NAS), and Top-1 accuracy are provided for each model.

FF Q-K F-V Acc @64 Acc @224 Latency

✔

· · 90.49 94.87 0.16
· ⊙ 91.03 94.94 0.15
⊙ · 90.82 94.96 0.15
⊙ ⊙ 91.02 95.22 0.14

✗

· · 90.78 94.67 0.16
· ⊙ 91.54 94.65 0.15
⊙ · 90.78 94.38 0.15
⊙ ⊙ 91.31 94.7 0.14

Table 2. Our ablation analysis compares different op-
erator mechanisms´ impact on image classification
accuracy for CIFAR10. The Focusing Factor (FF) de-
notes whether α is used; dot product (·) or element-
wise multiplication (⊙) denotes the operators used
for attention computation in the query key (Q-K, see
Eq. (1)) or focus-value (F-V, Eq. (2)) multiplication.
The analysis begins with a resolution of 64x64 pixels
(Acc @64) and further verification is conducted at the
higher resolution of 224x224 pixels (Acc @224).

ally, EleViT, with its 23M parameters, exhibited competi-
tive performance, outpacing EfficientFormerV2 and Swift-
Former by running 3× and 1.5× faster, respectively.

CIFAR10 Our proposed EleViT model achieved a top-1
accuracy of 96.1% over the test set, surpassing the perfor-
mance of state-of-the-art lightweight models, namely Ef-
ficientFormerV2 and SwiftFormer. EleViT demonstrated
efficiency with 20% and 10% fewer parameters and 3×
and 1.5× faster inference speeds compared to Efficient-
FormerV2 and SwiftFormer, respectively. Moreover, Fig. 4
in the Appendix compares the validation losses tracked
during training and shows that EleViT enables a more ef-
ficient training process, and the validation loss reaches
its minimum in a lower number of epochs compared to
the competitors. Furthermore, the hybrid model Efficient-
FormerV2+EleViT achieved performance parity with Ef-
ficientFormerV2, showcasing comparable accuracy with
25% fewer parameters and a 2× increase in inference speed.
This result underscores our attention mechanisms’ efficacy
in enhancing lightweight models’ efficiency.

TinyImageNet200 EfficientFormerV2 emerged as a top
performer in this rigorous setting, attaining a notable top-
1 accuracy of 66.3% over the test set. EleViT, boasting
fewer parameters and achieving a 3x faster inference speed,
demonstrated compelling performance with a top-1 accu-
racy of 64.8%. Moreover, when integrated with our at-
tention mechanism, EfficientFormerV2+EleViT achieved a
commendable top-1 accuracy of 64.2%, comparable to the
original EfficientFormerV2 while running 2× faster. These
results underscore EleViT’s efficacy in achieving a balance
between model efficiency and accuracy.

Ablation Study We employed consistent hyperparame-
ters from Appendix A as defaults for all experiments. The
ablation commenced with a 64 × 64 image resolution and
progressed to 224 × 224 in subsequent trials for the CI-
FAR10 dataset. In the ablation reports, inference latency
was measured on a GeForce RTX3090 GPU with a batch
size 128. The number of epochs was selected based on
Fig. 4, where the model loss reached its minimum at 60
epochs. The CIFAR10 ablation analysis highlights the role
of the focusing factor α in enhancing image classifica-
tion accuracy (Tab. 2). The choice between dot product
(·) and element-wise multiplication (⊙) in query-key (Q-
K) and attention weights-value (F-V) computations signifi-
cantly influences model outcomes. Element-wise multipli-
cation consistently outperforms the dot product, capturing
key-query relationships more effectively.

5. Conclusion

We have introduced an innovative vision transformer
that streamlines the attention mechanism, using modulated
element-wise products that emulate the natural vision pro-
cess of foreground focus in scenes. Our model demon-
strates promising results in low-regime dataset classifica-
tion tasks. All experiments were conducted on workstations
with standard, commercially available GPUs. Extending
the benchmarking on larger dataset, such as ImageNet, in
labs with more advanced computational capabilities forms
an exciting future research direction. There is also a need
for further experimentation to evaluate the effectiveness of
our vision transformer in various image-to-image transla-
tion tasks, such as depth estimation [34] and semantic seg-
mentation [27]. We plan to investigate this avenue in the
near future.
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A. Implementation Details
To assess the performance of our model, we conducted

comparative training sessions with EfficientFormerv2 and
Swiftformer. The Python scripts for these models are di-
rectly extracted from the official GitHub repository. In
the original architecture of EfficientFormerv2, the attention
mechanism is strategically applied in the last two stages,
whereas the original resolution in the second last stage is
successively reduced to H

16 and W
16 , and to H

32 and W
32 . Sub-

sequently, in the second last stage, the image is downsam-
pled to the latter resolution for the attention layer, effec-
tively reducing the model’s complexity, and subsequently
upsampled to H

16 and W
16 . In our adaptation, Efficient-

Formerv2+EleViT, we introduce a modification by replac-
ing the original attention mechanism with our proposed at-
tention mechanism. Importantly, we maintain the origi-
nal resolution in the second last stage of the architecture.
This deliberate adjustment is made to assess the impact
of our attention mechanism on the model’s performance
while preserving the resolution characteristics integral to
the original EfficientFormerv2 architecture. This approach
ensures a meticulous examination of the specific contri-
bution of our attention mechanism, providing valuable in-
sights into its effectiveness within the given context. All
models undergo a comprehensive training regimen, initial-
izing on each dataset for 150 epochs. This training employs
an AdamW optimizer and incorporates a cosine learning
rate scheduler, with the initial learning rate set to 1× 10−3

unless explicitly specified otherwise. Throughout the train-
ing and testing phases, images are consistently maintained
at a resolution of 224×224 pixels. These experimental pro-
cedures are meticulously implemented using PyTorch 2.1,
with computations executed on a single NVIDIA GeForce
RTX 3070 GPU. A batch size of 32 is carefully chosen for
the training process. Moreover, data augmentation tech-
niques, including random crop, random horizontal flip, 10-
pixel cut-out, and cut-mix augmentation, are systematically
applied, emphasizing image mixing, wherein two images
are seamlessly integrated.



Figure 3. Attention maps: We compare the attention maps extracted by the final layer of the architecture. From left to right: original
image, attention maps extracted from SwiftFormer [25], EfficientFormerV2 [18], EfficientFormerV2 [18] with element-wise attention,
EleViT.

Figure 4. Validation loss: for CIFAR10 we compare EleViT to SwiftFormer [25] and EfficientFormerV2 [18]. Our architecture needs less
number of epochs to reach the minimum loss.
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