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Abstract—We discuss virtual staging technologies, focusing on
two primary pipelines for creating and exploring immersive in-
door environments in the metavers: an AI-based image processing
pipeline and a LIDAR-based pipeline. The AI-based image pro-
cessing pipeline leverages advanced AI algorithms for tasks such
as clutter removal, semantic style transfer, and super-resolution,
enabling rapid generation of high-quality, photorealistic virtual
environments from single panoramic images. The LIDAR-based
pipeline captures measurable 3D models of indoor spaces, facil-
itating immersive editing and collaborative design through real-
time interaction with high-fidelity virtual environments. A quali-
tative comparative analysis of these technologies highlights their
strengths and limitations in various applications. The practical
implications of these pipelines are discussed, particularly their
potential to transform industries such as real estate, furniture
retail, interior design, construction, remote collaboration, and
immersive training. The paper concludes with suggestions for
future research, including conducting user studies, integrating
the two pipelines, and optimizing technologies for mobile and
edge devices to enhance accessibility and usability.

Index Terms—Metaverse, Virtual Staging, LIDAR, AI, Immer-
sive Environments, Collaborative Design

I. INTRODUCTION

The metaverse represents a convergence of virtually en-

hanced physical and digital realities, creating a collective vir-

tual shared space [43]. This expansive digital universe allows

users to interact, socialize, and engage in various activities

through avatars and digital representations. Applications of

the metaverse span from gaming and social networking, to

education and virtual commerce [12], necessitating advanced

technologies for creating and interacting with immersive en-

vironments [44].
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A potential application of these technologies is Virtual

Staging, where the goal is to create and interact with believable

alternative designs of real indoor environments. Virtual staging

is particularly useful in real estate and interior design, where

it helps visualize captured furnished spaces without physical

furniture, replacing it with virtual alternatives [23]. This re-

quires end-to-end solutions, going from the capture of 3D

environment, to their processing to recover the required data

to perform editing, the implementation of the design, and the

virtual immersive presentation.

This paper contributes to the field by analyzing two distinct

pipelines for the production and exploration of immersive

environments: an AI-based image processing pipeline for

exploratory purposes, and a LIDAR-based pipeline focusing

on immersive editing and collaborative design [38].

1) AI-Based Image Processing Pipeline: This pipeline

leverages advanced AI algorithms that are integrated and

synergized to process and enhance panoramic images of

indoor environments for virtual staging applications in

the metaverse (see Fig. 1). Key integrated technologies

include a system for clutter removal [23], multitask

dense prediction, semantic photorealistic style trans-

fer [42], super-resolution [46], a rendering system [41],

and a system for the automatic generation of stereo-

scopic environments for metaverse applications [30].

2) LIDAR-Based Pipeline: This pipeline focuses on cap-

turing measurable 3D models of indoor spaces using

LIDAR technology. The captured data is then used

for immersive editing and collaborative design. This

approach allows users to interact with and modify virtual

environments in real-time, providing a high level of

detail and accuracy. For example, the use of LIDAR

scanning in applications like Spatial enables detailed
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virtual walkthroughs and object placement, enhancing

the realism of virtual staging.

A qualitative comparison of these two technologies is

also presented, demonstrating their respective strengths and

limitations in enabling immersive editing and collaborative

design. For instance, while LIDAR provides high accuracy and

detailed spatial data, AI-based methods offer flexibility and

efficiency in image processing, making them suitable for rapid

staging and exploratory tasks. This analysis aims to highlight

the practical implications of adopting these technologies and

offers insights into future developments in virtual staging for

the metaverse. The practical implications of these technologies

in various industries are also discussed, highlighting their

potential to transform fields such as real estate, furniture

retail, interior design, construction, remote collaboration, and

immersive training.

II. RELATED WORK

This work deals with technologies for immersive editing

of 3D indoor environments and with methods for automatic

processing of panoramic images. For space reasons, we do

not aim to provide here an extensive survey of the related

literature: we refer interested readers to the surveys related

to scene understanding from panoramic images [10], 3D

geometry estimation from 360 images [6], on 3D reconstruc-

tion of indoor environments [31], and on construction and

maintenance of building geometric digital twins [8]. In the

following, we discuss the most recent technologies related to

our work.

a) Immersive editing for virtual staging: In general, the

application of immersive technologies and digital twins in

the construction industry is still in the early stages [1]. For

what concerns interior design, immersive frameworks focusing

on material selection [48], or lighting design [33] have been

proposed, but the usage of immersive technologies gained

most of popularity during the pandemic for the generation of

virtual tours experiences [28], [37], especially for real estate

applications [5], and interior design [45], through the usage of

3D scanning technologies or specialized cameras [47]. Very

recently, methods exploiting deep learning technologies has

been considered for the automatic generation of 3D indoor

scenes, through graph convolutional networks [9], or text-

based generative models [11], but these methods are still

far from real-world application. In this work, we show how

current LIDAR technologies can be used to support Metaverse-

enabled design of indoor spaces.

b) AI-based technologies for indoor panoramic images:

Omnidirectional cameras are very popular for the fast and

accurate acquisition of indoor scenes since they can capture

most of the 3D content with few shots [31]. In the last

decade, various data-driven technologies have been developed

to support the automatic creation of digital content from

panoramic images. Examples include: extraction of room

layouts [14], [25], [26], geometry estimation [27], [35], signal

extraction for inverse rendering [34], clutter removal [23],

style transfer [42], and novel pose synthesis for virtual ex-

ploration [29], [30]. Those methods have been applied to

pipelines for inverse rendering [17], and for virtual staging of

indoor scenes [13], [41]. This paper illustrates the integration

of various AI panoramic image processing components to

automatically generate immersive exploration experiences of

refurnished indoor environments.

III. AI-IMAGE-BASED PIPELINE

We developed an end-to-end AI-image-based pipeline based

on semiautomatic processing and editing of single panoramic

images for performing image-based virtual staging tasks and

deploying the generated environments in Metaverse-ready

web resources for immersive exploration. The framework

is depicted in Figure 1 and integrates various components

for automatic processing, generation, and stereoscopic ex-

ploration of immersive indoor environments. Starting from

single panoramic images (left), our framework removes clutter,

estimates the necessary signals for both cluttered and declut-

tered scenes, and applies semantic style transfer to enhance

visual aesthetics. The pipeline further increases detail by

employing a super-resolution model, enabling high-fidelity

editing. The result is the presentation of immersive, high-

resolution spherical indoor scenes that can be explored using

VR setups on lightweight WebXR viewers (c.f. Fig. 1(C-

D)), making them ready for Metaverse applications (right).

In the following sections, we will provide an overview of the

various components and discuss how they are integrated and

synergized to generate an immersive environment for virtual

staging applications in the metaverse.

a) Instant clutter removal: For this task, we use the

model presented in [23], which is a deep learning architec-

ture to automatically remove clutter from panoramic indoor

images, providing both a photorealistic view and depth esti-

mation of the empty scene. This end-to-end solution lever-

ages a lightweight deep learning network to process 360-

degree panoramic images, distinguishing between permanent

architectural features and removable clutter. The method be-

gins by generating an attention mask to identify cluttered

regions based on geometric differences between cluttered and

uncluttered scenes. This mask guides the subsequent image

and depth generation, using gated convolutions and high-order

geometric constraints during training to ensure the output is

both visually and geometrically plausible (c.f. Fig. 2 [A-top]).

The approach is unique in its holistic treatment of the

entire scene, as opposed to traditional methods that focus on

single object removal. It shifts the computational burden to

the training phase, allowing for interactive-speed performance

during inference.

b) Multitask dense prediction: Signals such as seman-

tic segmentation, depth, color-coded normals, and intrinsic

decomposition signal distinguishing reflectance (albedo) and

shading are crucial for generating immersive and interactive

environments for virtual staging applications in the metaverse.

To this end, we developed a deep-learning framework designed

to infer multiple pixel-wise signals from a single panoramic



Fig. 1. AI-Image-Based Pipeline: Several AI models are integrated and synergized to process and generate the virtual staging environment. The framework
is composed of four integral modules: (A) Input Module: A single RGB panoramic image of an indoor environment taken using a 360◦ camera. (B) Deep

Learning Models: This component comprises a network designed for the extraction of various signals. Our comprehensive approach autonomously procures
essential signals such as depth, semantics, shading, reflectance, color-coded normals, and empty scene representation, thereby synergizing the generation of
virtual staging applications for the metaverse. (C) Example of virtual staging process leveraging the AI-Based Image Processing Pipeline: [42] is used for
semantic style transfer, a super-resolution model [4] is used to increase details, a rendering system [41] is used for interactive exploration, object insertion,
and editing etc. (D) A framework for the automatic generation and exploration of immersive scenes representing indoor stereoscopic environments, which can
be navigated using VR setups on lightweight WebXR viewers, making it ideal for Metaverse applications [30].

image [34]. The framework is able to concurrently extract

diverse types of information—such as depth, normals, se-

mantic segmentation, reflectance, and shading—from indoor

panoramic images (See Fig. 2 [B] for examples). This is

achieved through a transformer-based encoder-decoder archi-

tecture that leverages multiple heads for dense estimation. By

incorporating a context adjustment layer, the framework en-

sures effective knowledge distillation between the encoder and

various decoder heads, enhancing the quality of predictions for

each signal.

c) Indoor style transfer: Style transfer is used for chang-

ing the appearance of indoor environments to look like target

scenes. It enhances user engagement, making it a valuable

tool for virtual staging. In our pipeline, we integrated a

semantic photorealistic style transfer approach tailored for

indoor panoramic images proposed in [42].

The methodology integrates several components into a gen-

erative adversarial network (GAN) framework. Firstly, it em-

ploys a shading decomposition scheme to separate reflectance

(albedo) from shading (c.f. Sec. III-0b), thus preventing

shading-related artifacts during the style transfer process. This

ensures that the style transfer affects only the intrinsic colors

of surfaces, not their illumination. Secondly, the architecture

incorporates strong geometry constraints through the use of

layout and depth inference during training, enforcing shape

consistency between the generated and ground truth scenes.

This is achieved by introducing custom geometry-aware losses

that account for the 3D characteristics of indoor scenes, includ-

ing clutter, layout, and edges. Additionally, the method applies

the GAN-based super-resolution technique (See Sec. III-0d)

to enhance the detail and resolution of the generated images,

making them suitable for immersive applications. The visual

results (c.f. Fig. 2 [C-D]) confirm the effectiveness of the

method in producing realistic and visually pleasing indoor

scenes.

d) Extending resolution of indoor spherical representa-

tions: In general, current CNN architectures used for gen-

Fig. 2. AI-Image-Based Pipeline Demo: (A) Input: a spherical shot of
a panoramic indoor scene (bottom) and an example of instant automatic
emptying of the scene (top). (B) Example of multiple inferences obtained
with a multitask dense prediction model on a single synthetic RGB image
from Structured3D [49]. From top to bottom, the depth prediction, semantic
inference, reflectance, shading, and color-coded normals. (C) Semantic pho-
torealistic style transfer examples generated using [42] (from 2 different style
images). A super-resolution model [4] is also applied to enhance details. (D)

A rendering system [41] allows users to compose a new scene by placing
virtual objects. A framework for the automatic generation of stereoscopic
environments [30] enables users to view the scene from different angles,
creating an impression of depth and solidity.

erating signals from spherical images are limited to a max-

imum resolution of 1024×512. This falls significantly short

of the native resolutions of RGB panoramas, which can

exceed 4096×2048 for modern commodity 360◦ cameras.

Consequently, this limitation poses a considerable obstacle

for VR applications. For instance, a 90◦-by-90◦ view gen-

erated from a 1024×512 panorama would have a resolution

of only 256×256. Super-resolution (SR) is a common tech-

nique to address this limitation, aiming to restore a high-

resolution image from a single or sequence of low-resolution

(LR) images. Current state-of-the-art solutions utilize data

distribution learning with Generative Adversarial Network

(GAN) and spectral normalization (SN) regularization (Real-

ESRGAN [46]) or hybrid attention mechanisms together with

image transformers (HAT [4]) to boost the number of input



pixels for reconstruction. Recently, Deng et al. [7] proposed

a method targeting spherical images, involving a latitude

adaptive upscaling network (LAU-Net) that splits a spherical

image into different latitude bands and hierarchically upscales

them with different factors. In previous research [41], we

benchmarked LAU-Net, Real-ESRNet, and HAT for usage

with spherical indoor imagery, finding that HAT provides

the best accuracy in terms of W-PSNR, while LAU-Net and

Real-ESRNet offer a better compromise between accuracy and

processing times. Regarding depth signals, recent techniques

exploit features compression [24] and perspective depth esti-

mation combined with sampling over spherical tessellation and

registration methods [2], [22]. However, such these approaches

appear to consume too much time for VR applications. In [41],

we also benchmarked state-of-the-art image super-resolution

methods [4], [7], [46] on a high-resolution indoor spherical

imagery depth dataset (Replica 360 4K). For our pipeline,

we use [46] for generating super-resolution for both RGB

and depth signals, as it strikes a balance between accuracy

and processing times, making it more suitable for VR-related

applications.

e) Editing system: Editing systems such as [41], could

significantly advance the capabilities of virtual staging by

providing a robust, scalable, and interactive solution for

transforming panoramic images into high-resolution 3D en-

vironments. Their contributions are vital for the development

and deployment of immersive experiences in the metaverse,

making it an indispensable tool for various XR applications. In

this work, we utilized [41], which is a comprehensive system

for transforming single 360° panoramic images into interac-

tive, high-resolution 3D representations suitable for various

Extended Reality (XR) applications. The framework integrates

a series of advanced deep-learning models to process, edit,

and render spherical images of indoor environments. The core

components of the system include a novel architecture for ge-

ometric and semantic information extraction (c.f. Sec. III-0b),

a super-resolution module for enhancing image resolution (c.f.

Sec. III-0d), and an interactive editor for scene manipulation

and exploration.

The methodology begins with the acquisition of a single

panoramic image, which is processed to infer depth and

semantic segmentation using gated and dilated convolutions.

These inferred signals are then fed into a super-resolution

module based on image transformers [4], significantly im-

proving the resolution of both color and depth signals. The

enhanced high-resolution data allows for the creation of de-

tailed 3D models that can be explored and edited interactively.

Users can perform various operations, such as virtual object

insertion, scene refurnishing, and deferred shading, on the

reconstructed indoor scene (c.f. Figs. 1 [C] and 2 [D]). The

system supports rendering in multiple modalities, including

point cloud, polygonal, and wireframe representations, making

it versatile for different applications.

f) Automatic stereo generation: In this study, we uti-

lized the method proposed in [29], [30] to automatically

generate stereoscopic environments for metaverse applications.

This method’s capabilities for view synthesis from single

panoramic images provide a robust foundation for creating

immersive, interactive, and visually compelling environments,

essential for advancing virtual staging in the metaverse and

enhancing user experiences across various industries. The

technique introduces a framework to create and explore im-

mersive stereoscopic scenes using single panoramic images.

The core methodology is a data-driven architecture designed

for panoramic monocular depth estimation and view synthesis.

The framework starts by inferring a fixed set of panoramic

stereo pairs from a single panoramic image, which are then

seamlessly fused to cover the entire viewing workspace when

explored through VR headsets (See Fig. 1 [D]). This architec-

ture utilizes a lightweight gated network for depth estimation

and view synthesis, ensuring scalability and low latency. The

depth map is estimated from the input panoramic image and

used to generate new views by reprojecting and inpainting the

scene. This approach maintains high visual detail and stereo

consistency, achieved through a combination of photometric

loss and GAN-based super-resolution techniques. The result

is a set of precomputed omnidirectional stereo pairs that

provide a seamless and photorealistic stereoscopic experience.

The system is integrated into WebXR viewers, making it

accessible on various VR headsets and demonstrating effective

performance across different indoor scenes. For a more visual

demonstration, access this link.

IV. LIDAR-BASED PIPELINE

For the sake of comparison with the image-based pipeline

described in Scc. III, we also implemented an immersive

virtual staging pipeline based on modern LIDAR scanning

and integrated with the Spatial.io ecosystem. LiDAR tech-

nology has emerged as a powerful tool in the construction

of building-scale 3D acquisition [47]. While this technology

has existed for a long time and is well-established for in-

door reconstruction [31], its recent integration in commodity

multi-purpose devices is expanding its range of applications.

In particular, its inclusion as a standard feature in Apple’s

flagship smartphones over the past four years highlights its

increasing significance for non-professional users [16]. These

phone-based LiDAR scanners excel in generating detailed

oriented point cloud data of real-world environments with

good precision [19], [39]. Coupled with surface reconstruction

techniques (e.g., the well established Screened Poisson Surface

Reconstruction [15]), they can create complete 3D models

that can be further enhanced with additional 3D objects,

creating immersive and interactive experiences. Collaborative

platforms like Spatial.io [36] could leverage these LiDAR-

scanned spaces to facilitate meaningful user interactions, a

core aspect of the metaverse. Within Spatial.io, users can en-

gage in activities such as virtual staging, where they populate

scanned rooms with furniture and other objects, fostering a

dynamic and collaborative virtual environment. Additionally,

users can voice chat and interact across multiple platforms,

including VR, web, and mobile, without the need to manually

configure the user experience for different platforms.

https://panoverse.onrender.com/


Fig. 3. Polycam LiDAR Scanning: This figure demonstrates the process
and outcomes of using Polycam’s LiDAR mode to scan a typical classroom.
The images show the initial scanning phase and the resulting detailed 3D
model. The process highlights the efficiency and precision of mobile LiDAR
scanning for generating accurate and interactive 3D models of real-world
environments, which can then be utilized within the metaverse for various
applications, including virtual staging and collaborative design.

a) LIDAR scanning: LiDAR technology embedded in

Apple’s mobile devices is a successful example of integration

of 3D sensing in mobile multi-purpose devices. Numerous

mobile applications have leveraged Apple’s LiDAR sensor for

3D scanning, each utilizing distinct algorithms and integrating

data from other sensors such as the camera and gyroscope.

Some applications, e.g. SiteScape, strive to produce dense

and fairly accurate point cloud data, while others target fast

acquisition or the automatic generation of low-poly processed

3D models, e.g., EveryPoint and 3D Scanner App [39].

While a number of solutions perform capture on the device

and reconstruction on connected servers, Polycam leverages

the device’s built-in LiDAR sensor to directly capture depth

information from the environment and process it on device,

leading to a faster 3D model generation [32]. Using the LiDAR

sensor in an iPhone, Polycam collects data points representing

the room’s surface. This data is then processed and refined by

the app to automatically generate a complete 3D model of

the room. The efficiency of capturing a room with Polycam’s

LiDAR mode depends on the room’s size. For instance, a

typical classroom of 84 square meters can be scanned and

processed in approximately 10 to 15 minutes. (See Fig. 3)

b) Spatial Creator Toolkit: The Spatial Creator Toolkit, a

free plugin for the widely used Unity game engine, facilitates

the development of interactive, multiplayer experiences. By

streamlining the creation process for social spaces, games, and

collaborative environments within the metaverse, the toolkit

offers a suite of built-in features. These include matchmaking

functionalities, synchronized object and variable management,

integrated voice and text chat options, and sandbox testing

environments. By lowering the barrier to entry for metaverse

development, it empowers a broader range of developers

to contribute to the evolving metaverse landscape. Notably,

creators using the toolkit do not have to manually address

networking and user interaction across multiple platforms,

including VR, web, and mobile. However, the platform does

not fully support many of Unity’s components, which limits

the creation of advanced experiences. Despite this limitation,

the tool effectively provides a simple way to share expe-

riences across various platforms within the metaverse. For

more advanced applications game engines could be utilized

for building a custom implementation of the features provided

in Spatial.io.

c) Metaverse exploration: Unity can be leveraged to

reimagine a room scanned with LiDAR by importing the low

poly 3D models generated from PolyCam into the Unity game

engine. Once imported, it is possible to populate the virtual

room with furniture and other objects to create an interactive

and realistic environment. Through integration with Spatial.io,

users can interact within the populated room, utilizing features

such as voice and text chat to communicate and provide real-

time feedback. This collaborative approach allows users to

experience and modify the virtual environment, enhancing the

design process and ensuring that the final result meets their

needs and expectations. Moreover, it is possible to enable

object placement through edge devices on multiple platforms,

such as VR and mobile. This capability requires a set database

of 3D objects and custom components that facilitate object

placements. By combining Unity’s powerful rendering capa-

bilities with Spatial.io’s interactive features, and leveraging

edge devices for seamless object manipulation, developers

can create immersive and engaging virtual spaces within the

metaverse. This facilitates meaningful user interactions and

feedback, advancing the possibilities for virtual staging and

collaboration in the evolving metaverse landscape.(See Fig. 4)

Fig. 4. Polycam classroom creation: A demo showcasing a classroom envi-
ronment created with Polycam, an iOS application that utilizes iPhone LiDAR
sensors, allows users to interact with the environment, communicate via text
or audio, or watch an educational video through Spatial.io services.(click the
link to access the metaverse using Mobile,VR,or the Web).

V. QUALITATIVE COMPARISON

We performed a qualitative analysis of the various features

of the presented pipelines for the generation of immersive

indoor environments. Table I contains the main insights of

this analysis. Based on the comparison, the AI-image-based

pipeline is better suited for virtual staging applications. Virtual

staging does not require users to navigate the entire scene to

view the redecorated room, nor does it necessitate a detailed

collision mesh for complex physics interactions. While these

https://www.spatial.io/s/Virtual-Staging-Technologies-for-the-Metaverse-66546fec6dee9bf422df6632?share=8450442170960379425


Feature AI-Image-Based Pipeline LiDAR-Based Pipeline

Data
Acquisition

Single panoramic image
of the environment

LiDAR scan using a
mobile device or
professional scanner

Processing Deep learning models for
clutter removal, signal
generation, style transfer,
and super-resolution

Algorithms like screened
poisson surface
reconstruction to create
3D models from point
cloud data

Output A photo-realistic 360
image with semantic
segmentation, depth
information, and stylistic
customization, ready for
immersive stereoscopic
virtual staging

Point cloud data reflecting
real-world spatial
relationships; intensive
data processing and
manual configuration
required for high-quality
complex models.
Automatic generation
yields low-poly 3D
models, ready for virtual
staging

Advantages - Faster processing
- Unique and stylized
environments
- Well-suited for indoor
spaces

- High fidelity of
real-world spatial details
- Full physics integration
for realistic simulations
- Full scene exploration

Limitations - Quality dependent on
input image
- Limited field of view

- Requires specialized
equipment
- Less detailed for large or
outdoor spaces
- Struggles with complex
or cluttered environments
- Does not support clutter
removal
- Struggles with
transparent and reflective
surfaces.

Realism High (photo-realistic) Low (automatic low-poly
model generation)

Physics Limited (using depth
maps)

Full (using collision mesh
derived from the 3D mesh)

TABLE I
QUALITATIVE COMPARISON OF AI-IMAGE-BASED AND LIDAR-BASED

PIPELINES

attributes are valuable advantages of the LiDAR-based pipeline

and may justify its use in other contexts, virtual staging

prioritizes photo-realism and clutter removal, which the AI-

image-based pipeline demonstrably excels at. In contrast, the

LiDAR pipeline, although capable of automatic generation

on edge devices [32], produces low-poly and unrealistic 3D

models. Additionally, the LiDAR system not only lacks au-

tomatic clutter removal but also requires significant technical

expertise to generate high-quality 3D models from point-cloud

data [18]. These limitations further hinder its effectiveness

for virtual staging applications. Therefore, the AI-image-

based pipeline’s emphasis on automatic clutter removal, photo-

realistic stereoscopic experience, and accessibility makes it

a more convenient and effective solution for virtual staging

applications.

VI. PRACTICAL IMPLICATIONS

The integration of advanced AI and LIDAR-based tech-

nologies for virtual staging has transformative potential across

several industries. Below, we discuss how these technologies

can be effectively applied in real estate, furniture retail, interior

design, the construction industry, remote collaboration, and

immersive training.

a) Real estate: Virtual staging technologies, particularly

those leveraging LIDAR and AI-based image processing, offer

transformative capabilities for the real estate industry [5],

[20], [44]. These technologies enable detailed interactive

virtual tours and immersive experiences of properties [41].

Utilizing AI-based image processing, such as semantic style

transfer [42] and super-resolution [4], real estate agents can

create photorealistic and visually appealing representations

of properties. This allows buyers to visualize different inte-

rior design options and spatial arrangements, enhancing their

decision-making process. The ability to remove clutter [23]

and present clean, staged environments also makes properties

more attractive and marketable. Furthermore, using LIDAR

scanning, accurate 3D models of properties can be created,

allowing potential buyers to explore homes remotely as if

they were physically present [41]. This not only enhances

the buying experience but also broadens the market reach, as

international buyers can tour properties without the need for

travel. AI-based style transfer can further enhance these tours

by enabling dynamic visualization of different interior styles

and layouts, helping buyers to envision the potential of each

property.

b) Furniture retail: In the furniture retail sector, virtual

staging technologies can revolutionize the way products are

showcased and sold [21], [41]. These technologies enable

customers to visualize how different pieces of furniture will

look in their homes before making a purchase, eliminating

the need to visit the furniture showroom. Using AI-based

systems for rendering [41] and super-resolution [4], retailers

can create high-quality, interactive 3D models of furniture

within various room settings. This not only improves the

shopping experience by allowing customers to explore differ-

ent styles and arrangements but also reduces return rates by

providing a clearer expectation of how products will fit and

look in their intended spaces. Moreover, by integrating AI-

based image processing pipelines, retailers can create virtual

showrooms where customers can visualize furniture in various

settings and configurations. This interactive experience can

help customers make more informed purchasing decisions

by seeing how different pieces fit together and complement

existing decor. Super-resolution models [4], [7], [46] and

semantic style transfer [42] can enhance the realism of these

virtual showrooms, making the virtual furniture appear as

realistic as possible.

c) Interior design: Interior designers benefit from virtual

staging technologies by being able to present clients with a

range of design options without the need for physical sam-

ples [45], [48]. AI models for multitask dense prediction (See

Sec. III-0b and semantic style transfer [42] allow designers

to experiment with different colors, materials, and layouts in

a virtual environment. This speeds up the design process and

enhances client satisfaction by providing a clear and realistic



preview of the final outcome. The ability to generate stereo-

scopic environments [30] facilitates a more immersive and

engaging client presentation. AI-based image processing can

generate high-fidelity, photorealistic visualizations of design

proposals, allowing clients to see precisely how their spaces

will look after redesign. The ability to quickly switch between

different styles and layouts using virtual staging tools can facil-

itate better client communication and faster decision-making.

Additionally, these technologies allow designers to experiment

with various elements without the need for physical materials,

saving time and resources.

d) Construction industry: The construction industry can

leverage virtual staging technologies to improve project vi-

sualization and collaboration. LIDAR-based pipelines provide

accurate 3D models of construction sites, which can be

used for planning and monitoring progress [38]. AI-based

tools for depth estimation and view synthesis [30] help

create detailed virtual environments that reflect the current

state of a project. These technologies enable stakeholders to

conduct virtual walkthroughs, identify potential issues early,

and make informed decisions, thus enhancing efficiency and

reducing costs. Moreover, these technologies can be used to

visualize building projects before completion, ensuring they

are constructed as designed. Building owners can leverage

these technologies to showcase how unfinished buildings will

appear once completed, enabling them to market and sell

properties before construction is finalized. This capability also

improves project coordination and stakeholder communication,

ultimately leading to more efficient project execution.

e) Remote collaboration: The integration of virtual stag-

ing technologies into remote collaboration platforms can

significantly enhance the way teams work together. High-

resolution [4], interactive virtual environments [30], [41] can

facilitate better communication and collaboration among team

members who are geographically dispersed [38]. For example,

architects and engineers can collaboratively review and edit

virtual models of their projects in real-time, making adjust-

ments and discussing changes as if they were in the same

room, leading to more cohesive teamwork and faster project

timelines.

f) Immersive training: In the context of immersive train-

ing, virtual staging technologies offer a safe and controlled

environment for training simulations. AI-driven models for

semantic segmentation, depth estimation, and interactive ren-

dering III-0e create realistic scenarios that can be used for

training purposes in fields such as healthcare [40], emergency

response, and military operations [3]. The ability to create

detailed and interactive virtual environments ensures that

trainees can practice and hone their skills in a lifelike setting,

improving the overall effectiveness of the training programs.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a comprehensive explo-

ration of virtual staging technologies within the context of

the metaverse, focusing on two primary pipelines: an AI-

based image processing pipeline, and a LIDAR-based pipeline.

Our qualitative comparison highlighted the strengths and lim-

itations of each approach, demonstrating their potential to

revolutionize various industries, including real estate, interior

design, and immersive training. The LIDAR-based pipeline

excels in generating highly accurate 3D models of indoor

environments, making it ideal for applications requiring de-

tailed spatial data and full physics integration. Its ability

to provide real-time, interactive editing and collaboration in

virtual spaces showcases its suitability for immersive design

and construction monitoring. However, the need for special-

ized equipment and the challenges associated with processing

complex environments limit its broader application. On the

other hand, the AI-based image processing pipeline offers

significant advantages in terms of flexibility, efficiency, and

ease of use. By leveraging advanced AI algorithms for tasks

such as clutter removal, semantic style transfer, and super-

resolution, this pipeline can rapidly generate high-quality,

photorealistic virtual environments from single panoramic im-

ages. Its applicability in virtual staging, where photo-realism

and rapid deployment are critical, underscores its potential

for transforming the real estate and furniture retail sectors.

Future research should focus on conducting user studies

to evaluate immersive experiences, integrating the strengths

of both LIDAR-based and AI-based pipelines for enhanced

versatility, and developing tailored metaverse solutions for

specific industries. Additionally, improving real-time collab-

oration features and optimizing technologies for mobile and

edge devices will enhance accessibility and usability, driving

broader adoption and impact of virtual staging technologies

across various sectors. Furthermore, as a next step, we also

plan to extend our evaluation by incorporating additional

virtual scenes, conducting comprehensive user testing, and

exploring more diverse datasets and virtual environments to

further assess the applicability, robustness, and user experience

of the proposed technology.
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