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Figure 1: In PanoStyleVR a feature-based style similarity metric is used to organize a database of panoramic images of
indoor environments. At run time, given a novel monocular 360° of a room, an immersive WebXR-based interface supports
stereoscopic exploration (left), interactive selection (middle), and real-time application (right) of photorealistic style transfers

from recommended images extracted from the database.

Abstract

We introduce PanoStyleVR, an immersive web-based framework
for analyzing, ranking, and interactively applying style similarities
within panoramic indoor scenes, enabling stereoscopic virtual ex-
ploration and photorealistic style adaptation. A key innovation of
our system is a fully immersive WebXR interface, allowing users
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wearing head-mounted displays to navigate indoor environments
in stereo and apply new styles in real time. Style suggestions are
visualized through floating thumbnails rendered in the VR space;
selecting a style triggers photorealistic transfer on the current room
view and updates the immersive stereo representation. This inter-
active pipeline is powered by two integrated neural components:
(1) a geometry-aware and shading-independent GAN-based frame-
work for semantic style transfer on albedo-reflectance representa-
tions; and (2) a gated architecture that synthesizes omnidirectional
stereoscopic views from a single 360° panorama for realistic depth-
aware exploration. Our system enables cosine-similarity-based style
ranking, t-SNE-driven dimensionality reduction, and GMM-based
clustering over large-scale panoramic datasets. These components
support an immersive recommendation mechanism that connects
stylistic analysis with interactive editing. Experimental evaluations
on the Structured3D dataset demonstrate strong alignment between
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perceptual similarity and our proposed metric, and effective group-
ing of panoramas based on latent style representations.

CCS Concepts

« Computing methodologies — Graphics systems and in-
terfaces; Scene understanding; Neural networks; - Human-
centered computing — Virtual reality; Web-based interac-
tion.
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1 Introduction

Virtual styling is a specialized form of virtual staging that focuses
on updating or enhancing the interior design of a furnished space.
Instead of focusing on adding furniture to an empty room, as with
traditional virtual staging, it lets users reimagine the style of a
lived-in or furnished space without accessing it or making physical
changes. This application is significant for the real-estate market,
where it has been shown to facilitate design, reduce cost, and accel-
erate communication with clients, especially when coupled with
immersive presentations [Sharma 2024; Xiong et al. 2024]. This
requires end-to-end solutions, encompassing capture, processing,
editing, and virtual presentation. In this context, 360° images have
become the de facto standard [Gobbetti et al. 2024]. Single 360°
shots instantly capture the full scene from a single viewpoint, pro-
viding rich context for scene understanding [Pintore et al. 2024a;
Yang et al. 2018] and, when consumed through Head-Mounted
Displays (HMDs) they let users dynamically explore scenes with
natural head motions, leading to good degrees of immersion and
facilitating intuitive virtual reality (VR) interfaces [Matzen et al.
2017].

Understanding and modeling stylistic characteristics of indoor
environments is a fundamental challenge in computer vision, im-
mersive visualization, and virtual staging [Kim and Lee 2020; Naseer
et al. 2019; Pintore et al. 2022]. Advances in neural style transfer

(NST) [Jing et al. 2019], generative adversarial networks (GANs) [Good-

fellow et al. 2014], and panoramic image processing [Tukur et al.
2023b; Zhi et al. 2022] have laid the groundwork for photorealistic
panoramic-based content adaptation in indoor spaces. However,
most existing methods treat style transfer as a static transforma-
tion task and lack a structured mechanism for exploring stylistic
relationships across scenes or for deploying these capabilities in
immersive, user-driven environments.

To address these limitations, we introduce PanoStyleVR, a novel
web-based immersive framework for interactive exploration, rank-
ing, and transfer of styles in panoramic indoor scenes. The frame-
work comprises a front-end component for immersive exploration
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and dynamic style selection and application, and a backend compo-
nent for intelligent style recommendation and application.

The system takes as input a single 360° shot of a real environ-
ment, transformed to a stereoscopic multiple-center-of-projection
(MCOP) equirectangular image pair through PanoStereo [Pintore
et al. 2024b], a recently introduced gated network architecture. At
run-time, the pair is loaded in a lightweight WebXR viewer that
responds to head rotations, offering both motion and stereo cues.
During exploration, a small set of suggested candidate styles is dis-
played as floating thumbnails rendered within the 3D scene. Upon
selecting one of these floating images, the corresponding style is
transferred onto the environment, and a new set of suggested styles
is proposed, enabling immediate immersive feedback. Style transfer
is achieved through PanoStyle [Tukur et al. 2023b], a geometry-
aware and shading-independent photorealistic style transfer model
that operates on albedo reflectance representations to ensure con-
sistency in indoor stylization. To support intelligent style recom-
mendation and retrieval, PanoStyleVR builds on a backend style-
similarity engine. Style codes are extracted using semantic-aware
encoding grounded in the NYU_v2 object palette [Zheng et al. 2020],
capturing semantic, geometric, and photometric attributes. We com-
pute cosine similarity between style vectors to perform ranking
and integrate dimensionality reduction (PCA, t-SNE) and clustering
(DBSCAN, K-Means, GMM) to organize scenes with related stylistic
characteristics. This enables an automated, explainable mechanism
for immersive style suggestion and clustering.

Our work combines and extends recent work in panoramic image
analysis and style transfer, introducing important contributions. In
particular:

e We introduce an immersive WebXR-based interface that sup-
ports interactive selection and real-time application of pho-
torealistic style transfers;

e We integrate PanoStyle [Tukur et al. 2023b] and PanoS-
tereo [Pintore et al. 2024b] for geometry-aware stylization
and stereo scene generation from a single panorama;

e We introduce a style ranking and clustering backend, lever-
aging NYU_v2-based codes, cosine similarity, t-SNE, and
GMM for structured recommendation;

The rest of this paper is organized as follows. After briefly re-
viewing related work (Sec. 2), we summarize the design of our
framework (Sec. 3). We then provide details on the two main com-
ponents, i.e., the immersive WebXR-based interface (Sec. 4) and
the style analysis and recommendation features (Sec. 5). We then
provide a preliminary quantitative and qualitative evaluation of
our prototypes (Sec. 6). The paper concludes with a summary of
achievements and a view of the current and future work (Sec. 6).

2 Related work

Our work addresses the design of a feature-based style similarity
metric for panoramic indoor scenes and the development of an
immersive recommendation system for the interactive application
of photorealistic styles. In the following, we briefly review the
state-of-the-art in similarity metrics, style-based immersive rec-
ommendation systems, and immersive exploration, concentrating
on the approaches closer to ours. For a broader overview, we refer
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the reader to recent surveys on indoor reconstruction and visual-
ization [Pintore et al. 2020], panoramic indoor image processing
and exploration [Gobbetti et al. 2024], and neural style transfer and
associated evaluation metrics [Zhou et al. 2025].

Style similarity metrics for indoor scenes. Unlike artistic style
transfer, which mostly focuses on emulating historical art move-
ments or individual artist styles [Mao et al. 2017; Xu et al. 2025], our
work focuses on interior design styles, which reflect both functional
and aesthetic attributes and are defined by the cohesive arrange-
ment of colors, materials, and layouts within a scene [Pintore et al.
2019]. Since we are interested in recommending style variations of
the presented scene, we must compute style similarity metrics. Sev-
eral methods have been proposed for measuring image similarity
based on perceptual, structural, spectral, or textural features [Aguil-
era et al. 2016; Ding et al. 2020; Zujovic et al. 2013]. Traditional
metrics include Root Mean Square Error (RMSE) [Sheikh and Bovik
2006] and Structural Similarity Index Measure (SSIM) [Wang et al.
2004], while recent deep learning-based approaches have incorpo-
rated semantic and texture-aware embeddings [Ding et al. 2020].
The Frechet Inception Distance (FID) [Obukhov and Krasnyan-
skiy 2020], widely used to assess the quality of generative mod-
els [Buzuti and Thomaz 2023], has also been adapted to evaluate
stylistic coherence in artistic domains [Wright and Ommer 2022].
Specialized similarity metrics have also been extended to accom-
modate panoramic imagery and equirectangular distortions [Zhou
et al. 2018]. More recently, Somepalli et al. [2024, 2025] introduced
descriptor-based metrics for linking generated images (e.g., from
Stable Diffusion) to the styles found in their training data. In con-
trast, our method operates on style embeddings generated via a
geometry- and shading-aware GAN framework [Tukur et al. 2023b;
Ye et al. 2025], tailored to indoor panoramic scenes. To the best of
our knowledge, this work proposes the first framework to define
and apply a style similarity metric for indoor style clustering and
retrieval on equirectangular panoramic images.

Style-based immersive recommendation systems. Style similarity
plays a critical role in the development of content-based recom-
mendation and retrieval systems [Igbal et al. 2019; Ko et al. 2022;
Qazanfari et al. 2023]. While much prior work focuses on style in
illustrations [Garces et al. 2014], artwork [Ruta et al. 2021; Shen
et al. 2019], or shape-based analysis [Lun et al. 2015], including
3D furniture retrieval [Liu et al. 2015] and procedural room layout
generation [Zhao et al. 2024], most methods lack immersive interac-
tion capabilities and are not designed for photorealistic panoramic
environments. Style-driven recommendation systems have been
extensively explored in social media [Zhang and Yamasaki 2021],
fashion [Deldjoo et al. 2023; Kachbal et al. 2024], outfit match-
ing [De Divitiis et al. 2023], and cosmetic applications [Gulati et al.
2023; Sii and Chan 2025]. However, despite the growing interest
in style-aware personalization, no previous work has proposed a
system for indoor design that integrates immersive VR interaction,
panoramic indoor style transfer, and a structured style similarity
backend. To fill this gap, our work introduces the first immersive
web-based recommendation system that supports interactive style
selection and real-time panoramic style transfer, leveraging our
novel indoor similarity metric.
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Immersive exploration from monocular 360° input. Single-shot
panoramas can replicate real-world environments but suffer from
flat appearance [Matzen et al. 2017; Waidhofer et al. 2022]. To im-
prove immersion, several methods have been proposed to support
stereo-cues. By estimating depth, point cloud rendering [Huang
et al. 2017], depth map-based meshes [Tukur et al. 2023a], and
blended RGB-D data [Luo et al. 2018] can be used to render from
displaced points, but lack details in disoccluded areas. Several view-
synthesis methods based on deep learning have recently shown the
ability to generate believable details, but their computation cost
limits their direct application on embedded devices, forcing the use
of remote rendering for HMDs [Pintore et al. 2023; Xu et al. 2021].
For these reasons, several authors have proposed precomputed ap-
proximations. Recent advances like layered depth images [Hedman
and Kopf 2018], multi-plane panoramas (MPI) [Tucker and Snavely
2020], and adaptive sampling [Li and Khademi Kalantari 2020] have
improved viewpoint flexibility. For stereo rendering, omnidirec-
tional synthesis [Pintore et al. 2024b] generates equirectangular
views optimized for VR, delivering strong stereo in central vision
with some peripheral degradation—but applied only to original
images. We extend this approach by integrating semantic analysis,
enabling immersive stereo exploration of restyled panoramas.

3 Framework overview

The PanoStyleVR system comprises an immersive, WebXR-based
editing interface for real-time style application and visualization
(Sec. 4) that builds on a style encoding and similarity computation
pipeline providing style clustering and adaptive recommendations
(Sec. 5).

The back-office components of the framework create a database
of the panoramas that provide stylistic examples. The panoramas
are analyzed to extract style codes, which are used as a basis to com-
pute similarity among styles and support clustering and similarity-
based retrieval. At run time, given an input new panoramic indoor
image, the system extracts its semantic and photometric features,
encodes its style, and uses the code to retrieve visually the N top
similar panoramas in the style database using a cosine-similarity
metric. The panorama is also transformed into an explorable MCOP
stereo pair to feed the WebXR viewer. The viewer exploits the MCOP
image to provide stereoscopic immersive exploration of the envi-
ronment, and the set of similar panoramas to create a visual menu
of possible styling options. Users can explore candidate styles and
apply them interactively; upon selection, the choice is communi-
cated to the backend, which feeds the viewer with a new MCOP
pair, with the style applied, and a new set of stylistic computed
from the selected style.

The WebXR implementation of the viewer is detailed in Sec. 4,
while the similarity metric at the basis of the recommendation
system is detailed in Sec. 5.

4 Immersive styling application

The immersive editing system of PanoStyleVR is designed to enable
interactive, real-time application of photorealistic styles within
a VR environment. It is implemented using WebXR and Three.js,
supporting a variety of head-mounted display devices.
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Our system exploits the PanoStereo [Pintore et al. 2024b] method
to automatically and rapidly convert a single panoramic image in
equirectangular format into two aligned MCOP images encoded
in equirectangular format. The method assumes that, during head
rotations, each eye follows a circular arc. For each ambient to be im-
mersively explored, which may be the original captured panorama
or a stylized version, the stereoscopic effect is achieved by gener-
ating a per-eye MCOP image the pixel column for each longitude
is generated from a different camera position, which corresponds
to the position of the eye when it is looking straight in this direc-
tion. The two panoramas are transmitted to the headset each time
the scene changes (i.e., at the change of the inspected room or the
change of room styling), and rendering is accomplished using a
WebXR viewer that sets the images as textures for two spheres posi-
tioned in the scene — one centered around the left eye and the other
around the right eye. When XR rendering is enabled, the system
retrieves at each frame the head’s orientation from the headset’s
sensors, which is used to compute the view matrix for rendering
the panoramas for each eye, thereby providing motion parallax and
stereo perception.

When a user enters a virtual room rendered from a panoramic
stereo pair, they are surrounded by a set of floating image thumb-
nails representing candidate styles. These suggestions are com-
puted based on the similarity ranking of the current scene’s style
code against a pre-indexed database (see Sec. 5). Each thumbnail
corresponds to a real indoor panorama whose style has been en-
coded and clustered in the backend. Upon selecting a style image
by gazing or clicking, the system invokes the Panostyle backend to
perform semantic-aware, geometry-consistent style transfer. The
edited reflectance image is then recombined with the original shad-
ing signal to produce a photorealistic result. Subsequently, PanoS-
tereo [Pintore et al. 2024b] is employed to generate a new stereo-
scopic panoramic pair from the stylized scene, which is streamed
back to the WebXR client, allowing the user to seamlessly continue
immersive navigation in the newly stylized room. Together with
the updated image, the back-end also streams back to the viewer
new thumbnails for suggested styles. This interaction loop can be
repeated to explore multiple stylistic transformations in real time,
enabling design iteration, personalization, or preference-based ex-
ploration.

The entire pipeline is modular and supports both offline pre-
computation and on-demand streaming. Preprocessing stages for
reflectance and semantic segmentation are handled at initialization,
while similarity ranking and style transfer operate asynchronously
for responsive user feedback. The system is optimized for immersive
performance, supporting high-resolution stereo output (5760x2880)
at 30 FPS, compatible with commercial VR headsets.

5 Style encoding, similarity computation, and
recommendations

The proposed framework extends PanoStyle [Tukur et al. 2023b] by

introducing a structured methodology for extracting, comparing,

and analyzing style codes from indoor panoramic scenes, enabling

recommendation and clustering based on visual style.

M. Tukur, S. Jashari et al.

Each panoramic indoor image is first processed using the Multi-
panowise transformer [Shah et al. 2024b] to obtain semantic seg-
mentation maps and reflectance (albedo) information. These signals
are used as input to a pre-trained Panostyle model that includes
an Adaptive Contextual Encoding (ACE) module. The ACE module,
built using SPADE-based conditional normalization, extracts latent
style codes ¢, per semantic class c, robust to lighting variability.

The ACE module produces spatially localized embeddings for
each object class using reflectance-aligned feature maps. Each latent
code ¢, captures material and texture characteristics associated
with the corresponding semantic region. These descriptors form
the foundation for computing stylistic similarity across images.

The overall style of an image I is represented by concatenating
the individual style codes of all semantic classes:

CDI = [¢c1:¢c2’~-» ¢CN]s (1)

where missing classes are assigned zero vectors to ensure consistent
dimensionality:

¢e=0, ifcegcCl ®)

Style similarity is computed using a cosine-based metric re-
stricted to shared semantic regions between two images:

(", o) Z (1+ o4 . 9B ) 1
o(D, = . .
ceCANCE l@2|[[|@B]| ) 2|cAnCB|

This formulation ensures semantic alignment and perceptual rele-
vance during similarity estimation.

Cosine similarity enables the retrieval of panoramas most similar
to a query in style, and forms the basis for imposing an organiza-
tion on the panorama database. For instance, the computed style
codes and style similarity can support downstream tasks, including
dimensionality reduction and style clustering. In particular, we can
analyze the precomputed database by applying PCA and t-SNE
to visualize stylistic relationships in a compact space and detect
outliers. Moreover, unsupervised clustering algorithms such as K-
Means, DBSCAN, and GMM can group panoramas based on shared
stylistic traits. Fig. 2 summarizes the main steps of the similarity
framework and the possible applications.

In particular, cosine similarity and unsupervised clustering can
be exploited to provide style recommendations to the WebXR viewer
each time a scene or an applied style changes. In particular, for broad
navigation, the clustering imposed on the input images allows us
to propose a variety of different styles by selecting representative
template images from randomly selected clusters, excluding the
cluster in which the current image and style fall. The selected
clusters can also be organized by distance from the current one,
using cosine similarity, thus permitting the organization of the
thumbnails from the most similar to the most distant. This broad
navigation approach can be combined with a local selection method
for fine-tuning the selection by applying nearby styles. This can be
achieved in two ways, depending on the desired scale of variation.
The first method is to simply rank the clusters by similarity with the
current ones using the cosine similarity from their centroids to the
current styled panoramas, and select the first K nearest neighbors.
The approach provides some variety, since we use clusters not
including the current one, but also a good degree of similarity, since
we remain in the neighborhood. For even finer search, it is also
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Figure 2: Framework for Panoramic Indoor Style Similarity. The framework consists of five main stages: (A) Input RGB,
where a panoramic indoor image is provided as input; (B) Multipanowise Processing, which extracts semantic segmentation,
albedo, and shading information; (C) Style Feature Extraction, utilizing Adaptive Contextual Encoding (ACE) to generate
high-dimensional style embeddings; (D) Style Similarity Computation, where cosine similarity is used to rank images based
on stylistic resemblance; and (E) Dimensionality Reduction & Clustering, employing PCA, t-SNE, and clustering algorithms
(K-Means, DBSCAN, GMM) to structure and categorize style relationships. The framework facilitates robust style-based retrieval,

ranking, and clustering of panoramic indoor environments.

possible to generate new style proposals by selecting styles close
to the same image in different directions within the latent space. In
our current prototype WebXR viewer and backend system, we have
implemented only broad navigation (i.e., random selection from
other clusters), leaving the integration of coarse and fine navigation
to future work. The machinery to implement all these possibilities
is already realized in the back-office components, and the structure
of the styling space in our results section (Sec. 6).

6 Results

Our work combines a framework for extracting, organizing, and
applying styles coming from panoramic images of indoor environ-
ments with a WebXR interface that supports immersive stereoscopic
exploration, style selection, and application. In the following, we
report on the results obtained with our proof of concept prototypes,
first focusing on the analysis features (Sec. 6.1) and then on the
immersive editing and exploration features (Sec. 6.2).

6.1 Style similarity

Performance metrics. The metric used for Style Similarity Ranking
is the Cosine Similarity Score, which measures the angular distance
between style feature vectors, ensuring that images with similar
stylistic attributes yield higher similarity scores [Nguyen and Bai
2010]. This metric is fundamental to our ranking system, where a
higher cosine similarity indicates greater stylistic resemblance.

Dimensionality reduction. To effectively structure the style fea-
ture space, we employ the following dimensionality reduction tech-
niques.

e Principal Component Analysis (PCA): Reduces the high-
dimensional style code representations to a lower-dimensional
space, allowing for efficient visualization and interpretation
of stylistic variations [Kurita 2021].

o t-Distributed Stochastic Neighbor Embedding (t-SNE): Pro-
vides a non-linear dimensionality reduction technique for
visualizing high-dimensional style codes while preserving
local similarities [Cieslak et al. 2020].

Clustering. We assess the ability of our framework to group
stylistically similar images using the following techniques.

o K-Means Clustering: Assigns images to K distinct style clus-
ters, ensuring that scenes with similar styles are grouped
based on minimized intra-cluster variance [Sinaga and Yang
2020].

o Density-Based Spatial Clustering of Applications with Noise
(DBSCAN): Identifies clusters of arbitrary shape by consid-
ering the density distribution of style codes, effectively han-
dling noise and outliers in the style space [Deng 2020].

e Gaussian Mixture Model (GMM): Models the distribution
of style codes as a mixture of multiple Gaussian compo-
nents. GMM allows for soft clustering where each image is
associated with a probability of belonging to each cluster,
capturing more nuanced stylistic relationships across indoor
panoramas [Zhang et al. 2021].

These metrics ensure that our similarity ranking and clustering
methods accurately capture stylistic relationships while maintain-
ing computational efficiency.

Datasets. Our experimental evaluation utilizes the Structured3D
dataset [Zheng et al. 2020], which comprises over 18,000 RGB-D
images derived from 3,500 distinct indoor scenes representing di-
verse architectural designs. This dataset serves as an optimal bench-
mark for assessing the effectiveness of our proposed method, as it
provides comprehensive ground truth annotations for panoramic
indoor environments, including semantic segmentation, depth, sur-
face normals, albedo, and RGB imagery. The dataset encompasses
41 region categories, mapped using NYU_v2 color palettes, cov-
ering key indoor elements such as walls, floors, cabinets, chairs,
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Figure 3: Style similarity ranking results. Examples of style similarity comparison. The target image (left) is compared against
three retrieved images with varying similarity levels: high, medium, and low. The PanoStyleVR metric is consistent with SSIM
and ArtFID, effectively capturing stylistic resemblance. Higher PanoStyleVR values indicate stronger stylistic similarity, while

lower values reflect greater divergence from the target image.
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Figure 4: Clustering of Indoor Panoramic Scenes Based on
Style Features Using Gaussian Mixture Model (GMM). The
Figure illustrates the t-SNE projection of high-dimensional
style feature vectors into a 2D space, where colors represent
clusters identified by GMM (20 components). Representa-
tive panoramic images are overlaid to highlight the visual
coherence within clusters. This visualization showcases the
effectiveness of the PanoStyleVR pipeline in organizing large-
scale indoor scenes based on latent stylistic attributes.

sofas, and tables. To facilitate efficient training and inference, we
implemented a suite of pre-processing scripts: one to pre-compute
shading images by integrating albedo and RGB frames, and another
to extract labeled images from color-mapped semantic annotations.
These preprocessing steps enhance the data preparation pipeline,
ensuring robust input for our similarity ranking and clustering
framework.

Qualitative and quantitative assessment. We conducted both qual-
itative and quantitative evaluations to assess the performance and
perceptual consistency of the proposed PanoStyleVR framework.

Initially, we visualize style similarity ranking results by comparing
a target panoramic image with top-ranked retrieved scenes catego-
rized into high, medium, and low similarity levels (cf. Fig. 3). These
visual exemplars illustrate a strong alignment between PanoStyleVR
scores and human perceptual judgments. Additionally, we incorpo-
rate the Structural Similarity Index (SSIM) and ArtFID as reference
metrics to benchmark stylistic coherence, thereby confirming that
PanoStyleVR scores remain consistent with established perceptual
quality indicators.

We further evaluate the scalability of the similarity computation
across a large dataset by analyzing the distribution of similarity
scores. Moreover, clustering analysis was conducted on the Struc-
tured3D dataset [Zheng et al. 2020] using dimensionality reduction
techniques, including PCA and t-SNE, complemented by unsuper-
vised clustering via K-Means, DBSCAN, and Gaussian Mixture
Models (GMM). Among these, t-SNE complemented by GMM pro-
duced the most coherent clustering outcomes, as illustrated in Fig. 4.
To provide additional insight, we also present exemplar scenes from
selected clusters in Fig. 5, demonstrating distinct interior design
styles and structural patterns captured by the clustering process.
Additionally, Fig. 6 presents a comparative visualization of PCA
and t-SNE projections, highlighting how different dimensionality
reduction techniques capture the underlying stylistic structure of
the style code space. Furthermore, Fig. 7 compares the clustering
performance of DBSCAN and K-Means on top of t-SNE: While DB-
SCAN showecases a significant number of outliers, K-Means is not
able to capture clusters with irregular shapes. For these reasons,
GMM was preferred for our image assessments (c.f. Fig. 4). These
visualizations collectively validate the effectiveness of the PanoS-
tyleVR framework in organizing indoor scenes based on latent style
codes. Our results demonstrate that the proposed method robustly
captures stylistic variations in panoramic indoor environments and
facilitates data-driven scene classification and retrieval.

Limitations. While the proposed framework significantly ad-
vances style similarity ranking and clustering for panoramic indoor
scenes, several limitations remain, necessitating further research:
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Figure 5: Exemplar Scenes of Some Selected Clusters. The Figure presents exemplar scenes from five selected clusters from
20 clusters identified by GMM (Fig. 4), demonstrating distinct interior design styles and structural patterns captured by the
clustering process. This further showcases the effectiveness of the PanoStyleVR pipeline in organizing large-scale indoor scenes

based on latent stylistic attributes.
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Figure 6: Visualization of Style Feature Space via Dimen-
sionality Reduction. The figure presents the 2D projections
of high-dimensional style codes using (left) Principal Com-
ponent Analysis (PCA) and (right) t-Distributed Stochastic
Neighbor Embedding (t-SNE). While PCA preserves global
variance in the feature space, t-SNE more effectively captures
local stylistic groupings, revealing the inherent structure and
clusters of panoramic indoor scenes.

e Style Code Generalization: The extracted NYU_v2-based
style codes are optimized for indoor environments, limiting
their applicability to outdoor or hybrid spaces. Non-standard

Image Clustering Based on Style Codes (DBSCAN) Image Clustering Based on Style Codes (KMeans)
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SNE Dimension

ES ] 25 50 7 a0
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Figure 7: Comparative Visualization of Clustering Tech-
niques Based on Style Codes. The figure illustrates example
clustering results obtained using (left) DBSCAN and (right) K-
Means, applied to the t-SNE projection of high-dimensional
style codes.

layouts and custom interior designs may introduce inconsis-
tencies, requiring adaptive feature extraction techniques for
broader generalization.

e Computational Overhead and Scalability: High-dimensional
style feature extraction incurs computational costs, particu-
larly in large-scale datasets. While dimensionality reduction
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(PCA, t-SNE) enhances efficiency, clustering techniques like
DBSCAN, K-Means, and GMM may struggle with scalability,
necessitating GPU acceleration or cloud-based processing
for real-time applications.

o Sensitivity to Environmental Variations: The framework’s
semantic and geometric encoding can be affected by lighting
conditions, occlusions, and reflections, leading to style in-
consistencies. Highly reflective surfaces (e.g., glass, polished
metals) and dynamic lighting introduce artifacts, requiring
illumination-invariant feature representations.

e Limited Contextual Awareness: While the 41-class NYU_v2
palette effectively captures object-level style attributes, the
framework lacks higher-order contextual understanding,
such as user preferences, cultural influences, and design
trends. Integrating multimodal learning (e.g., text-based adap-
tation, user-driven ranking) could enhance its contextual
adaptability.

e Human Perception and Aesthetic Judgment: The current
ranking and clustering mechanisms rely on numerical sim-
ilarity metrics (cosine similarity, PCA, t-SNE, DBSCAN, K-
Means, GMM), which may not fully align with human aes-
thetic perception. Future work should incorporate perceptual
metrics, user studies, and qualitative evaluation to bridge
computational style analysis with human-driven design in-
tuition.

6.2 Immersive style transfer editing system

Figure 8: Immersive exploration and application of style
transfer. We show frames from interactive sessions with our
prototype immersive system. Casual users can explore stereo-
scopic indoor panoramic scenes and select styles from float-
ing thumbnails to be applied to the scene they are currently
exploring. See https://bit.ly/4donjoB for a full video.

We tested the immersive viewer and styling editor on various
head-mounted display devices, including a Pico4, a Meta Quest 3,
and a Google Cardboard. Here We report on experiments made on
a Meta Quest 3, a headset with two 4.48-inch Fast-LCD displays, a
global resolution of 4128 x 2208 pixels (equivalent to 2064 x 2208
pixels per screen), a pixel density (PPI) of 1218, a variable refresh
rate of 72-120 Hz, and a diagonal Field of View (FOV) of 110 degrees.

To present an original or stylized image, only two MCOP panoramic
images must be uploaded to the HMD, since the embedded client

M. Tukur, S. Jashari et al.

performs all the rendering computation and work. The client ap-
plication is built on the Three.js framework using custom WebGL
graphics components, and handles interaction through the WebXR
APIs. Stereoscopic rendering is achieved by reading the sensor in-
formation to get head orientation, and separately rendering the left
and right eye, each with its own MCOP image serving as a spherical
environment. The viewer also allows switching from stereo to mono
and, most importantly, makes it possible to constrain the up vector
to stay aligned with the gravity direction during navigation. This
latter option is important, as the original MCOP image is computed
by assuming a gravity-aligned orientation. An informal test with 5
subjects indicated the preference for stereo mode and a locked ver-
tical direction, as it provided a more immersive experience [Jashari
et al. 2024]. For what concerns the interactivity, the immersive ren-
derer can sustain fully interactive refresh rates (30fps for stereo),
while the application of style transfer and the generation of MCOP
stereo couples in the current implementation cannot be obtained
in real time. For the preliminary system, we selected a set of styles
according to the clusters showcased in Fig. 5 to be precomputed of-
fline. Figures 1 and 8 show frames from interactive sessions with our
prototype immersive system. Casual users can explore stereoscopic
indoor panoramic scenes and select styles from floating thumbnails
to be applied to the scene they are currently exploring. A full video
showcasing examples of immersive application of panoramic style
transfers is available at https://bit.ly/4donjOB.

7 Conclusion and future work

We have presented PanoStyleVR, an immersive web-based system

for interactive style analysis and photorealistic adaptation in panoramic

indoor scenes. The framework integrates a fully immersive WebXR
interface for real-time, stereoscopic exploration, style selection, and
application with a panoramic indoor style similarity framework
that organizes sample scenes and provides style recommendations.
The Panoramic Indoor Style Similarity framework represents a
significant advancement in style-based ranking and clustering for
panoramic indoor environments, offering impactful applications
in virtual staging, real estate visualization, digital twins, and AR-
driven interactive design. By leveraging NYU_v2-based style codes,
dimensionality reduction, and unsupervised clustering techniques,
the proposed methodology enables automated scene retrieval, clas-
sification, and content-aware editing.

Experiments on the Structured3D dataset validate the effective-
ness of our perceptual similarity metric and the system prototype’s
ability to support immersive, style-driven scene editing.

We plan to extend our research and improve the current proto-
type, targeting both the WebXR viewer capabilities and the simi-
larity framework. First of all, the current prototype is a proof-of-
concept tested on a few scenes, where we could exploit several
levels of precomputation. We plan to extend it to fully support
dynamic exploration from fully novel scenes, with on-the-fly anal-
ysis, relighting, and stereo generation. We expect this to be doable,
since the back-end neural models are very lean [Pintore et al. 2024b;
Tukur et al. 2023b], and several parts of the analysis can be cached
during interaction. Moreover, the current interactive system only
supports recommendations of different styles. We plan to integrate
the narrow search methods described in Sec. 5 by introducing a
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hierarchical style selection, where one can decide whether to ex-
pand the search, staying at the same level, or narrow it by stepping
down. In this context, we also plan to perform a human-centric
perceptual evaluation to bridge the gap between automated simi-
larity ranking and human aesthetic judgment and to evaluate the
effectiveness of style navigation interfaces. Expanding the frame-
work to diverse architectural and cultural datasets beyond NYU_v2
could also improve generalization across varying indoor styles and
layouts.

By addressing these research directions, we aim to evolve the
framework into a more robust, scalable, and perceptually-aware
Al-driven tool, advancing applications in interactive virtual envi-
ronments and automated interior design. In particular, the proposed
immersive style transfer framework has broad applicability across
multiple domains, particularly in virtual staging [Shah et al. 2024a;
Tukur et al. 2024], real estate visualization, digital twins, and im-
mersive scene exploration.
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