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Figure 1: PanoFloor overview. Combining depth prediction, density map aggregation with diffusion-based refinement, struc-
tural segmentation, and view synthesis, we transform a small set of 360◦ panoramas into a 3D multi-room floor plan and a visual
graph of stereoscopic views connected by optimized paths, enabling real-time exploration on standard VR headsets.

ABSTRACT

We introduce a deep learning approach to automatically generate
3D floor plans and immersive multi-room virtual visit experiences
from a small set of co-registered 360◦ panoramas – down to just
one per room. We integrate novel neural networks that leverage
panoramic image broad context and large annotated room datasets
to build a geometric and visual graph. Nodes represent stereo-
viewable multiple-center-of-projection (MCOP) 360◦ images at the
capture locations, while arcs connect them with paths through
doors, avoiding clutter and minimizing disocclusions to maximize
visual quality. The process starts with depth prediction and floor-
plan projection to create a comprehensive but noisy global density
map, which is refined via a latent diffusion model. A segmen-
tation network then extracts room layouts, openings, and clutter.
This structured representation is lifted to a visual one by creating
a 360◦ stereo-explorable MCOP representation at each node, pro-
duced using a view-synthesis network from the original image and
its predicted depth map. Arc paths are then computed using an op-
timization process that considers structural constraints, including
openings and obstacles, while minimizing visual discontinuities,
occlusions, and disocclusions. Finally, 360◦ video transitions are
synthesized using a specialized view-synthesis network to obtain a
fully precomputed WebXR-ready explorable representation that can
be efficiently experienced on Head-Mounted-Displays with limited
graphics capabilities. The extracted floor plan not only aids in doc-
umenting the captured building but can also enhance immersive ex-
periences by serving as a live map of the building. Our experiments
show that the method achieves state-of-the-art reconstruction from
sparse inputs and supports compelling immersive visits.

Index Terms: Omnidirectional, 360, immersive view, AR/MR/VR
for architecture, Computer vision, Machine learning.
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1 INTRODUCTION

Photorealistic virtual tours of built multi-room spaces like homes
and offices provide interactive access to real environments [13],
with applications ranging from remote property viewing in real es-
tate [54] to emergency response planning [3] and beyond. Across
domains, essential actions include establishing presence through vi-
sual exploration, recognizing room location within the building,
and navigating between rooms [78]. Image-based techniques are
the most practical way to generate realistic virtual visits, as manual
3D modeling is complex, costly to create and maintain, and often
does not match the as-built or as-inhabited situation. 360◦ imaging
has become standard, with consumer cameras enabling quick, full-
scene capture [22]. Capturing just a few spherical images, ideally
one per room, provides good coverage of he habitable and walka-
ble space of indoor environments. This scenario is representative
of common practices, particularly in the real estate industry, where
millions of causal users create shareable virtual tours this way, us-
ing consumer cameras and overlapping views (e.g., open doors) for
alignment [9, 18]. Moreover, viewing 360◦ images in a Head-
Mounted Display (HMD) enables intuitive exploration via head
movements, leading to easy-to-use Virtual/Augmented/Extended
Reality (VR/AR/XR) applications [70, 32].

Creating virtual visits from a few connected spherical images is
appealing, but current approaches are limited by reduced presence
and high setup effort (Sec. 2). First of all, the locking of users to
capture points and the lack of binocular stereo reduce presence in
indoor spaces where close-range geometry is abundant [61]. More-
over, and crucially, immersive multi-room experiences need not
only depth for parallax [13], but also detection of walls, doors, and
clutter-free areas to map spaces and enable coherent room-to-room
navigation [78].

To tackle these challenges, we introduce PanoFloor, a deep
learning approach for creating floor plans and virtual visits from
a minimal set of co-registered, gravity-aligned 360◦ shots (Fig. 1).
Leveraging the broad context present in a panorama and patterns
learned from large annotated datasets, we reconstruct a visual, ge-
ometric, and semantic model in the form of a graph using as few
as a single image per room. Nodes represent multiple center-of-
projection (MCOP) viewpoints at capture locations, and arcs define
spherical videos following paths through doors and around clutter,
minimizing disocclusions to enhance visual quality.

Our fully automatic pipeline progressively incorporates broader



global information (Sec. 4). We start from the common key
assumption that indoor geometry and semantics can be largely
inferred from the vertical geometry distribution relative to the
ground [52]. From each input 360◦ image, the predicted depth is
projected onto a common ground plane using the available relative
poses to form a global density map. Since, differently from meth-
ods relying on dense and precise measurements coming from 3D
devices or multi-view capture [8, 75], monocular visual inference
at the individual room level may produce inconsistent global re-
sults, we refine the density map using a latent diffusion model to
enhance geometry and semantics. We then segment the floor plan
to extract room layouts, openings, and clutter maps. As a result, we
obtain a consistent, plausible floor plan approximation from which
to extract a full visual representation. First, we create nodes in the
resulting graph using the panoramic depth to produce a stereoscopic
MCOP image. Nodes are connected by arcs within or across rooms
via doors. For each arc, we compute an optimal path that avoids
clutter and minimizes visual discontinuities, generating a photore-
alistic 360◦ transition video using a view-synthesis network. The
resulting precomputed representation in the form of a structured
scene graph of stereoscopic views linked by panoramic videos en-
ables fast, immersive, and coherent exploration across VR devices,
including HMDs with minimal graphics capabilities. Moreover, the
extracted floor plan provides valuable building documentation and
can enhance visits by mapping the user’s location within the space.
Our approach provides the following key contributions.

• We introduce a latent diffusion method to refine noisy, incom-
plete density maps by enhancing their semantic content. Stan-
dard generative diffusion models [46], designed and trained
for common imagery, are suboptimal for this task due to the
sampling and detail requirements of occurrence maps. Our
lightweight approach models noise as the difference between
the diffusion input and ground truth density maps (Sec. 4.2).

• We introduce a lightweight autoencoder tailored for density
maps to support latent diffusion processing (Sec. 4.2). Stan-
dard latent variational autoencoders [46] have higher compu-
tational costs and, even after fine-tuning, yield suboptimal re-
sults (Tab. 3). Our gated and dilated convolutions efficiently
capture geometric and semantic indoor details (Sec. 7).

• We leverage geometric information to enhance view synthe-
sis and navigation (Sec. 5) , computing optimal paths that bal-
ance geometric constraints (e.g., passing through doors and
avoiding clutter) with visual quality (e.g., maximizing recon-
struction quality by minimizing disocclusions). Additionally,
we extend recent depth estimation techniques [41] to improve
reconstruction and reduce visual artifacts in view synthesis.

• We propose an end-to-end pipeline to reconstruct an indoor
multi-room model, including walls, openings, and clutter
ma,p just starting from a set of registered images (Sec. 4),
unlike competing techniques that require dense point clouds
acquired with measurement instruments [52, 8, 75, 6].

Our experiments and performance analyses (Sec. 7) show that our
methods improve over the state-of-the-art in different tasks, in
terms of accuracy, quality, and computational complexity, produc-
ing image-based models ready to be interactively explored in HMD
devices. We also show that our model, trained on synthetic data,
can produce compelling predictions on user-captured images.

2 RELATED WORK

Transforming sparse imagery of multi-room environments into
image-based representations for VR/AR/XR exploration involves
many research areas. In the following, we focus on the most rele-
vant data-driven approaches for panoramic images.

Capture constraints Our method takes as input a small set
of gravity-aligned, registered 360◦ panoramas. Most, if not all,
indoor datasets preserve gravity alignment, as it is guaranteed by
tripods or easily achievable in freehand capture by performing up-
right adjustment using IMU data, image-based vertical direction de-
tection, or a combination of both [39, 55, 9]. Co-registration of
images taken in different rooms can be done with printed mark-
ers [37], often used also for precise scale detection [9], but can also
be achieved from raw capture data. Methods include exploiting
the small overlaps that occur through open doors with photogram-
metry [71, 72] or RGB-based learning [18], exploiting semantic
cues like room types [48], or aligning the detected openings (i.e.,
doors) [25]. These problems are orthogonal to the ones treated in
this paper, and our pipeline does not depend on the methods used
for gravity alignment and co-registration.

Multi-room reconstruction Reconstructing a 3D floor plan
from purely visual input in terms of rooms bounded by walls, ceil-
ings, and floors, and connected through passages, provides the
3D geometry and the connections required to implement an ef-
fective 3D exploration. Since reconstruction from sparse visual
input alone is an ill-formed problem, the regularities present in
common environments, like homes, offices, and public buildings,
are typically used to aid reconstruction from incomplete or noisy
data [13, 19]. Early methods used image processing, architectural
priors, and optimization to extract structure from images or depth
data [12, 50, 5, 35, 19], but struggled in complex scenes due to
reliance on feature detection (e.g., corners and edges) and strong
assumptions (e.g., Manhattan World) to support geometric reason-
ing and optimization. More recent methods combine deep learn-
ing for extracting hidden relations with optimization for room re-
construction. Techniques include corner detection with neural net-
works, followed by integer programming for wall segment recon-
struction [29], instance segmentation to identify room regions com-
bined with path solvers for structured polygon generation [7, 36].
Some methods further refine room shapes using Monte Carlo Tree
Search [52], while others use constrained diffusion and graph neu-
ral networks for multi-room layout synthesis [47, 14]. In contrast to
hybrid approaches, end-to-end deep learning models aim to predict
room structures directly from input density maps without complex
post-processing. HEAT [8] introduces a bottom-up pipeline that
integrates deformable transformers [81] to detect corners and clas-
sify edge connections, enabling a flexible representation of room
boundaries. Similarly, RoomFormer [75] extends DETR-based
architectures to predict structured floorplans from dense density
maps, encoding indoor structures as variable-length polygon se-
quences. SLIBO-Net [53] builds on RoomFormer by incorporat-
ing additional geometric and semantic priors, improving accuracy
through multi-view consistency and learned post-processing refine-
ments. More recently, PolyDiffuse [6] has introduced a diffusion-
based refinement technique that enhances polygonal reconstruc-
tions. By treating floorplan reconstruction as a conditional gen-
erative process, PolyDiffuse serves as a post-processing step that
can refine outputs from various baseline methods, including Room-
Former. Our approach introduces key improvements to end-to-end
learning solutions. First, extending our recent work on multi-room
reconstruction [43], we predict dense depth maps and derive a sin-
gle density map directly from images, without the need for 3D point
clouds from multi-view capture or measuring instruments. Further-
more, we introduce a latent denoising approach to enhance geomet-
ric and semantic features in the predicted density map, and exploit
reconstruction data to drive the construction of a visual and seman-
tic graph for exploration. The proposed method is not constrained
to Manhattan-World and can recover multi-room structures with
slanted walls. Enforcing right angles, if needed for some applica-
tion, can be eventually achieved by performing adaptive corrections
as a post-process (i.e., rectifying walls meeting at ≈ 90◦ [21]).



Figure 2: Geometric modeling overview. Depth maps predicted by a depth network guide both novel view synthesis and structural recon-
struction. A denoising network and gated auto-encoder refine a unified density map, which is segmented to extract room layouts, openings,
and clutter. The result is scaled to world dimensions for accurate floorplan modeling.

Immersive indoor exploration Structured representations
capture multi-room geometry and topology, and must be enhanced
for immersive visualization, enabling stereo cues, motion paral-
lax, and navigation. Single-shot panoramas offer a convenient way
to replicate real-world environments but are limited to head rota-
tion with flat appearances, leading to artifacts [61, 32]. To ad-
dress these constraints, methods targeting restricted viewer mo-
tion have been developed, supporting stereo or small head move-
ments by generating compact representations for specific environ-
ments. Panoramic images combined with depth maps have en-
abled diverse view synthesis approaches, such as point cloud ren-
dering [17], depth map-based meshes [57], and blended RGB-D
data [30]. Despite advances in immersive deep learning-based so-
lutions, computational challenges often limit their direct applica-
tion to embedded devices, imposing remote rendering for Head-
Mounted Displays (HMDs) [69, 41]. This has led to the emer-
gence of specialized precomputed representations, such as Lay-
ered depth images [16] and multi-plane panoramas (MPI) [56, 28].
For stereo generation, techniques like omnidirectional stereo ren-
dering [42] produce equirectangular images tailored to VR, al-
though peripheral stereo accuracy remains a challenge. Gaze-
adaptive rendering offers an alternative by dynamically adjusting
depth images [31]. Larger displacements from the capture posi-
tion require transforming panoramas into 3D models, often lever-
aging semantics-driven frameworks [68, 77]. However, such meth-
ods struggle with real-world environments filled with unrecognized
objects. In that case, Neural Radiance Fields (NeRF) [33] and
3D Gaussian Splats (3DGS) [23] provide novel view synthesis,
with recent single-view adaptations [20, 44] addressing panorama-
based challenges through RGB-D inpainting and mesh refinement.
Notably, iterative mesh optimization has shown promise for han-
dling occlusions and underfitted geometries [44]. While meth-
ods like PERF [62] focus on generating 3D-consistent novel views
and representations, trajectory constraints and blurring in occluded
areas persist as limitations. More recent solutions iteratively re-
fine meshes by leveraging inpainting techniques, incorporating oc-
cluded color and geometry to improve mesh quality [44]. Gen-
eration, however, is still costly and does not provide the quality
and resolution required for real-time exploration on an HMD. In
our case, we fully precompute a 3D representation made of stereo
panoramas connected by transitions on optimized paths. For stereo
exploration, we refine a deep-learning solution to generate omnidi-
rectional stereo from a single 360◦ image [42], exploiting the ge-
ometric data available from multi-room reconstruction. For nav-
igation, we introduce an approach to synthesize omnidirectional
videos along paths that minimize view-synthesis artifacts in a re-
constructed environment. The generation of video transitions from
panoramas is a well-researched problem. The classic solution is to
match feature points in the start and end panoramas and use them
for constraining warping and cross-blending [79]. Since this class
of methods suffers from ghosting and deformation artifacts caused
by warping the non-matching geometry, later work has exploited
depth estimation and view synthesis to achieve a more natural in-

terpolation between wide-baseline panoramas (e.g., [27, 51]). We
use the same machinery, as explained above, to synthesize views
along transition paths, exploiting the same view synthesis network
used for stereo. Indoors, however, straight line interpolation of
viewpoints is not sufficient and must be complemented by curved
path computation. Classic methods (e.g., [10]) generated a con-
necting path through collision avoidance and smoothness optimiza-
tion, eventually taking into account the maximization of viewpoint
selection quality (e.g., [11, 4]). These methods, however, rely on
detailed geometry, typically from 3D models or dense multiview
capture. Starting from purely visual data, several authors proposed
optimizing neural aesthetic metrics [64] on synthesized views to
select appealing viewpoints [2, 58] and paths [67], though they fo-
cus on single-room navigation. We adopt a similar strategy, but
generate paths across rooms by linking door-connected segments,
avoiding clutter and minimizing disocclusions.

3 OVERVIEW

Figure 3: Visual modeling overview. Visual modeling aligns
RGB-D poses to the floorplan, forming a navigable graph with
immersive node views and smooth visual transitions. A view-
dependent renderer and a view-synthesis network generate stereo-
scopic images for nodes and 360° videos for arcs, enabling real-
time WebXR visualization.

Our method builds an explorable model by combining neural
networks in an end-to-end pipeline for geometric (Fig. 2) and vi-
sual (Fig. 3) modeling. At runtime, it requires only omnidirectional
images (at least one per room) and their relative poses. Training
uses paired RGB+depth panoramas with pixel-accurate depth that
includes clutter as ground truth, as provided by standard indoor
datasets like Structured3D [80].

The geometric step (Sec. 4) starts with depth prediction by a
depth estimation network (Sec. 4.1), used for both view synthesis
and structural reconstruction via a unified density map (Sec. 4.2).
A denoising network with a gated auto-encoder refines this map,
which a floorplan segmentation network then converts into room
layouts, openings, and clutter (Sec. 4.3). The model is scaled to



world dimensions using data gathered in density map computation
(see world-scaled floorplan in Fig. 3).

In the visual modeling step, original images and predicted depth
maps compose RGB-D poses that are aligned to the world-scaled
floorplan to create a navigable graph (Fig. 3), with nodes as stereo-
scopic omnidirectional views and arcs as transitions. Imagery is
generated using a view-dependent renderer and a view-synthesis
network. For each node, we generate an MCOP omnidirectional
stereoscopic image (Sec. 5.2), and for each arc we exploit the
inferred floorplan to determine optimal trajectories, considering
walls, openings, clutter, and a renderer-estimated visual disocclu-
sion cost (Sec. 5.1). Selected trajectories are used to synthesize
interactive 360◦ videos. The final navigable graph is WebXR-ready
for real-time immersive viewing on all devices using fully precom-
puted data, with the floorplan also serving for a variety of purposes,
including the display of a navigable map for VR/AR/XR that also
shows where the user is currently located inside the building.

4 GEOMETRIC MODELING

Geometric modeling of the multi-room environment is performed
through a sequential approach that progressively incorporates
broader global information. First, we determine the shape of the
visible portion of each room by associating a depth with each pixel
of the captured 360◦ images (Sec. 4.1). Then, exploiting the origi-
nal co-registration, we project the depths onto a common floor plan
to create a density map of the entire multi-room environment. This
comprehensive, but partial and noisy, model is then denoised and
enhanced in terms of accuracy and semantic richness through a
novel latent diffusion-based approach (Sec. 4.2). Finally, the global
density map is segmented into a floor plan made of rooms bounded
by walls, floor, and ceiling, and connected through openings, and a
clutter map defining the walkable space (Sec. 4.3).

4.1 Depth maps prediction
Monocular depth reconstruction from each 360◦ image is the first
step in our pipeline and serves multiple purposes. First, the fu-
sion of the inferred scene depth around the observer provides a first
geometric approximation of the environment, which is used as a
starting point for 3D floorplan generation. Second, depth is ex-
ploited for occlusion-aware reprojection and disocclusion handling
in the construction of the visual model, both for supporting stereo
and viewpoint translation and for creating transition paths. Many
methods exist for estimating depth from equirectangular indoor im-
ages. We build upon the depth estimation branch of a state-of-the-
art architecture, named ADM [41], originally designed for depth
and layout estimation in view synthesis. The depth estimation net-
work is designed around gravity-aligned features (GAFs), built with
asymmetric convolutions, to take into account the fact that world-
space vertical and horizontal features have different characteristics
in man-made environments (see original work for details [41]). We
further build on this concept by including an additional loss term
that compares predicted and ground truth density maps obtained by
counting the occurrences of the visible 3D points on the floor plan.
The loss function Ld of the predicted depth compared to ground
truth (see Sec. 7.1 for details) thus becomes:

Ld = Le −0.5Lss +Lom. (1)

where Le and Lom are respectively, the Adaptive Reverse Huber
Loss [26] for the predicted depth and for the density map and Lss
is the Structural Similarity Index Measure (SSIM). Explicitly in-
cluding the density map term, as in DDD++ [40], allows us to drive
the network to produce depths that generate good quality projec-
tions on the floor, which is important for our floor plan estimation
steps. As a result, the adopted approach achieves both quantita-
tive and computational state-of-the-art performances, as reported
in Sec. 7.1 and Sec. 7.2.

4.2 Multi-room density map reconstruction
To fully take advantage of deep learning methods in floorplan
reconstruction, it is a common practice to convert 3D point
clouds into an intermediate 2D representation, often named density
map [7, 8]. Such representation is typically a fixed-size map (e.g.,
256×256 in common implementations and benchmarks), where the
original point cloud is normalized and scaled to fit the image size.
In our work, we first convert each depth map into a local point cloud
through a spherical to Cartesian transformation, then we project all
of them into a floorplan density map [8] using the co-registration
information. However, such a predicted density map is noisy and

(a) Density map (b) D(E(δ )) (c) Denoised map

Figure 4: Density denoising. Comparison between predicted
(Fig. 4c) and denoised (Fig. 4c) density map (images enhanced for
illustration purposes). Although the two maps may look the same,
the denoising process recovers some of the missing structural infor-
mation in the latent space as noise E(δ ). To better show, such latent
difference has been decoded with the autoencoder in Fig. 4b.

incomplete, and must be processed to obtain a full, plausible repre-
sentation of the entire multi-room environment. Our solution is to
adopt a novel latent diffusion-based approach to enhance them.

Working in latent space requires the definition of an appropriate
auto-encoder [46]. While very effective foundational variational
autoencoders exist [45], they are designed and trained on standard
imagery for generative tasks. Density maps, which count occur-
rences of points at every pixel, have, however, different character-
istics. Thus, we designed a lightweight auto-encoder targeting only
this data type. The selected lightweight architecture, dubbed GAE,
is based on gated [74] and dilated [73] convolutions. While similar
schemes have proven effective for image-to-image view synthesis,
we introduce some differentiating features, see Fig. 5b.

In our network, gating functions as a self-attention weight mask,
unlike in inpainting, where the mask is provided to specify missing
pixels. Here, the network is designed to encode a latent representa-
tion z and decode it into a refined density map.

The encoder E includes 6 LWGC (light-weight gated-
convolution [74]) layers, followed by 6 repeated dilations (as view-
synth dilations in Sec. 5.2), thus increasing the area that each layer
can use as input. As a decoder D , 4 LWGC layers restore the origi-
nal density map resolution, followed by a Sigmoid activation func-
tion, instead of tanh adopted for view-synthesis:

zgt = E (dgt) d̂gt = D(zgt) (2)

Defining a ground truth density map as dgt ∈ R1×256×256, ideally,
d̂gt ≈ dgt. In our experiments, zgt is 1 × 32 × 64 × 64, starting
with 32 latent channels in the first convolutional layer (Sec. 5.2).
The GAE autoencoder is trained on the ground truth density maps
provided by Structured3D[80] with the following loss function:

LGAE = Ld(D(E (dgt)),dgt)+λ ·Lss(D(E (dgt)),dgt)) (3)

where λ = 0.05 and, similarly to Eq. (1), Ld is the Adaptive Re-
verse Huber Loss [26] and Lss is the Structural Similarity In-
dex Measure (SSIM). As a result, the GAE network has much
less computational and training complexity than foundation autoen-
coders [46], as shown in Tab. 3.



(a) Path computation (b) View-synthesis baseline (c) Cardboard interface (d) Oculus interface
Figure 5: Visual modeling main tasks. Visual modeling finalizes the geometric model by constructing a navigable graph with immersive
visual content for nodes and transitions. Fig. 5a shows the estimation of optimal navigation trajectories between panoramic viewpoints. This
process accounts for structural constraints, including openings and obstacles, while minimizing visual discontinuities and occlusions during
transitions. Fig. 5b shows the baseline [41] adopted for view-synthesis, which, in our use, can output spherical slices to compose MCOP or
full-view spherical images for transitions. Fig. 5c and Fig. 5d show HMD user interface.

Once the latent space is defined, we model the noise in the input
as the difference δ = din − dgt, where din is the input, noisy den-
sity map, which implies that the noisy latent representation can be
approximated as:

zin = zgt +E(δ ) (4)

In other words, predicting the latent zd =E(δ ) means predicting the
missing information in zin to be more similar to zgt. According to
this, the forward diffusion process corrupts zgt by adding Gaussian
noise:

zt =
√

ᾱt z0 +
√

1− ᾱt εt , εt ∼ N (0, I) (5)

where t is the diffusion timestep and ᾱt are predefined schedule
coefficients. The latent diffusion model, parameterized by a UNet
εθ (zt , t), is trained to predict such a noise component. Inference,
given zin, applies denoising by inverting Eq. (5):

ẑd =
zt −

√
1− ᾱt εθ (zt , t)√

ᾱt
(6)

to estimate ẑd from zin as input. Finally, we reconstruct the denoised
density map as the decoding d̂d = D(zin − ẑd).

Assuming a frozen GAE autoencoder, we train the latent diffu-
sion with the loss:

LLDM = |ẑd − zd |1 +0.1|D(zin − ẑd)−D(zgt)|1 (7)

As an example, Fig. 4 shows a comparison between the predicted
(Fig. 4a) and the denoised (Fig. 4c) density map. While the two
maps appear visually similar (with enhancements applied for better
illustration), the denoising process restores missing structural de-
tails in the latent space as noise E(δ ). To better illustrate this latent
difference, Fig. 4b shows its decoding in the density map space.

4.3 Floorplan segmentation
Taking the denoised multi-room density map as input, we formulate
floorplan segmentation as the prediction of a polygon set, where
each polygon can represent a room, defined by an ordered sequence
of 2D vertices, or an opening, encoded by a degenerate polygon
with only two vertices. Rooms and openings are predicted as a
set of queries, Q ∈ RM×N×2, using a deformable transformer [81].
We define M as the maximum number of polygons (rooms and
openings) and N as the maximum number of vertices per polygon
(M = 50,N = 40 in our experiments). Each vertex is associated
with a binary value indicating its validity. The segmentation net-
work (Fig. 2) carries out the prediction by integrating multi-scale
feature extraction, flattening, deformable self-attention (DSA) for
transformer encoding, and a combination of self-attention and de-
formable cross-attention (SA-DSA) for decoding.

The first layers extract multi-scale features (four levels) from the
density map using a ResNet scheme [15], flatten them to a feature
sequence to serve as input to a six-layer transformer encoder. Each

encoder layer consists of a multi-scale deformable self-attention
module and a simple feed-forward network [81] (DSA in Fig. 2).
Similarly to encoding, decoding is performed by six stacked layers;
however, unlike the encoder, each layer consists of a self-attention
module, a multi-scale deformable cross-attention module, and a
feed-forward network (SA-DSA in Fig. 2). The decoder output is
passed to a shared feed-forward network to predict binary class la-
bels c for each query, indicating its validity as a corner. Finally,
the decoder outputs a M ×N × 2 polygons map and a M ×N × 1
classification map, from which a set of valid 2D polygons is ex-
tracted [75]. While the ground truth contains an arbitrary number of
polygons with an arbitrary number of vertices, the transformer de-
coder always outputs M polygons of N vertices, setting the invalid
ones to 0. We train the network with the Structured3D [80] dataset,
which provided fully annotated floorplans including geometries and
semantic elements (see Sec. 7.1 for details), using the following re-
cently introduced losses [75, 6]:

L f loor =
M

∑
m
(2L m

cls +5L m
coord +L m

ras) (8)

where Lcls is a standard binary cross-entropy (i.e., class loss),
Lcoord (i.e., coordinates loss) is the L1 distance, Lras (i.e., raster
loss - only for rooms) is the Dice loss [34].

Quantitative and qualitative results show how our solution pre-
dicts rooms, doors, and windows with state-of-the-art accuracy
while starting from purely visual input (Sec. 7.2, Sec. 7.3), ready to
be exploited and integrated in the immersive visual model Sec. 5.

For our application, in addition, we complete the model with a
clutter map, defining the walkable space in the environment used to
generate our transitions. To this end, we calculate a partial density
map from the fraction of point clouds below the observer’s horizon,
therefore removing ceilings and hangings, and consider as clutter
the points on the density maps that have occurrences above a cer-
tain threshold (10% in our experiments), to remove from clutter the
walkable floor (which counts as at least one occurrence) and even-
tual projection noise.

5 VISUAL MODELING

Visual modeling completes the geometric model by creating a nav-
igable graph (Sec. 5.1), including the immersive visual content for
nodes and transitions (Sec. 5.2). The final output is ready for inter-
active viewing with a WebXR-compatible device (Sec. 6).

5.1 Door-based graph topology
From our floorplan segmentation (Sec. 4.3), each door is identi-
fied by a small two-vertex segment. We first verify that the door
connects exactly two distinct rooms. If so, we associate the door
with the pair of nodes (i.e., cameras) that occupy those rooms.
This yields a high-level graph structure: each door triggers a po-
tential connection (arc) between two nodes. This representation is



Figure 6: Path optimization. At initialization, paths connect
source to target poses, passing through doors (left). After opti-
mization, paths avoid walls and clutter and minimize disocclusions
(right). The green mark identifies a very difficult case, in which the
detected door is invisible in one of the views.

already sufficient to automatically support multi-room navigation
through exploration at the original location and teleportation to con-
nected rooms. To improve location and movement awareness, we
refine each arc into a continuous path composed of two segments:
(1) Source-to-Door: a parametric curve from the source viewpoint
to the door location; (2) Door-to-Target: a parametric curve from
the door location to the target viewpoint. Both sub-paths must be
stitched into a single smooth trajectory at the door location. To en-
sure continuous derivatives (i.e., no abrupt orientation changes), we
model each sub-path with a Hermite spline [59] (see Fig. 5, left).

Constructing a single multi-segment path from the source cam-
era to the target camera via the door involves optimizing several
control points and tangents. We use dual simulated annealing
(DSA) to minimize a custom cost function [60, 66]. DSA ran-
domly perturbs the free control points and tangent vectors over
multiple iterations, gradually “cooling” to a stable solution that lo-
cally minimizes our cost function. Let the full path Γ be a con-
catenation of Hermite segments Γk, each defined by control points
and tangents (Pk,Pk+1,Tk,Tk+1). The cost function combines four
penalty components: Path Length Cℓ favors shorter routes, reduc-
ing travel time and video frame count, computed using closed-form
Hermite spline integration; Disocclusion Penalty Cd accounts for
novel-view artifacts by sampling geometry along Γ and counting
newly visible pixels in each frame; Clutter Penalty Cc discourages
paths intersecting high-clutter areas, counting how many sampled
path points intersect high-density clutter regions from the precom-
puted clutter map; Wall Penalty Cw ensures that Γ does not cross
walls and remains within a safe distance from them, counting how
many path points fall within a threshold distance from wall bound-
ary polygons. The complete cost is:

C(Γ) = ωℓCℓ(Γ) + ωd Cd(Γ) + ωc Cc(Γ) + ωw Cw(Γ), (9)

with weights ωℓ = 0.01, ωd = 1.0, ωc = 100.0, and ωw = 100.0.
The weights were empirically determined with a few trials and kept
fixed for all the experiments.

Once the optimized sub-path Γsrc→door is found, we repeat the
procedure for Γdoor→tgt. Merging them produces the complete door-
based arc. For each segment, we sample a discrete set of points in
parametric space (e.g., 10–100 points, depending on distance and
resolution needs). These sampled points and their corresponding
camera orientations form the keyframes used by our view-synthesis
network to generate intermediate 360◦ frames.

By minimizing the Disocclusion Penalty, we ensure that the path
remains in areas that are well sampled from the original viewpoint,
reducing the need to generate novel data, thereby producing paths
that give the impression of motion towards the door when leaving
a room and away from the door when entering a new one. Good
reconstruction in the transition area is only possible when a reason-
ably large mutually visible area exists, which may not be the case
if one of the views does not see the door (e.g., it is around a corner
- see Fig. 6, green highlight). If such a case is detected, we trim
the portions of transitions closest to the occluded door to minimize
visual artifacts and preserve the viewing experience.

5.2 Immersive view synthesis
To generate immersive visual content, it is necessary to synthesize
novel panoramic images translated relative to the input poses. In
our approach, we leverage a scheme already proven to be effective
in VR [41], which integrates a view-dependent renderer and a view
synthesis network. This architecture, illustrated in Fig. 5b, is very
lightweight and suitable for an efficient synthesis of the many im-
ages required for visit precomputation. Compared to the inpainting
baseline (see [41]), we introduce the minimization of the inpaint-
ing area through our path optimization method (Sec. 5.1), and in-
corporate structural constraints directly into the depth (Sec. 4.1).
The view-dependent renderer exploits the predicted depth to con-
vert source pixels to 3D points and translates and reprojects them
to their new location in the target equirectangular image. The view
synthesis network inpaints the missing disoccluded pixels.

At each node, we adopt a stereoscopic MCOP model [42] that
uses these networks to generate panoramic slices, placing each slice
along a circular path matching eye movement during head rotation.
Each slice covers enough angular range for both eyes and contex-
tual reconstruction (Fig. 5b). The final stereoscopic MCOP pair
is efficiently composed by blending these precomputed slices in
equirectangular format. For a typical human-sized configuration,
assuming a head radius of 100mm and an interpupillary distance
(IPD) of 65mm, we define a 45◦ portion of the image as sufficient
to cover both eyes. To provide additional context for reconstructing
missing areas and supporting eye convergence at finite distances,
we expand this region to approximately 56◦.

At each arc, instead, we render full-view, monoscopic equirect-
angular frames, following the optimal trajectories computed
in Sec. 5.1. In our tests, we have experienced that monoscopic
video is sufficient to ensure immersive exploration in motion, while
also limiting the sense of discomfort from moving stereo or other
artifacts. As a final step, we also perform upsampling [63] of all
generated images to match the resolution of the display. This is be-
cause, currently, our synthesis is performed at a resolution smaller
than the display size (i.e., a vertical slice resolution of 512 pix-
els vs 2048 for a typical headset). This limitation is not due to our
scalable network architectures, but rather, to limitations in available
ground-truth training sets (see Sec. 7.1 for details).

6 INTERACTIVE VR EXPLORATION

As a proof-of-concept, we develop a virtual tour prototype built
with WebXR and a minimal interface using T hree. js. At runtime,
the application imports the previously constructed graph data struc-
ture, wherein each node is an MCOP-stereo panoramic view of a
given room, and each arc is a transition path, represented by a pre-
rendered 360◦ video, which corresponds to the optimized trajec-
tory computed in Sec. 5.1. Once a user puts on a VR headset (e.g.,
Meta Quest or Cardboard), they are placed in a node’s stereoscopic
panorama. The interface displays arrow-shaped placeholders indi-
cating all possible door connections to adjacent rooms. Clicking
or gazing at one of these placeholders triggers the 360◦ transition
video associated with that arc, smoothly transporting the user to the
corresponding target node. This design mimics intuitive room-to-
room travel while avoiding abrupt scene jumps, since the under-
lying arc videos handle the in-between viewpoints and occlusions
in a visually coherent manner. To satisfy common constraints on
VR headsets, each transition video is encoded at a resolution of
5760×2880 pixels with a frame rate of 30 fps, meeting hardware
performance requirements without compromising immersive qual-
ity. The system thus achieves fluid scene traversal across multiple
rooms, letting users freely inspect each room’s panoramic stereo
view, then proceed to any connected room by activating the corre-
sponding door arc. In practice, the entire experience runs within a
standard WebXR-capable browser, making it readily deployable to
standalone headsets or desktop devices with VR support.



7 RESULTS

Method Params↓ FLOPs↓ Inf. time↓ MAE↓ RMSE↓ δ1 ↑
Panoformer [49] 20 M 78 G 17 ms 0.254 0.793 0.747
EGFormer [76] 15 M 74 G 16 ms 0.220 0.684 0.797
Elite360D [1] 25 M 65 G 14 ms 0.148 0.496 0.874
ADM [41] 29 M 79 G 18 ms 0.080 0.124 0.968
Our depth e. 23 M 38 G 7 ms 0.045 0.135 0.978

Table 1: Performance of depth inference. We show our perfor-
mance compared to other state-of-the-art works for a 512× 1024
image. All methods were trained and tested using the same con-
ditions. Other results are the same as reported in recent publica-
tions [1], while ADM [41] has been retrained by us.

Our approach was implemented using PyTorch [38] and WebXR
and has been tested on a large variety of indoor scenes. The accom-
panying video shows its usage for exploration with HMDs.

7.1 Setup and computational performance

For training and benchmarking our solutions, we mainly exploit
Structured3D [80]), a large-scale, synthetic database of fully anno-
tated 3D floorplans with registered panoramic images. That dataset,
in addition to being the larger dataset providing full annotations (in-
cluding depthmaps and full semantic), provides the most accurate
ground truth possible, which is essential, for example, for creat-
ing geometric-consistent density maps. We used Structured3D for
training and testing the depth estimation network (Sec. 4.1), the
autoencoder and diffusion networks (Sec. 4.2) and the floorplan
segmentation network (Sec. 4.3). In all cases we follow the offi-
cial splittings [80]. To train and test the view-synthesis network,
instead, we exploit PNVS[69], which is a visual extension of Struc-
tured3D scenes providing, for each original panoramic image, three
views translated by 0.2-0.3m along random directions, and three
views translated by 1.0-2.0m. All models have been trained at the
native Structured3D resolution, that is 1024×512, which have been
upsampled to 4096× 2048 for the final visual output, using Real-
ESRGAN (with model realesr-animevideov3) [63] It is notewor-
thy that although the model is trained on synthetic data, it works
successfully for reconstructing real-world multi-room scenes, as
shown in Fig. 10. Here we exploit as benchmark ZinD [9], one
of the largest real-world indoor datasets with 3D multi-room layout
annotations, containing 71,474 panoramas from 1,524 real homes.

We train all the networks with the Adam optimizer [24], with
β1 = 0.9, β2 = 0.999 and an adaptive learning rate from 0.0001, on
a NVIDIA RTX 4090 (24GB VRAM) with a batch size of 8. The
average training time on the same machine is 10 ms/image for the
depth network with a batch size of 8 and 300 epochs, 22 ms/image
for the view-synthesis network with a batch size of 8 and 300
epochs, 402 ms/image for the floorplan network with a batch size
of 10 and 500 epochs, 4 ms/map for the gated autoencoder with
a batch size of 32 and 1000 epochs, 140 ms/map for the diffusion
network with a batch size of 64, 1000 epochs of 1000 steps. Both
the autoencoder and the diffusion model are extremely lighter than
common foundation models [46]. Below we collect a comparison
based on our experiments in a Tab. 3. Here VQ-VAE is a standard
implementation of a variational autoencoder without hierarchical
latent [45] and Fast latent diffusion is a lightweight implementation
of standard latent diffusion [65]. Tab. 1 summarizes computational
complexity for depth inference, compared to other state-of-the-art
works, on a NVIDIA RTX 4090 with 24Gb VRAM. Under the
same setting, inferring a floorplan from a 1×256×256 density map
takes 4ms, and a 100-step denoising takes 142ms. Starting from the
geometric model, visual modeling generation time depends on the
number of stereoscopic poses and transition frames. The inference

time for a full-view equirectangular frame of 1024× 512 is 10ms,
with 18ms additional time for super-resolution upsampling.

7.2 Quantitative performance analysis of geometric and
visual modeling

Following the pipeline order, we first show results about depth es-
timation and view-synthesis, followed by performances specific to
our major technical contributions related to the reconstruction of
the entire floorplan for navigation.

Tab. 1 shows our performance in terms of depth estimation on
standard metrics (mean absolute error (MAE), root mean square
error of linear measures (RMSE), and relative accuracy δ1 [1] ),
compared to the latest state-of-the-art approaches. Although our
solution for depth estimation is an enhancement of ADM [41], it
outperforms all the competitors in both accuracy and computational
performance (Tab. 1) for the restricted task focused on structured
data and scenes.

In addition, the higher efficiency in depth estimation also trans-
lates into better performance in view synthesis. As an example,
we show in Tab. 4 the performance of our view-synthesis network,
compared to the baseline GVS [41] and a baseline for the synthesis
of MCOP slices [42], on PNVS [69] benchmark.

Tab. 2 summarizes a comprehensive quantitative evaluation of
our approach on the Structured3D [80] dataset, focusing on the ef-
fectiveness of our denoised density maps in reconstructing indoor
environments. To ensure a fair comparison, we generate competi-
tor density maps using an alternative state-of-the-art (SoA) depth
prediction method, ADM [41], which serves as a robust baseline
for depth-based density estimation (see Tab. 1). We then compare
our approach against two prominent approaches. The first is ADM
combined with PolyDiffuse [6], which currently achieves the best
segmentation performance for polygonal room layouts by leverag-
ing diffusion-based polygonal generation. Since PolyDiffuse (as
ours) builds upon the RoomFormer [75] architecture, an advanced
transformer-based model for full floorplan segmentation (i.e., in-
cluding room type and openings), we also compare our solution to
the combination of ADM and RoomFormer.

Furthermore, to assess the contribution of our denoising step,
we conducted an ablation study by comparing our full pipeline to
a variant that directly utilizes raw density maps without denoising
(Our plain density). This experiment helps isolate the impact of our
denoising strategy on downstream tasks such as room segmenta-
tion and floorplan reconstruction. For each ground truth room, we
find the best-matching reconstructed room among all predictions in
terms of Precision, Recall, and F1 scores about Room (i.e., found
or not), Corner (i.e, room corners), Angle (i.e., room angles) and
openings (i.e, found or not). In all metrics, our proposed pipeline
outperforms the other solutions.

7.3 Qualitative performance analysis of geometric and
visual modeling

Fig. 7 shows several examples of model reconstruction from the
Structured3D [80] dataset, for which a comparable ground truth
is available. For each scene, we show the input denoised den-
sity map, our predicted model including openings, the ground truth
model, and the predicted multi-room scene graph in world coor-
dinates, including clutter map and computed trajectories (i.e., last
column). Besides the reconstructed scene graph, we show repre-
sentative equirectangular screenshots at the input poses (i.e., node
pose) and synthesized screenshots along the computed trajectory.
The third column shows, as comparison, the predicted model us-
ing ADM [41]+RoomFormer [75] (see Tab. 2), which provides an
output comparable with ours. It should be noted that our approach
can also distinguish between doors and windows, according to the
relative queries (Sec. 4.3).



Method Room Corner Angle Openings
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

ADM [41]+PolyDiffuse [6] 0.880 0.851 0.871 0.697 0.660 0.675 0.662 0.629 0.612 - - -
ADM [41]+RoomFormer [75] 0.863 0.845 0.864 0.679 0.662 0.652 0.601 0.589 0.578 0.556 0.588 0.571
Our plain density 0.882 0.864 0.873 0.686 0.677 0.681 0.608 0.601 0.605 0.567 0.606 0.582
Our denoised density 0.943 0.918 0.930 0.787 0.760 0.782 0.705 0.682 0.694 0.635 0.672 0.653

Table 2: Floorplan performance and ablation. We show our quantitative performance on Structured3D (S3D) [80] (Our density de-
noised). For a fair comparison from predicted images, we adopt an alternative SoA depth prediction method to generate competitors density
maps (ADM [41]). We compare then with ADM [41]+Polydiffuse [6], which is currently the method that performs best for segmenta-
tion of polygonal rooms, and RooomFormer [75], which is the same baseline of PolyDiffuse but providing full floorplan segmentation
(ADM [41]+RoomFormer [75]). Finally, as ablation experiment, we compare to our pipeline but without denoising (Our plain density).

(a) Input density map (b) Our predicted (c) Ground truth (d) Oth predicted [75] (e) Our Predicted graph

Figure 7: Examples of model reconstructions from Structured3D [80]. For each scene, we show the denoised density map, our predicted
model from denoised with openings, the ground truth, the prediction from original noisy density map, and the multi-room scene graph in world
coordinates (several rotated for better fitting in the illustration), including clutter maps, computed trajectories and screenshots at primary and
transition poses. Notably, our method distinguishes between doors and windows based on relative queries (Sec. 4.3).

Simple VQ-VAE GAE (our) F. latent diffusion Our denoise
Params↓ 20 M 0.11 M 100 M 7.6 M
FLOPs↓ 20 G 0.68 G 50 G 31 G

Table 3: AE and diffusion computational performance. We show
our computational performance compared to a standard solution for
the same density map size of 256×256.

Additionally, Fig. 10 illustrates the capabilities of our approach
on real-world captured scenes, leveraging ZinD [9] to obtain multi-
room spherical captures. These experiments highlight our effective-
ness in generalizing from synthetic to real-world scenarios, demon-
strating the capability of domain transfer. Additionally, our re-
sults showcase the potential for zero-shot reconstruction, where the
model successfully reconstructs previously unseen real-world envi-
ronments without requiring additional fine-tuning or retraining on
real data. We leverage geometric information to improve view
synthesis and navigation (Sec. 5), computing optimal paths that ac-

Method PSNR↑ SSIM↑ LPIPS↓
MCOP [42] 18.22 0.789 0.252
GVS [41] 22.97 0.817 0.178
Our 23.02 0.824 0.187

Table 4: View-synthesis performance. We show our quantitative
performance compared to other state-of-the-art works.

count for both geometric constraints—like passing through door-
ways and avoiding obstacles—and visual quality by minimizing
disocclusions. We demonstrate this in Fig. 8: the top row of each
sequence illustrates transitions guided by our reconstructed model
and optimized trajectories, while the bottom shows transitions from
direct pose interpolation. Differences are especially evident in the
final frames, even when the scene appears largely unchanged.
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Figure 8: Transition comparison. Top: frames extracted from a transition obtained with our path optimizer and respecting disocclusion and
clutter constraints. Bottom: frames extracted from a transition computed without path optimization.

(a) Density map (b) Ground truth (c) Prediction
Figure 9: Failure example. We show an example where the ac-
curacy of the reconstruction affects the final result. Although the
result appears to be a good reconstruction at first glance, with all
doors present, the incorrect positioning of the wall at the top pre-
vents access to the upper right room.

7.4 Failure cases

The process of reconstructing numerous structural elements, such
as walls, doors, and windows, from a predicted density map
presents many difficulties and possibilities for error. In many cases,
(see Fig. 7 and Fig. 10), errors about the shape of rooms or the
exact location of an opening do not prevent the construction of an
immersive graph, bearing in mind precisely that the purpose of the
reconstruction is to support exploration, and not to produce a de-
tailed reconstruction. However, there are cases where the accuracy
of reconstruction affects the final result, as in the case we selected
in Fig. 9. Here, although the result may seem a good reconstruction
and even all the doors are present, the wrong positioning of the wall
at the top makes it impossible to reach the upper right room.

8 CONCLUSIONS

We presented a method for immersive modeling of complex indoor
environments using a minimal set of registered 360◦ panoramas.
Unlike prior single-room or post-constrained approaches, we recon-
struct multi-room scenes by refining predicted depth with diffusion
denoising and segmenting structure with transformers. By unifying
geometry and semantics in a global density map, we recover a floor
plan that documents the building and support path planning and im-
mersive navigation in cluttered multi-room spaces. Since our final
scene graph contains fully precomputed MCOP panoramic images
and panoramic transition videos, scenes can be experienced immer-
sively on commodity HMDs.

The discussed analyses and experiments show that the method
achieves state-of-the-art reconstruction from sparse inputs and sup-
ports compelling immersive visits. Quantitative measures in multi-
room reconstruction, in particular, demonstrate our ability to im-
prove over competing solutions in geometric and structural recon-
struction. From the user’s point of view, we currently have only
informal feedback on immersion and path planning, and a full user
study is an important aspect of future work. In particular, we would

(a) Image sample (b) D. map (c) Prediction

Figure 10: Examples of reconstructions on real-world captures,
using our models trained on synthetic data [80] for prediction. Such
experiments demonstrate the capabilities of domain transfer and
zero-shot reconstruction.

like to formally evaluate user satisfaction, improvement in location
awareness compared to just teleportation, and quantify any effects
of cyber sickness that may arise from reconstruction artifacts.

The primary visual limitations stem from rendering parts that are
very distant from the original viewpoint or, even more critically,
those that are completely invisible from the original input views. In
this regard, one direction for future work is to exploit conditional
generative models of latent diffusion instead of deep-learning-based
inpainting. We expect that this would allow synthesizing plausible,
completely novel intermediate views and smooth motions through
continuous trajectories. This would further close the gap between
captured and fully navigable virtual environments.
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