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Abstract

We introduce a novel deep-learning approach for predicting
complex indoor floor plans with ceiling heights from a mini-
mal set of registered 360◦ images of cluttered rooms. Lever-
aging the broad contextual information available in a single
panoramic image and the availability of annotated train-
ing datasets of room layouts, a transformer-based neural
network predicts a geometric representation of each room’s
architectural structure, excluding furniture and objects, and
projects it on a horizontal plane (the Nadir plane) to esti-
mate the disoccluded floor area and the ceiling heights. We
then merge and process these Nadir representations on the
same floor plan, using a deformable attention transformer
that exploits mutual information to resolve structural oc-
clusions and complete room reconstruction. This fully data-
driven solution achieves state-of-the-art results on synthetic
and real-world datasets with a minimal number of input im-
ages.

1. Introduction

The automatic 3D reconstruction of indoor structures from
purely visual input is a very active visual computing re-
search topic [28]. The focus is on creating quick and ef-
ficient methods to reconstruct the permanent architectural
structure of common environments, like homes, offices, and
public buildings [14], by exploiting their regularities to aid
reconstruction from incomplete or noisy data [28]. In this
context, 360◦ photography is one of the most prevalent cap-
ture methods [25, 33, 41].

In this work, we address the challenge of reconstruct-
ing 3D floorplans from a minimal set of mutually regis-
tered 360◦ images of cluttered rooms. This scenario is rep-
resentative of common practices in the real estate indus-

try, where millions of casual users generate and share vir-
tual tours by capturing about a single image per room with
consumer-grade cameras, exploiting a small amount of mu-
tually visible space, e.g., through open doors, for registra-
tion [13, 18, 35].

In this context, the use of 360◦ images allows mutual
registration even with a minimum number of shots com-
pared with the use of perspective images [15]. However,
the amount of visible features and consequently the three-
dimensional information present is very sparse [18]. Lever-
aging this sparse data to automatically generate floorplans
could enable a range of important applications, including
enhanced navigation during virtual tours, improved price
estimation, and integration with building information mod-
els [7]. However, this minimalistic capture approach poses
significant challenges due to the sparsity and ambiguity of
available information (Sec. 2).

Recent deep-learning approaches have obtained impor-
tant successes in 3D inference tasks by exploiting avail-
able large-scale building datasets of panoramic images
coupled with annotated layouts, both synthetic [56] and
real [7] (Sec. 2). However, while good performance may
be achieved for pixel-wise depth inference (e.g., [1, 46]),
3D room layout reconstruction from monocular input is still
limited by the need to extrapolate large portions of the in-
visible structure, which can be occluded not only by objects
but by the structure itself [33], forcing the incorporation
of heavy priors and heuristic post-processing [16, 45, 60].
Moreover, inference at the individual room level may pro-
duce inconsistent global results, especially in invisible ar-
eas, leading to the need for specialized integrated model
computation methods [28]. However, state-of-the-art multi-
room reconstructors usually require the availability of reli-
able density maps for their analyses [5, 53]. These maps,
accumulating the occurrence of 3D points projected onto
the floorplan, are built from dense point clouds that are hard
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to generate with sufficient precision using single-view in-
ference from purely visual data.

We overcome these challenges using a bottom-up ap-
proach, in which information on the architectural room
structure is inferred for each image before being used, glob-
ally, to predict the multi-room shape from multi-view fu-
sion. Leveraging the availability of annotated datasets of
room layouts and exploiting the vertical walls assumption,
we train a transformer-based neural network to predict,
from a single panoramic image of a cluttered room, the
room’s geometric structure – excluding furniture and ob-
jects – and its projection onto a horizontal plane (the Nadir
plane). This process yields, for each room, an estimate of
ceiling heights and a map of the disoccluded floor area (the
Nadir shape). The Nadir shapes of all rooms within an envi-
ronment are then integrated into a consistent, unified floor
plan using a deformable attention transformer, which em-
ploys mutual information to resolve structural occlusions.
Our main contributions are the following:

• We introduce a transformer-based neural network that
predicts, from an equirectangular image of a cluttered
room, the depth of the emptied scene and its projection
onto the Nadir Plane (Sec. 4). It combines gated convolu-
tion for residual feature extraction with gravity alignment
for feature compression. By transforming and projecting
the uncluttered Euclidean depth and incorporating indoor-
specific transformations and loss functions, we obtain
a metrically consistent regularized and self-completed
Nadir shape, only assuming vertical walls rather than im-
posing heavy constraints, such as MWM or AWM (Man-
hattan or Atlanta World) [27, 52]. Focusing on learning
to infer the uncluttered scene proves more effective than
analyzing the depth of the cluttered scene for structural
predictions. While the Nadir shape is not a full room lay-
out, its accuracy is comparable to that of dedicated lay-
out prediction methods, but without requiring additional
post-processing or heuristic completion [45].

• We join all the Nadir shapes in the same Nadir floorplan,
exploiting a deformable transformer network [57] to pro-
cess inter-relations, completing self-occluded parts, and
refining room shapes (Sec. 5). In contrast to previous
work, we do not take a dense multi-view occurrences map
as input to the fusion step [5, 41, 53], but we start from
the self-completed Nadir shape information extracted at
the single image level to drive the solution of the final
floorplan with ceiling height (Sec. 6.3), supporting recon-
structions with a single image per room.

• We propose a fully data-driven, end-to-end solution,
termed NadirFloorNet, that integrates into a single
deep network architecture per-image Nadir shape infer-
ence with global multi-room floor plan reconstruction.
NadirFloorNet directly maps a set of panoramic equirect-
angular images, each with its associated reference frame,

to a complete floor plan with room heights, without
any intermediate processing steps (Sec. 3). Although
NadirFloorNet functions as a single network during in-
ference, the Nadir shape prediction module is trained first
and acts as a pre-trained module during the training of the
floor plan module. Given the differentiability of the en-
tire network, we support future fine-tuning, allowing all
combined network parameters to be learnable.
We evaluated our method on large-scale synthetic and

real benchmarks [7, 56]. Our results (Sec. 6) demonstrate
that NadirFloorNet outperforms current state-of-the-art ap-
proaches starting from a minimal set of panoramic images.

2. Related work
Indoor reconstruction is a broad research topic. We analyze
only the closely related approaches, referring the reader to
established and recent surveys for wider coverage [28, 33].
Depth and layout estimation from panoramic images.
360◦ images are increasingly used for data-driven depth
estimation in indoor spaces for their ability to capture the
full surroundings. Their exploitation includes adapting
perspective methods through spherical convolutions [24,
43, 44, 47, 58], joint processing in mixed equirectangu-
lar and cube-map projections spaces [49], leveraging per-
spective views sampled on panoramic images before com-
bining depth maps using transformers [1, 20, 34], as well
as exploiting gravity-aligned features for direct processing
in equirectangular space [29, 30, 45]. Our approach em-
phasizes the structural nature of the desired output [17]
by seeking to obtain the depth of the permanent structure
deprived of the various objects in the room, combining
and extending image inpainting and structural reconstruc-
tion concepts [29]. Instead of computing per-pixel depth
data, structural extraction from single panoramas can also
be obtained by layout estimation methods targeting the pro-
duction of seamless 3D boundary surfaces in case of self-
occlusions. Prominent examples include LayoutNet [59],
which predicts the corner probability map and boundary
map directly from a panorama, and HorizonNet [45], which
simplifies the layout as three 1D vectors before extracting
the 2D layout by fitting MWM segments to the estimated
corner positions, as well as a breed of transformer-based
approaches that project the equirectangular input image to
planar surfaces [16, 27, 32, 50, 52, 55]. All these methods,
however, require heavy preprocessing, such as detection of
main MWM directions from vanishing lines analysis and
related image warping [19, 54, 60], or complex layout post-
processing, such as MWM regularization of detected fea-
tures [37, 45, 52, 59]. In this work, we propose, instead,
a fully data-driven approach for estimating the Nadir plane
footprint and 3D cues, not from the cluttered RGB image
but from its uncluttered depth, appropriately transformed
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Figure 1. Overview. For each input panoramic image, a Nadir shape network forward pass infers a Nadir shape and the heights of floor-
ceiling planes (see Sec. 4). These representations are then merged into a fixed-size Nadir floorplan Pf , exploiting the available mutual
registration. The Nadir floorplan is processed through the Nadir floorplan Network (see Sec. 5) to predict the 2D polygonal multi-room
floorplan. Finally, a 3D floorplan is recovered by extruding the 2D plan using the room heights recovered by the Nadir shape network.

(Sec. 4), deferring to multi-view computation the defini-
tion of consistent layout details also in invisible areas, with-
out imposing MWM priors or requiring the hallucination
of non-visible shapes. Our method only requires overlap if
needed for mutual registration, enabling reconstruction with
most points seen only once – typically using one image per
room registered via a few feature points from open doors.
Unlike multi-view approaches that rely on multiple images
per room, even if only a few [3, 39, 40, 51], we support a
single image per room by estimating monocular uncluttered
depth before merging.

Data-driven floorplan reconstruction. Early approaches
combined low-level image processing with geometric rea-
soning and energy minimization solvers to extract room lay-
outs [2, 9, 14, 22, 26, 38]. Many recent solutions adopt
a hybrid approach where low-level primitives detected by
neural networks are assembled by optimization techniques
into the final models. These include methods that detect
room corners and then generate wall segments through in-
teger programming [21], methods that detect room seg-
ments with Mask R-CNN [12] and reconstruct individual
room polygons by sequentially solving shortest path prob-
lems [4, 23], approaches that uses Monte-Carlo Tree-Search
to select room proposals [41], and diffusion techniques that
generate plausible room arrangements by combining graph
neural networks with constrained diffusion [10, 36]. In con-
trast to the hybrid solutions, several recent approaches em-
ploy, like ours, an end-to-end deep-learning architecture. In
particular, HEAT [5] integrates the DETR deformable trans-
former [57], into a bottom-up pipeline that first detects cor-
ners and then classifies edge candidates connecting corners.
Also based on DETR [57], RoomFormer [53] predicts floor-
plans from a dense point cloud using a single-stage, end-
to-end trainable neural network. Different from previous
data-driven approaches [4], RoomFormer encodes the floor-
plan as a variable-size set of polygons, which are variable-
length sequences of ordered vertices. SLIBO-Net [42] fo-
cuses on improving RoomFormer’s semantic and local ge-
ometric quality by incorporating additional MWM priors
and post-processing steps. More recently, PolyDiffuse [6]

refines polygonal reconstructors from point cloud density
maps through a conditional generation procedure. We can
consider it an orthogonal work that could be used as a post-
processor for our baseline, similar to how it was applied to
RoomFormer [53]. We also exploit deformable transform-
ers [57] encoding floor plans with a variable sequence of
polygons and vertices [42, 53], but start from pure, sparse
imagery input, without needing dense coverage, dense point
clouds or MWM-based post-processing. Extreme registra-
tion approaches [13, 18, 35], like ours, take as input sparse
panoramic images, but exploit them for relative pose esti-
mation with minimal (or no) overlaps. They can offer a
complement for the initial camera registration.

3. Overview

Fig. 1 summarizes our reconstruction approach, focusing on
the forward prediction pass for a clearer illustration. We
refer the reader to the supplementary material for network
and training details. We take as input a small set of spatially
registered and gravity-aligned equirectangular images. For
each input image, the Nadir shape network predicts a reg-
ularized probability map of the walkable floor area Np and
the floor-ceiling planes distance from the observer, respec-
tively hf and hc (Sec. 4). We then exploit the relative pose
of the input images to encode all Nadir shapes in a com-
mon, fixed-size, floor plan map Pf . The recovered metric
scaling is stored separately to reshape the final 3D floorplan.
Given this joined representation Pf , named Nadir floorplan,
an encoder-decoder transformer-based network processes
inter-relations, completes self-occluded parts, and refines
room shapes as 2D polygons (Sec. 5). Finally, a 3D floor
plan is generated by combining ceiling-floor heights, met-
ric aspect, and 2D polygons.

4. Nadir shape generation

The Nadir shape generation is performed, for each input
image, by the Nadir shape network (Fig. 1). The network
takes as input an equirectangular image Ic of a cluttered
room, and outputs in the forward pass a regularized prob-
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Figure 2. Nadir shape network last layers. Starting from the
intermediate uncluttered depth De, the fully differentiable trans-
form and projection recover the Nadir projection Pf . Finally, the
last autoencoding layers return the Nadir Shape Np.

ability map of the free floor area Np with the floor-ceiling
planes distances hf and hc. The same network also outputs
the equirectangular depth of the emptied scene Ds as an
intermediate result, which is used in loss computation and
weight update during the backward pass of training (Fig. 2).
Internally, the network predicts an attention mask, segment-
ing the input image into cluttered or uncluttered zones. A
residual-gated network extracts features from the input im-
age and its mask. Features are then encoded as a fixed-size
sequence of vertically-compressed features, leveraging the
indoor structural nature of the desired output, and then pro-
cessed by a transformer to decode an uncluttered depth map
of the scene. The depth map is then transformed and pro-
jected to recover the Nadir shape.
Attention mask and feature extraction. Starting from
the input equirectangular image Ic, we predict an attention
mask Me through a pre-trained, lightweight network [31]
(see supplementary material for implementation details),
roughly segmenting Ic into cluttered or empty zones to
bootstrap the gated-residual encoder. We concatenate the
attention mask Me with the input image Ic and we extract
multi-layer features (i.e., four layers with different depths
and spatial sizes) through a residual-gated encoder (see sup-
plementary materials for implementation details). In con-
trast to canonical residual schemes [11], often adopted for
generic depth estimation, our approach, for each convolu-
tion layer, introduces a dynamic gating approach to process
the masked scene efficiently and to complete missing parts,
corresponding to structural bounding surfaces of the room
occluded by the clutter.
Gravity-aligned-features transformer. To make optimum
use of the pixel-wise information of the equirectangular
image, our network internally predicts an equirectangu-
lar clutter-free depth map Ds, by introducing a specific
transformer-based approach. In contrast to a standard vision
transformer baseline [8], which would require the conver-
sion of feature maps into a sequence of pixel-wise patches,
our approach aims to encode the feature maps into a se-
quence by accounting for the indoor nature of the scene and
its spherical representation. Thus, as in other depth estima-
tion works [29, 46], starting from the assumption that grav-
ity plays an important role in the design and construction of
interior environments, we assume that world-space vertical

and horizontal features have different characteristics. Such
an assumption is even stronger in our case since our goal
here is to recover only the structure (i.e., walls, ceiling, and
floor), without the need to model clutter details, which typi-
cally contain the most free-form data. We perform, thus, an
anisotropic, contractive encoding that reduces the vertical
direction (i.e., gravity direction) while keeping the horizon-
tal direction unchanged, generating gravity-aligned features
(GAF). We apply such compression to each encoded feature
map. Finally, compressed features are reshaped to the same
size and joined in a flattened GAF feature, Ls = (l0 . . . ls),
as a sequence of s feature vectors of dimension l (i.e., s
horizontal size of the less deep feature map - s = 256 and
l = 1024 for a 512× 1024 input). Such a sequence Ls con-
tains both local and non-local geometric features, which are
exploited to recover missing depth samples through a multi-
head self-attention transformer [48]. Once passed to the
transformer, sequence decoding is very fast, through con-
volutions, upsampling modules, and ELU activations, until
we reach the target output resolution.

Nadir shape recovery. To recover the Nadir shape for
each camera, we need to efficiently translate the informa-
tion from the emptied depth map De to the Nadir plane.
Since recognizing man-made structures is not immediate in
spherical space, the network processes 3D data by storing at
each pixel of the equirectangular map, rather than the depth
De, the distance to the horizontal plane passing through the
camera location, i.e., the height relative to the eye. This
is accomplished by scaling each value in De, which corre-
sponds to an azimuth angle θ (along w) and polar angle ϕ
(along h), by ∥sinϕ∥ to obtain the map Dh. This repre-
sentation Dh (Fig. 2, Dh), under the vertical walls assump-
tion, better highlights the room structure, although still in
equirectangular format. The height value is also exploited
to recover additional 3D cues, such as floor and ceiling dis-
tances from the camera, to complete the 3D layout of the
rooms. To recover the footprint in the Nadir plane, which
corresponds to the predicted floor, exploiting the Vertical
Walls prior [28], we project the equirectangular depth map
Dh to the Nadir plane, Pf

wp×wp perpendicular to the Z-
axis, so that Pf represents information belonging to the bot-
tom hemisphere of Dh (Fig. 2, Pf ). This transformation and
projection operation is fully differentiable and integrated
into the network. However, because such an intermediate
representation Pf directly comes from the predicted emp-
tied depth, much structural information, especially on the
edges, may be missing or noisy. Therefore, the final layers
of the network consist of an UNet-based (see supplementary
material for details) autoencoder, which takes the Pf repre-
sentation and output a regularized probability map Np (see
Fig. 2 and Fig. 1). Projecting onto the floor, which is as-
sumed to be a single plane, lends itself better to the merging
of multiple footprints, also in the case of rooms with differ-
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ent ceiling heights. In contrast, projecting onto the ceiling,
as done by traditional layout recovery methods working on
cluttered input images [27, 52] would necessitate a consis-
tent horizontal plane across the entire multi-room environ-
ment, limiting the solution space.
Nadir shape network training. We train the Nadir shape
network supervising the training with single room lay-
outs from real-world and synthetic annotated floorplans
(Sec. 6.2). We do not need additional annotations for this
training task, but we use layouts from the main floorplan
reconstructor sets (i.e., adopting the same train/valid/test
split - Sec. 5). To directly supervise the Nadir shape pre-
diction and the layout heights, we adopt, respectively, Ll,
the binary cross entropy with logits loss for the predicted
probability map Np Sec. 4 andLh, the L1 distance error
for the predicted average ceiling-floor distances. Further-
more, starting from the assumption that indoor structure and
depth are interrelated [17], we enforce the training by ex-
ploiting the intermediate clutter-free depth De (see Sec. 4).
To recover ground truth data for De, we render such depth
from the annotated layout. We adopt then several spe-
cific losses for such depth. The robust Adaptive Reverse
Huber Loss (BerHu) Ld; the Structural Similarity Index
Measure (SSIM) Ldss, which measures the preservation of
highly structured signals with strong neighborhood depen-
dencies. Furthermore, to enforce the indoor nature of the
output, we include more specific indoor structural losses,
respectively the normal consistency loss Ln and the gra-
dient of normals consistency loss Lg , which supervise the
smoothness of walls and sharpness of edges. Assuming ver-
tical walls, we restrict the normal map to the horizon [50],
computing the cosine similarity to get the normal loss [16]
Ln = 1

W

∑W
i=1(−ni · ni), where W is the width of the

equirectangular image, ni is the predicted normal, ni is
the ground truth normal. To supervise the turning of cor-
ners, we compute the loss term as Lg = 1

W

∑W
i=1(gi − gi),

where as gi = arccos(ni−1 · ni+1) is the angle between
consecutive normals. As a result, the Nadir shape net-
work is trained by combining indoor depth and layout losses
Lsv = λdLd − λdssLdss + λlLl + λhLh + λnLn + λgLg

(see supplementary for lambda values).

5. Nadir floorplan reconstruction
The Nadir shapes recovered for each image are joined and
encoded in the Nadir floorplan (Sec. 3). We cast the floor-
plan reconstruction as a prediction problem of a polygon
set, where each polygon represents a room modeled as
an ordered sequence of vertices. It should be noted that,
differently to pure prediction from an unstructured point
cloud [5, 41, 53], here we start from a partial room segmen-
tation, so the main goal is to process inter-relations, com-
plete self-occluded parts, and refine room shapes.

To do this, we scale and fit our Nadir floorplan, which

is in metrically-scaled dimensions, into a fixed-size map of
dimension Fn

wf×wf (Fig. 1), according to common, avail-
able annotations [5, 41]. To join and encode the Nadir
shapes in this representation, we transform each probabil-
ity map Np into a binary mask Ns using a softmax, dis-
place Ns exploiting its camera position, then encode each
Ns mask with a progressive integer value (Fig. 1, Floorplan
encoding).

The floorplan prediction problem is then cast as Q ∈
RM×N×2 queries [53] and solved using a deformable trans-
former [57]. We set M to the maximum number of rooms
and N to the maximum number of vertices for each room
(M = 20, N = 40 in our experiments), and associate each
vertex with a binary value, indicating whether it is valid
or not. The prediction is implemented through a network
(called Nadir Floorplan network in Fig. 1) which includes
multi-scale features extraction and flattening, deformable
self-attention (DSA) for transformer encoding, and self-
attention and deformable cross-attention (SA-DSA) for de-
coding.
Nadir Floorplan network. Similarly to the Nadir shape
encoder (Sec. 4), the first layers extract multi-scale features
(four levels) from the Nadir floor map Fn using a plain
ResNet scheme [11] without gated convolutions, and flat-
ten them to a feature sequence to serve as input to a six
layers transformer encoder. Each encoder layer consists of
a multi-scale deformable self-attention module and a sim-
ple feed-forward network [57] (DSA in Fig. 1). Similarly to
encoding, decoding is performed by six stacked layers, but,
differently from the encoder, each layer consists of a self-
attention module, a multi-scale deformable cross-attention
module, and a feed-forward network (SA-DSA in Fig. 1).
In the decoder, we adopt a combination of content and
positional queries [53], so that the decoder performs self-
attention on all corner-level queries, regardless of the room
they belong to. This design not only allows the interaction
between corners of a single room but also enables interac-
tion among corners across different rooms, thus combining
information from different polygons to better solve struc-
tural occlusions. The decoder output is passed to a shared
feed-forward network to predict binary class labels c for
each query, indicating its validity as a corner. Finally, the
decoder outputs a M×N×2 polygons map and a M×N×1
classification map, from which a set of valid 2D polygons
is extracted [41].
Floorplan network training. The NadirFloor network pre-
dicts room logits and corners. Its training is supervised
with the same strategy and losses employed by Room-
Former [53], with the important difference that we take as
input the registered representations inferred for each room
by the pre-trained Nadir shape prediction network rather
than occurrence maps from point clouds. The transformer
decoder outputs M polygons of N vertices (including non-
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valid ones, mapped to 0) while the ground truth contains an
arbitrary number of polygons with an arbitrary number of
vertices. As in RoomFormer [53], we adapt Deformable-
DETR Hungarian matcher [57] to find the optimal match
between prediction and ground truth. Note that, since the
NadirFloor and NadirShape networks are concatenated and
form, together, a fully differentiable end-to-end network
mapping a set of panoramic images to a floorplan, it is pos-
sible to further improve quality through a fine-tuning pass,
where the parameters of the NadirShape network are also
made learnable. We plan to explore this path in future work.

6. Results
Our approach is implemented with PyTorch and has been
tested on a large variety of synthetic and real-world indoor
scenes. In the following, we report the costs of inference
and training, as well as qualitative and quantitative results
on public datasets. Additional details and results are pro-
vided in the additional material.

6.1. Training and inference cost
The computational complexity of both neural network mod-
ules is very low. The Nadir shape prediction network, in-
cluding the initial attention mask prediction (Sec. 4), has
31.81M parameters with 98.97Gflops. The average in-
ference time for a 512 × 1024 equirectangular input image
is 67ms on an NVIDIA RTX2060 GDD6GB laptop (e.g.,
building a 20-room Nadir floorplan takes less than 1.5 sec-
onds). While the architecture consists of a single differ-
entiable network, for practical reasons, we train the two
modules separately, also saving intermediate results (i.e.,
individual Nadir shapes and empty depths) for analysis.
We trained the Nadir shape network with the Adam opti-
mizer, with β1 = 0.9, β2 = 0.999 and an adaptive learn-
ing rate from 0.0001, on an NVIDIA RTX A5000 (24GB
VRAM) with a batch size of 8, with average training time
613 ms/image. The weights are: λd = 1.0;λss = λl =
0.5;λh = λn = λg = 0.1. The Nadir floorplan reconstruc-
tion module was trained for 500 epochs following the same
settings of RoomFormer (RF) [53]. The average inference
time for a 256 × 256 floorplan map is 20ms on a NVIDIA
RTX2060 GDD6GB laptop.

6.2. Datasets
To train and test our approach, we used public datasets
for which ground truth annotated floor plans and registered
panoramic images were available. In addition to Struc-
tured3D (S3D) [56], adopted by most related state-of-the-
art methods and comprising 3,500 synthetic houses with
diverse floor plans covering both MWM and non-MWM
layouts, we also employed ZinD [7], one of the largest
real-world indoor dataset with 3D multi-room layout an-
notations, containing 71,474 panoramas from 1,524 real

homes. To have a consistent comparison, we converted
ZInD to S3D’s format, following the authors’ original in-
structions [7, 56]. It should be noted that several ZInD
annotations and scenes are not parsed and converted cor-
rectly to S3D’s format, so have been discarded for the ex-
periments.

6.3. Reconstruction performance
Tab. 1, Fig. 3, and Fig. 4 show quantitative and qualitative
results on S3D [56] and ZInD [7] floorplans. As in many
floorplan reconstruction works [5, 41, 53], for each ground
truth room, we find the best-matching reconstructed room
among all predictions in terms of IoU, reporting its Preci-
sion, recall, and F1 scores.

Method Set Room Corner Angle
Prec Rec F1 Prec Rec F1 Prec Rec F1

RF S3D 0.892 0.876 0.884 0.704 0.681 0.692 0.643 0.623 0.633
Our NSO S3D 0.939 0.930 0.928 0.553 0.542 0.647 0.424 0.522 0.466
Our full S3D 0.943 0.939 0.940 0.834 0.801 0.817 0.746 0.717 0.731
RF ZInD 0.811 0.756 0.788 0.712 0.615 0.660 0.528 0.444 0.505
Our NSO ZInD 0.786 0.733 0.758 0.652 0.538 0.627 0.505 0.365 0.424
Our full ZInD 0.824 0.767 0.794 0.765 0.626 0.689 0.594 0.488 0.536

Table 1. Floorplan performance. We show our quantitative per-
formance (Our full - in bold) on Structured3D (S3D) [56] and
ZInD [7], compared to other representative state-of-the-art works
(RoomFormer (RF) [53]) adapted to the same 360◦ images input.
We also include the performance of our method just spatially reg-
istering individual Nadir shapes (NS) - Nadir shapes only).

As discussed in Sec. 1 and Sec. 2, current deep-learning
floorplan reconstruction methods segment a 2D occupancy
map recovered from a dense point cloud, typically gener-
ated by dense coverage with regular cameras. Only a few
particular methods take panoramic images as direct input,
but to find their registration under extreme conditions rather
than producing full floor plans [13, 35]. Both benchmarks
used here present a challenging situation for reconstructing
an articulated multi-room environment from just panoramic
data, since only about one image/room is available for S3D,
and about 1.5 images/room for ZInD.

To fairly evaluate our method against alternatives, we
assume that no 3D data is available, and we predict the
occupancy maps required by other methods by predicting
the depth of the room using monocular panoramic depth
inference ,followed by vertical projection and accumula-
tion proposed in previous works [53]. We experimentally
determined (see supplementary material) that when trained
with original scenes rather than uncluttered ones, our Nadir
shape network has a depth estimation performance in line
with other state-of-the-art solutions. We thus selected our
depth estimator, trained on the cluttered original input im-
ages, and combined it, to form a representative baseline,
with RoomFormer (RF) [53], which is a state-of-the-art ap-
proach for floor plan segmentation from point cloud input.
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(a) RF [53]
occ. map

(b) Our
Nadir map

(c) GT
[56]

(d) RF
[53]

(e) Our
NSO

(f) Our
full

(g) Our
3D

Figure 3. Qualitative performances on Structured3D (S3D) [56] dataset. Each row shows: RoomFormer (RF) [53] point cloud oc-
cupancy map (RF occ. map), our Nadir floorplan map (Our Nadir map), ground truth floorplan (GT), RoomFormer prediction (RF), our
floorplan prediction just composing the Nadir shapes (our NSO - Nadir shapes only), our full floorplan prediction (Our full), our 3D pre-
diction with predicted metric information (Our 3D).

(a) RF [53]
occ. map

(b) Our
Nadir map

(c) GT
[7]

(d) RF
[53]

(e) Our
NSO

(f) Our
full

(g) Our
3D

Figure 4. Qualitative performance on ZInD dataset [7]. For each row we show: RoomFormer (RF) [53] point cloud occupancy map (RF
occ. map), our Nadir floorplan map (Our Nadir map), ground truth floorplan (GT), RoomFormer prediction (RF), our floorplan prediction
just composing the Nadir shapes (our NSO - Nadir shapes only), our full floorplan prediction (Our full), our 3D prediction with predicted
metric information (Our 3D).

The same solution is adopted as a baseline by recent orthog-
onal works [6, 42].

We fully retrained RF on both Structured3D (S3D) [56]
and ZInD [7] predicted point clouds, obtaining the perfor-
mance illustrated in Tab. 1, Fig. 3 and Fig. 4. With both

datasets, our approach (Tab. 1, Our full) achieves the best
performance in all metrics. Furthermore, Tab. 1 analyses
the performance of a version of our method without the
floorplan integration network (Tab. 1, Our NSO (i.e., Nadir
Shape Only). The floorplan in this case (NSO) is the sepa-
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rate polygonization of the contours of each Nadir shape, and
the joining of them in the same reference frame thanks to the
available mutual registration of each shape, without further
optimization. This comparison numerically highlights the
interaction between Nadir shapes in the Floorplan network
to improve the reconstruction and completion of rooms.
This difference is evident qualitatively in Fig. 3 and Fig. 4.
In both figures, each row shows: a comparison between a
predicted point cloud occupancy map (RF [53] occ. map)
and our Nadir floorplan map (Our Nadir map Sec. 4); the
ground truth floorplan (GT), the compared method pre-
diction (RF [53]), our floorplan prediction just composing
the Nadir shapes (our NSO - Nadir shapes only), our full-
pipeline floorplan prediction (Our full), our 3D prediction
with predicted metric information (Our 3D) and metric as-
pect. The proposed scenes highlight how much of the error
in the compared solutions comes from the deterioration of
structural information in the occupancy map (RF occ. map),
as opposed to the Nadir floorplan, where, instead, planarity,
sharpness, and other structural features are already visi-
ble from single-view processing (our NSO - Nadir shapes
only). These differences become more pronounced in the
real-world case (Fig. 4), where the contribution of disocclu-
sion and regularization from multi-view integration (Sec. 5)
also becomes more evident (Our full).

6.4. Ablation study
We further analyze our design choices in the ablation study
in Tab. 2). The first two rows (NS and UNC+NS) sum-

Method Room Corner Angle
Prec Rec F1 Prec Rec F1 Prec Rec F1

NS 0.902 0.897 0.822 0.540 0.526 0.602 0.412 0.516 0.424
UNC+NS (NSO) 0.939 0.930 0.928 0.553 0.542 0.647 0.424 0.522 0.466
NS+NF 0.940 0.936 0.932 0.788 0.768 0.712 0.546 0.688 0.698
UNC+NS+NF 0.943 0.939 0.940 0.834 0.801 0.817 0.746 0.717 0.731

Table 2. Ablation study. NS: spatially registering of individ-
ual Nadir shapes from cluttered depth maps; UNC+NS: NS from
uncluttered depth maps; NS+NF: our full pipeline but without
depth uncluttering; UNC+NS+NF: our full pipeline with unclut-
tered depth shapes.

marize the performance of our pipeline without the floor-
plan integration network (Sec. 5), highlighting the effect
of performing the uncluttering of the scene (Sec. 4). In
the first case (NS), the Nadir shapes are obtained from
cluttered scenes (i.e., intermediate depth De includes clut-
ter), while the second case (UNC+NS), adopting the un-
cluttering layers, corresponds to the Our NSO setup of
Tab. 1. Similarly, in the third and fourth rows (NS+NF and
UNC+NS+NF), we show our full pipeline and the effect of
uncluttering on the final result, where the fourth configu-
ration (UNC+NS+NF) is our full method (i.e., our full in
Tab. 1).

7. Conclusion and future works
Our novel deep-learning pipeline proves capable of recon-
structing multi-room environments from a minimum num-
ber of registered images (i.e., about one per room). Our ap-
proach combines indoor priors with single panorama anal-
ysis to obtain a clutter-free geometric representation of sin-
gle views and transformer-based resolution of major struc-
tural occlusions while fusing multiple views. Although we
achieve state-of-the-art results for reconstruction with min-
imal data, some limitations remain, and several aspects can
be extended in the future.

Some failure cases, which arise when some of our pri-
ors are not met, are shown in the supplementary material.
Such examples include cases, for instance, when structural
parts, such as stairs, become dominant in the scene, gen-
erating ambiguity in both the uncluttering process and the
geometric reconstruction, or when the image includes out-
door parts and the assumption of an indoor environment
fully bounded by vertical walls lapses. Another point that
we expect to develop more in the future is ceiling model-
ing since our method can already return a heightmap of the
whole floorplan, segmented into rooms. However, the cur-
rent annotated datasets available for floorplans do not pro-
vide an unambiguous representation of the ceiling shapes,
forcing other works to impose the AWM [5, 41, 53]. In the
future, we expect to exploit and extend the already available
annotations (e.g., ZinD [7]) to model 3D floorplans of more
complex shapes.
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